
PATTERN-BASED COLLABORATION IN AD-HOC TEAMS
THROUGH MESSAGE ANNOTATION

Daniel Schall, Robert Gombotz, Schahram Dustdar
Distributed Systems Group, Institute of Information Systems,

Vienna University of Technology, Argentinierstrasse 8, 1040 Wien, Austria
{schall, gombotz, dustdar}@infosys.tuwien.ac.at

Keywords: Collaboration Patterns, Message Annotation, Coordination Support, Interaction Patterns

Abstract: In this paper we present a specification for annotating messages to enable computer-supported message
processing, addressing, and analysis. The benefits of annotating messages according to our XML based
specification are two-fold: Firstly, it allows computer support during collaboration by enabling automated
message addressing (i.e., determining who should get a message) and message management (e.g., managing
your messages according to activities, projects, and tasks). Secondly, it enables post-collaboration analysis
of messages and mining of message logs for patterns and for workflow models. We provide a proof of
concept by presenting how annotated messages may support and facilitate collaboration that happens
according to certain collaboration patterns. In addition to the patterns we have already introduced in our
previous work, we present more patterns such as Monitors that emphasize the applicability of computer
supported message handling.

1 INTRODUCTION

In our previous work we have made the case for
human interaction patterns in collaborative
working environments. A lot of communication in
human collaboration is message based.

The problem when trying to mine message logs
for pattern or workflow information is that in many
cases raw messages can (a posteriori) not be
mapped to a context or an activity in an automatic
way. We believe that the mining of a message’s
content for such information (i.e., through text
mining technologies) has not yet matured to a
stage where it can provide results that satisfy our
needs in terms of quality and reliability.

The shortcomings of automatic message
interpretation in terms of context and activity also
become apparent when attempting to provide
computer support for message management in
terms of relevance and prioritization (e.g., who
should receive a message and with what level of
urgency).

Message-based collaboration highly relies on
the user being responsible for reading, interpreting,

and processing messages while very little support
is provided by messaging technologies. We
witness this every day when masses of spam
messages are delivered to our inboxes along with
those messages that are actually relevant to us.
And within the relevant messages there is little to
no support for ranking or ordering messages
according to urgency, relevance, or context.

2 COLLABORATION
PATTERNS

The research conducted in our group aims at
developing a pattern language describing the
structure, dynamics, and the interaction flows
observed in human collaboration. In our earlier
work we have presented three initial patterns found
in software engineering and applied them to the
domain of CWE (Collaborative Working
Environments). (Dustdar and Hoffmann, 2006),
(Gombotz et al., 2006). These patterns were the
Broker, the Proxy, and the Master/Slave pattern
which in human collaboration can be interpreted as
receptionist, a secretary, and boss/assistant,
respectively. As an example, Figure 1 depicts a

Master/Slave pattern. An Initiator I starts an
interaction by sending a request to the Receiver R
(the Master in this pattern). R delegates sub-tasks
to the Contributors C. Note that the interaction
between R and C may not be visible to I.

Figure 1: Delegation of sub-tasks (Master/Slave style).

In the following subsections we introduce a
new pattern in human collaboration which we
termed Monitor. The pattern is then further refined
into four subtypes based on the monitor’s
involvement and role in a collaboration.

2.1 Monitor Pattern

Monitoring is omnipresent in collaborative
environments and may even happen
subconsciously. It is done for different reasons and
is achieved through different methods which are
discussed in more detail along with the
corresponding subtypes of a Monitor in the
following subsections.

We define a Monitor as an actor watching or
observing a given object of interest. In the domain
of human collaboration that monitored object may
be another actor, a group of actors and their
interactions, or a certain task or activity. For
example, a boss may monitor a subordinate and a
group leader may monitor other group members
and their interactions.

2.2 Subtypes of Monitor Pattern

Besides the different types of observed objects
listed in the previous subsection, Monitors can be
classified by the motivation underlying their action
and by the methods they have at hand to monitor
their object. We differentiate between four types of
monitoring based on the motivation underlying the
monitoring activity.

Informational Monitoring: The actor monitors an
object he is not directly related to or affiliated
with. His motivation for monitoring is not obvious

to others. An example is a team member
monitoring the activities of a more experienced
colleague in order to learn from him.

Observational Monitoring: A dependency
between the actor and the object he monitors is
given. This dependency is the motivation for
monitoring since he may be influenced by or may
have to react to certain events related to the
monitored object. An example is a team member
monitoring a task which his own task depends on,
for example, his own task relies on input generated
by the other task.

Supervisional Monitoring: The Monitor is
responsible for or has authority over the object he
monitors. He has the right (or the obligation) to
intervene when necessary. An example drawn
from another pattern is a master monitoring the
activity of his slaves to ensure correct execution of
the (sub) tasks he assigned to them.

Coordinational Monitoring: The Monitor is
responsible for coordination of a team (or parts
thereof) and for efficient allocation of resources.
He is not interested in the details of an activity, but
only in information regarding an object’s status,
for example, availability of a person, or progress of
a task.

2.2.1 Student, or Studying Monitor

Definition: A Studying Monitor has no direct
relationship or dependency to the monitored object
and his monitoring activity is not driven by an
external necessity.

Characteristics: Studying Monitors may remain
undetected by the object that is being monitored.
Typically, a Studying Monitor does not directly
interact with the corresponding object, nor does he
request active reporting from it.

Methods of Monitoring: Since the Studying
Monitor is not affiliated with what he monitors his
methods of monitoring are limited. Typically, all
monitoring activities will have to be initiated by
himself and the information he may acquire may
be limited as well. Monitoring must not be
intrusive, and any direct access to the monitored
object is granted on a purely “voluntary” basis.

2.2.2 Dependant, or Dependent Monitor

Definition: A Dependent Monitor (DM) observes
objects that have an impact on himself or the tasks
he is involved in.

Characteristics: The Dependant Monitor is best
characterized by his ability to interact with his
monitored object while not having any authority
over it and thereby not being able to interfere with
the object’s activities.

Methods of Monitoring: Due to the explicit
dependency of the Monitor and the object of
interest, Dependent Monitors are granted certain
rights and opportunities to guarantee them
sufficient information. For example, Dependent
Monitors may be allowed not only to monitor
publicly available information, but may also be
given the opportunity to directly address, for
example, actors involved in the monitored task,
when further information is needed.

If provided by the object, DMs may be
permitted to subscribe for notifications that a given
object issues to dependent entities. In case of
critical dependencies, a DM may even have the
right to demand such notifications.

2.2.3 Supervisor, or Supervising Monitor

Description: A Supervisor is responsible for or
has the authority over the object he monitors. He
also has the right to manipulate the object, for
example, issue orders to a person, or influence the
execution of a task.

Characteristics: The Supervisor’s responsibility
for a given object implies both the right and the
duty for active intervention whenever necessary. A
Supervisor is the only subtype of a Monitor with
the right and opportunity to directly manipulate the
object.

Also, a Supervisor may have to be available to
objects he monitors when they request guidance.
Therefore, he may have to provide support upon
request.

Methods of Monitoring: Along with a
Supervisor’s control over the monitored object
comes the right to enforce active reporting by the
object of interest in whichever way considered to
be suitable by the Supervisor. This may include
notifications regarding relevant events, status or

progress reports in desired intervals, or even
personal reports to him by a monitored actor.

2.2.4 Coordinator, or Coordinating
Monitor

Description: A Coordinator monitors the status of
objects in order to coordinate activities and to
enable efficient allocation of resources.

Characteristics: A Coordinator is not interested in
the actual “content” of activities, e.g., the content
of documents resulting from collaborative
activities, but only in the status of objects.
Significant status information could be availability
of actors, e.g., “available” or “unavailable for 2
more hours”, and progress of tasks, e.g., “90%
completed”, or “estimated completion in 3 days”.

Methods of Monitoring: Considering the
importance of effective and efficient coordination
in human collaboration, a Coordinator should
typically not be denied any information he
considers to be relevant. Therefore, Coordinators
would be granted rights regarding information they
have access to. Also, for example, in time critical
situations the monitored object may do more
frequent reporting to the Coordinator.

3 MESSAGE ANALYSIS

As we stated in the introduction, today’s most
widely used messaging protocols provide very
little support to the user in terms of message
addressing, message management, and message
prioritization.

In the following discussion we present a
simple, yet effective way of annotating messages
with machine readable information to facilitate
computer-supported collaboration using basic
messaging technologies. The tags which are
embedded in messages are specified in XML and
can therefore even be considered to be human-
readable, even though this factor did not play an
important role in the design.

The information contained in these tags may be
used at two stages:

 Ongoing collaborations: Applications
include semi-automatic message addressing
and message management, for example,
ordering of messages by activity, archiving

of messages relating to completed tasks, and
message prioritization.

 Post-collaboration: Tags allow for message
archiving, and improve message analysis
opportunities, possibly as far as extracting
patterns and workflow information.

Annotations should allow the mapping of
messages to an activity context, which in turn may
relate to a task, a project, and thereby a team.
Consider a hierarchically organized project as
depicted in Figure 2.

Figure 2: Granular levels of detail in project topology.

As displayed by Figure 2, the root of the
hierarchical tree is the Project. It provides the
container for logical workpackages and
furthermore actual tasks which are being executed
by team members to contribute to collaborative
activities. Workpackages and tasks include
properties such as start time, end time, deadlines
and milestones, expected duration, outcome (e.g.,
artifacts), and resources. To work effectively in
teams, coordination of team members and progress
tracking is required. Measures at different levels of
detail optimize collaboration and minimize risks
that may arise. For example, at level 2 in Figure 2
we measure task progress, deviations, and possibly
identify deadlocks.

Our work in the area of message based systems
aims at structuring ad-hoc collaboration by
applying a flexible topology to manage
information, which allows users to create projects,
to associate a number of tasks to projects, to define
a responsible person or leader for a particular task,
to assign members or contributors to tasks, and to
associate a set of artifacts to tasks.

Exemplary messages relating to information
management, including XML notation, are “create
project” <create-project />, “create task“
<create-task />, “update status“ <update-
status><task-id /></update-status>,
“request approval“ <request-
approval><task-id /><artifact-id /></

request-approval>. Read-only requests
include, for example, “query status“ <query-
status><task-id /></query-status>.

In the following subsections we elaborate on
collaboration and communication (or the protocol)
patterns and define an XML based method to
coordinate collaboration in ad-hoc teams that
communicate in peer-to-peer mode.

3.1 Communication Patterns

A communication pattern describes the structured
and periodic exchange of messages. The sequence
diagram in Figure 3 shows a simple “create task”
pattern.

Figure 3: Create new task.

The Supervisor assigns a new work item to
Participant I, II, and III by sending a “create task”
message (messages, in short m, 1-3). Figure 3
depicts the case where Participant I holds the task
leader role. Therefore, Participant I accepts and
confirms the assignment by responding with “Ok”.
Finally, the Supervisor acknowledges that “create
task” was successful (“Ack” to each Participant, m
5-7). As a result of this interaction, a new task (i.e.,
task named T1.1 with logical association to
workpackages WP1) is created, assigned, and
saved to the persistent store (e.g., XML data saved
in the local file system – no central database server
is required).

A task typically produces some output in the
form of artifacts such as documents or reports.
These artifacts are associated to or referenced by a
particular task. In our example the task leader,
Participant I, coordinates the work among
contributors (Participant II and III). A final
approval or review, however, may be required by
the Supervisor. Figure 4 illustrates an approval
pattern. Participant I sends a “request approval”
message, containing the “relates to” element that
refers to specific activities or tasks, in our example
T1.1 scoped by WP1, to the Supervisor (m 1). The

“relates to” element helps us to inspect the context
of the message and to associate messages to
activities and tasks. Additionally, we can
determine the causal dependencies between
messages and organize them in a structured way.
For example, messages relating to a specific task
or workpackage can be represented in form of a
message tree.

Figure 4: Request approval from Monitor.

The Supervisor approves T1.1, thereby authorizing
associated or relevant artifacts, by returning “Ok”
(m 2). Please note, the semantic meaning of “Ok”
in this context is to confirm the request – “request
approval”, which may in fact contain an “accept”
or “reject”. For simplicity we abbreviated the
approval message as “Ok”, however, it should be
seen as “Ok (Relates to WP1::T1.1)”.

In Figure 4, we assume that the approval was
only sent to Participant I as a “private” message.
Upon receiving the approval, Participant I
distributes an “update status” message (m 3-4),
which can be regarded as a command or delegate
to receive updates. In other words, it can be seen
as an invalidate-status command (by sending
“update status”), which results in “request status”
messages to be sent (m 5-6).

The approval pattern in our example is denoted
by following properties:

 The “request approval” message is sent by
the leading participant (task leader).

 Approval is given by the supervising
Monitor.

 Final status information (e.g., status of
WP1::T1.1) has to be obtained from an
authorized entity, in our case the Supervisor.

Following the approval pattern, Participant II and
III query the Supervisor for updated status
information (m 5-6). The Supervisor, in turn,

notifies all Participants regarding T1.1 updates (m
7-9).

4 INTERACTIONS THROUGH
EMAIL

Our pattern based approach to coordination
problems in collaboration, specifically in ad-hoc
collaboration, by means of message annotations in
form of embedded XML tags, can be applied to
any message oriented system that has basic
features such as addressing, a text based protocol,
and the ability to store messages. Instant
Messaging (IM) and Email are two prominent
examples for such systems and are widely used in
collaboration. Email is the most extensively used
technology in asynchronous (ad-hoc) collaboration
because of its flexibility and its ability to
interoperate with any other email client/program
across organizational boundaries and company
firewalls.

However, flexibility comes at a price. There is
a tradeoff between versatile collaboration and
structured or even rigid collaboration flows
(Dustdar, 2004). We validate our proposed
concepts by applying them to email-based
collaboration. In the next sections we provide a
high-level specification of our message annotation
framework.

4.1 Message Annotations

Create New Project: Users have the ability to
create a new project, in order to initiate a new
collaboration, by providing information such as
project name, description, start, end, resources, etc.

User can make this information available (i.e.,
announcement that a new project exists) by
sending a message to a predefined distribution list,
similar to a multicast “invite” message. Whoever is
interested from that list in joining the project
creates a response which relates to the announced
project. The other option is to specify members
explicitly by selecting them from a list.

A fragment of the corresponding XML
representation (XML tag) that is embedded (along
with exemplary data) in an email message:

<create-project>

<id>project123</id>
<name>Class data mining</name>
<begin /><end />
<team>

 <member><name /><email />
 <role />
 </member>
</team

</create-project>

All members receive the message. A client
application discovers the machine processible
information, i.e., XML tag <create-project>,
in the message and prompts for information
regarding the project and whether or not the user
wishes to participate. If the user confirms, a
message is being generated and automatically sent
to all other members. An exemplary confirmation
message:

<join-project>

<project>
<id>project123</id>
</project>
<member><name /><email /><role />
</member>

<join-project>

A new folder can be created automatically in the
users email message repository (logical or
physical) to structure all project related messages
and activities. Upon receiving the incoming
message regarding the addition of a new team
member (message holding tag information <join
project>), project related information that is
saved on the other participants’ clients in a local
store is being updated automatically and reflected
in the user interfaces by means of event
notification. From this point on, the project is
saved in a persistent store and members can
associate messages to the project. Every member
has the ability to a) create tasks, b) update status
information, c) request status information, d) send
information and artifacts to members (however, as
opposed to standard email, in a structured way
where embedded artifacts, resources, etc.
correspond to tasks and to an activity context), and
furthermore, which is not further elaborated in this
paper, e) initiate and schedule meetings, and f)
request group decisions (distributed decision
making support).

Create Task: A new task is created by providing
the user with the ability to choose a project from
the local store. Once a project is selected, the user
selects the recipients of the task and may assign
predefined roles to members such as a)
Leader/Owner, b) Member, or c) Monitor.

A message is sent to the respective participants,
holding different roles (Leader and Members) and
a carbon copy (CC) to Monitors, containing:

<create-task>

<name /><desc /><duedate />
<leader /><members /><monitors />

</create-task>
Upon receiving this message, users need to
confirm (e.g., “Do you want to add task T to this
project and accept your role?”). A logical folder
for messages relating to that task is created under
the corresponding project folder.

Update Task Status: Task members can send
messages regarding task progress using “update
task status” messages. The corresponding XML
annotation for “update status” along with
(implementation dependent) possible values:

<update-status><task-id />

<progress>50%</progress> (or “on
time”, “delayed”, “completed”)

</update-status>

As task status updates are received, the persistent
store is updated on each participant’s client.

Request Task Status: The team can exchange and
request task status information messages. This
feature is provided by “query status” that lets users
select from projects or teams and depending on
project selection pick specific tasks. As we show at
a later point in more detail, the message may be
distributed based on roles and collaboration
patterns, for example, by requesting status
information from other peers or by requesting
status information only from authorized entities
such as Monitors (e.g., Supervisors). An
exemplary “query status” message:

<query-status>

<task-id />
<last-update>TimeStamp</last-
update>
<confidence>60%</confidence>(or
“low”, “medium”, “high”)

</query-status>

Approval: Our framework provides the ability to
issue a “request approval”, as illustrated in Figure
4, which relates to a task or an associated artifact.
A message is sent to the person who should give
the approval containing:

<request-approval>

<task-id />
<task-leader />
<progress />(e.g., “completed”)
<artifact-id />

</request-approval>

The corresponding response message would be:
<approval>

<task-id />
<approved /> (e.g., accept, reject,
pending, deferred)
<approved-by />
<reason />

</approval>

An approver may accept or reject a task or the
actual outcome of a task in form of artifacts or set
the approval status to “pending”. Furthermore, it is
possible that the approver delegates the decision to
another entity or Monitor. In this case, a custom
XML tag with an element <relates-to>, that
refers to the delegated approver, may be generated.

Retrieve Project Status: The ability to retrieve a
project’s status information is a vital part of our
system. Previous elements such as “create task” or
“update task” enable users to manage information
and messages in a structured way – suitable for
coordinated collaboration (e.g., see “request
approval” use case). Retrieve project status aims at
providing a high level overview of activities and
tasks that are going on in a particular project (e.g.,
as illustrated in the project tree in Figure 2). It
allows the users to get summaries of the overall
status (e.g., management summaries) – at a glance
– and also allows new team members to quickly
get started in an ongoing project (bringing new
team members up to speed by generating custom
reports and project summaries). In particular, it
allows the generation of a report of the current
project status, including team members, tasks and

their status. Summaries can be displayed as simple
reports including history of contributions such as
file changes, and also reports suitable for new team
members by getting all relevant information that
other members have stored on their systems. This
could even include the most recent version of all
artifacts such as files related to the project. An
exemplary XML report could comprise the
following elements:

<project-status>

<project-info /> (e.g., id, name,
workpackages, etc.)
<team-info /> (e.g., active
members, monitors)
<task-info /> (e.g., not yet
started, completed, pending)

<project status>

4.2 Collaboration Use Case

A slightly more complex interaction scenario is
depicted by Figure 5. Participant I updates status
information, related to T1.1 (m 1-2), which in turn
triggers an “update status” initiated by Participant
II (m 3). In this case Participant II is monitored by
a Person-Dependent Monitor. In principle, we
distinguish between monitoring a person and
monitoring a task/activity. Next, we see a protocol
specific pattern that relies on roles or even specific
assignments in the form of tasks. Participant I
sends an “update status” message to his/her
Supervisor. A handshake mechanism in form of
“ACK” and “OK” messages is applied to
guarantee delivery of status information (m 4-6).

Figure 5: Updating task information interacting with multiple Monitors.

As a next sequence in Figure 5 we see “request
status” information. The supervisor pulls status
information regarding T1.1 from the task leader (m
7), i.e., Participant I, asynchronously. In turn, the
leader requests status information from each
participant (m 8-9) to ensure consistency of status
information and provides consolidated information
in form of an “update status” message to the
Supervisor (m 10).

5 RELATED WORK

In our previous work we have introduced patterns
from the software engineering domain, i.e., Proxy,
Broker, and Master/Slave (Gamma et al., 1994), as
a metaphor for human collaboration patterns.
(Dustdar and Hoffman, 2006). These patterns can
be utilized to make collaboration more efficient
and also to establish team awareness. (Gombotz et
al., 2006). As the number of messages sent in
collaboration grows, it becomes increasingly
challenging to process them. Additional socially
salient information may be needed to bring
important emails to the user’s attention.
(Neustaedter et al., 2005), (Petrie, 2006). Data
obtained from field studies suggest that email
activities may be categorized in: flow, triage, task
management, archive, and retrieve. (Venolia et al.,
2001). Email archives and traces of
communication and coordination activities can be
utilized to perform post-collaboration analysis and
extract relations in human collaboration. Social
networks can be used to visualize these relations
and dependencies in a graph representation. (van
der Aalst et al., 2005).

6 CONCLUSIONS

We presented an extensible XML based
framework that allows users to exchange
collaborative messages and information in a
structured way. Annotations in messages can be
used to organize messages (semi-) automatically
based on activity contexts. Reports and summaries
can be generated automatically in order to
understand the high level status of a project or to
assist team members that are joining the team or
have been absent for some time to better
understand past activities and current status. The
presented XML tags, which are embedded in
messages, can be used for post processing and

message analysis to identify and extract patterns
and possibly workflow information.

Our pattern based collaboration framework is
fully distributed and does not rely on any central
server. However, if teams become large and
collaboration lasts for a long period of time, a
server that saves XML annotations and coordinates
activities based on patterns may be employed.
Although presented in the context of email,
methods and principles of our framework may be
applied to any messaging-based system.

ACKNOWLEDGEMENTS

Part of this work was supported by the EU STREP
Project inContext (FP6-034718).

REFERENCES

van der Aalst, W.M.P., Reijers, H. A., Song, M., 2005.
Discovering Social Networks from Event Logs.
Computer Supported Cooperative Work 14(6), 549-
593.

Dustdar, S., 2004. Caramba - A Process-Aware
Collaboration System Supporting Ad Hoc and
Collaborative Processes in Virtual Teams.
Distributed and Parallel Databases, 15(1), 45-66.
Kluwer Academic Publishers.

Dustdar, S., Hoffmann, T., van der Aalst, W.M.P., 2005.
Mining of ad-hoc business processes with TeamLog.
Data and Knowledge Engineering, 55(2), 129-158,
Elsevier.

Dustdar, S., Hoffmann, T., 2006. Interaction Pattern
Detection in Process Oriented Information Systems.
Data and Knowledge Engineering. Elsevier.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1994.
Design Patterns – Elements of Reusable Object-
Oriented Software. Addison-Wesley.

Gombotz, R., Schall, D., Dorn, C., Dustdar, S., 2006.
Relevance-Based Context Sharing through
Interaction Patterns. The 2nd International
Conference on Collaborative Computing. IEEE
Press.

Neustaedter C., Bernheim Brush A.J., Smith, M. A.,
2005. Beyond "From" and "Received": Exploring
the Dynamics of Email Triage. CHI 2005.

Petrie, C., 2006. Semantic Attention Management. IEEE
Internet Computing, 10(5), 93-96, Sept/Oct, 2006.

Schümmer, T., 2005. A Pattern Approach for End-User
Centered Development Groupware Development.
EUL Verlag.

Venolia, G.D., Dabbish, L., Cadiz JJ, Gupta A., 2001.
Supporting Email Workflow. MSR-TR-2001-88.

	1 INTRODUCTION
	2 COLLABORATION PATTERNS
	3 MESSAGE ANALYSIS
	4 INTERACTIONS THROUGH EMAIL
	5 RELATED WORK
	6 CONCLUSIONS

