10 Questions* you should answer before you get serious with your research

<NIER: New Ideas and Emerging Results>

Christoph Dorn
www.infosys.tuwien.ac.at/staff/dorn

* Attribution goes to Prof. Richard N. Taylor, UCI
Overview

• Motivation for this talk
 – There are more things to consider before you get serious than you think
 – Applies mainly to writing small/medium/large proposal but also major papers → BUT: not about the actual writing

• 10 Questions:
 – General discussion
 – Eat your own dog food: applied to RiFlexS: Rigorous Flexible Systems

• Feedback
 – Any additional aspects you consider important
 – On RiFlexS (grilling me softly ...)

[Image of a grill with the text: "grilling me softly..."]
10 Questions at a glance

Focus on:
1. Goal
2. Tangible Benefits
3. Technical Difficulties
4. Approach Elements
5. Overcoming Challenges
6. Unique/Critical Output
7. Potential Spin-Off
8. Measuring Progress
9. Current Status
10. Work Schedule
1. Goal

- *What is the main goal of your work?*
 - the ultimate target,
 - not the solution
 - formulated precise and short,
 - not the approach
 - sets the scope
Goal - RiFlexS

• Enable the development of interaction-intensive systems that seamlessly and simultaneously support tightly controlled user actions and flexible ad-hoc interactions.

• Sub-objectives
 – Specification of such systems (interaction aspects)
 – Informing the designer on expected system behavior, trade-offs, and constraints
 – Focused Infrastructure (runtime support)
A Motivating Scenario/Story

• Having a good scenario is important
 – Guides your thoughts
 – Keeps you down to earth
 – Provides scope and boundaries, assumptions
 – One of the earliest “discussion” document

• What is a good scenario
 – Balance between complexity and simplicity
 – Easy to relate to (the more familiar the better)
 – Achievable
 – Realistic assumptions
 – Actual problem

• Better to have two or three complementary scenarios, but at least you should have one!
RiFlexS scenario

- Design a system for monitoring critical infrastructure
 - Guaranteed behavior: ensure all event sources are monitored
 - Flexible behavior: allow operators to dynamically compose sources
2. Tangible Benefits

• What are the tangible benefits to society of achieving that goal (i.e. why should anyone pay for this work)?
 – Why is your research important, why should anyone care?
 – How does solving the problem result in benefit? Why is this a relevant problem?
 – Who are the stakeholders (who uses your output, who benefits indirectly)?
Tangible Benefits - RiFlexS

• Enable novel types of applications
 – Enable flexibility in constraint-driven environments without losing control
 – Enable control in user-driven environments without losing flexibility

• Applicable to example domains:
 – Hospital domain: enhance precisely specified processes with participant flexibility
 – Collective Intelligence domain: collaborative efforts evolve easier through on-demand coordination/control mechanisms
3. Technical Difficulties

- What are the technical problems/challenges that make the goal difficult to achieve (i.e., why hasn’t this been done already)?
 - If it’s a problem, but simple, let industry do it
 - What are the tricky aspect that are most likely preventing you from success
 → risk assessment
 - Not about the effort for implementation or evaluation
 - Know your related work
Technical Difficulties - RiFlexS

- **Fundamental property:** Control and Flexibility are diametric
- **[Design]** Specifying various degrees of control and flexibility, respectively their trade-offs
 - How much flexibility is possible while maintaining a certain minimum level of control/awareness and vice versa
 - How to (dynamically) shift between flexibility and control
- **[Deployment]** Collaboration patterns not designed for composition
 - Meaningful integration of different mechanisms for control and flexibility
 - Enforcing control across pattern boundaries
 - Designing for flexibility without jeopardizing control
- **[Analysis]** Human behavior is inherently fuzzy
 - Realistic assumptions when analyzing composite pattern design
 - Correctly interpreting human behavior at runtime
4. Approach Elements

• *What are the main elements of your approach?*
 – Focus on Methodology, Steps
 – Where to gain requirements from, what to analyze
 – What process to follow (e.g., iterative, exploratory)
 – How to evaluate
 – Not about the output
Approach Elements - RiFlexS

• Explorative and iterative development
 – Investigate different mechanisms for flexibility and control (breadth of patterns)
 – Refinement of mechanisms (depth of patterns)
 – Investigate different coupling intensities (pattern mapping degree)

• Prototyping and evaluation (comparison with solutions based on existing techniques)

• Two application domains:
 – Adding flexibility to control-centric applications in critical domains such as health care or infrastructure monitoring
 – Adding control to flexibility-centric, Internet-scale, collaborative web applications (e.g., collective awareness)
5. Overcoming Challenges

• How does your approach handle the technical problems that have prevented progress in the past (i.e., what makes you think you can do it when no one else could before)?
 – No, the answer is not your intellect and ingenuity (there are most definitely more intelligent people out there)
 – Apply concrete Techniques, Tools, (conceptual) Frameworks, Principles
 → how do these assist
 • Using machine learning techniques, reasoning techniques, formal specification techniques, architecture styles, ...
 – Refer again to related work
Overcoming Challenges - RiFlexS

• Specify precisely the dependency types among collaborators → these can then be managed
 – characterize collaborations in terms of architectural styles
• Specify precisely the user action range, and loci of control
 – Constraints on collab patterns (when to relax, when to enforce)
• Introduce mappings between patterns
 – Investigate which pattern properties can be used as indicator in another pattern, under what assumptions/conditions
 – Remaining within a single style simplifies analysis, but makes specification often awkward, non-intuitive, ...
 – Primarily: mapping between control-flow (i.e. process view) and structure (i.e., architecture component + connector view)
6. Unique/Critical Output

• What are the unique, novel, and/or critical technologies developed in your approach?

 – Types of output: SotA study, model, modeling language, algorithm, (programming) framework, reference design/architecture, design methodology, proof, user study
 – Might want to distinguish according to design-time, deploy-time, run-time, ...
 – Beware: evaluation output is not a contribution per se
 • User study for proving prototype’s usability → no contribution
 • User study for gaining insights into user behavior → contribution
 – Avoid featuritis: it can do, x, y, z, and a and b. → focus on a few main contributions
Unique/Critical Output - RiFlexS

• Pattern composition specification language
 – Properties, influence propagation, constraints (under specific assumptions)
• Techniques for composed pattern analysis
 – Get some assurance that the system will work as intended
 – Resource utilization, response time, agility, failure likelihood
• Proof-Of-Concept Runtime framework for composed pattern execution (monitoring, enforcement, ...)
 – Specific, focused set of collaboration capabilities
 – (grounded in actual interaction technologies such as XMPP only in demo applications)
7. Potential Spin-offs

• *What are the potential spin-offs or other applications of your work?*
 – Improve your (chances of) impact
 – Show that your research is not some obscure, academic exercise
 – Helps to identify additional stakeholders, new perspectives, opportunities for future research (proposals)
Potential Spin-Offs - RiFlexS

• Utilize in extensible interaction frameworks where user can dynamically compose patterns
 – E.g., imagine a wikipage where you could dynamically add a survey to a particular content selection.

• Refine in mechatronics domain for coordinating among all stakeholders
 – Integrated (automated) coordination among customer, product manager, requirements engineer, architect, analysts, electrical engineer, hydraulics engineer, embedded software engineer, tester, safety, documentation, etc.
8. Measure Progress

• *How can progress be measured (i.e., how can anyone tell if/when you’ve succeeded)?*
 – Milestones: specific properties of your output at particular stages (time frame)
 – Evaluation: show that your output has the claimed properties/benefit (intermediate and final)
 • Use case evaluation/demonstration, performance measurements (incl. comparisons), user study, statistical tests, simulation
 – Side Aspect: Enables you to ensure you are doing research correctly.
Measure Progress - RiFlexS

• Iterative Approach (2x) – Milestones for each version and deliverable:
 – Specification Language for Multi Pattern Architecture
 – Analysis Tools
 – Runtime Framework
 – Scenario/Demo app

• 2nd iteration improves on expressiveness, scope, features, stability.
9. Current status

• What have you accomplished so far? What knowledge/previous work are you building upon?
 – Demonstrate familiarity/experience with the topic under investigation
 – Demonstrate that you have reason to believe in your success
 – Demonstrate that you won’t start from scratch but spend resources wisely/not reinventing the wheel: “standing on the shoulders of giants”.
 – Has implications on your work plan.
Current Status - RiFlexS

- First attempt at a *human Architecture Description Language* (hADL)
 - Focuses on flexibility
10. Work plan

• *What is the schedule for your (remaining) work?*
 – Brings together approach, milestones, output
 • apply SW Engineering models (iterative, waterfall, …)
 – Effort estimation for implementation and evaluation
 • Don’t ask: how long will Task A take, rather what can I achieve in 1 month, 3 months …
 – Risk mitigation
 – Research collaboration: when and how to interact, how to split the work
 • e.g., clearly separated research lines for PhD students
 – Keeps you focused
Work plan - RiFlexS

• 3 year project,
 – 6 months warm up (requirements refinement, background, SoTA, technology evaluation, ...)
 – 12 months 1st iteration
 – 12 months 2nd iteration
 – 6 months extended evaluation, writing up

• 2 PhD students
 – Focus on modeling and analysis
 – Focus on arch-2-code mapping and runtime enforcement
Conclusions

• Answering the 10 Questions is not done on a day, or week, or month.
 – Some you already know, for some parts you have to start from scratch.
 – Some more, some less relevant for your particular purpose
• A lot of effort
 – But **start small** and fit all answers on one A4 page.
 – Improve **iteratively** and **discuss**
 – Unfortunately you can never be sure that you done it correctly/completely ➔ live with it.
• Makes you aware what you actually want to do.
 – Not how to write/structure a proposal (very specific aspects for different funding sources)
 – But helps immensely because the core content is mostly there
Thanks for listening

• Questions and Feedback now!
 – 10 Questions
 – RiFlexS
10 Questions/Aspects relations

- **Goal**
 - is relevant because has

- **Tangible Benefits**
 - underlying problem unresolved because of

- **Difficulties**
 - tackled by strategy

- **Approach**
 - appropriate for addressing

- **Overcoming Challenges**
 - using techniques

- **Spin-Off**
 - may also be used for

- **Output**
 - results in

- **Schedule**
 - refines

- **Progress**
 - according to

- **Status**
 - informs

- **TU Wien Distributed Systems Group**