
Towards Modeling Role-Based Pageflow
Definitions within Web Applications

Ernst Oberortner, Martin Vasko and Schahram Dustdar
{e.oberortner|m.vasko|dustdar@infosys.tuwien.ac.at}

Technical University of Vienna
Distributed Systems Group
Argentinierstraße 8/184-1

A-1040 Vienna
Austria

Abstract. Model-Driven Software Development (MDSD) can be used
to enhance developing and maintaining web applications. Furthermore,
security plays a crucial role in the area of web applications. A seamless
integration of access control and modeling web applications becomes im-
portant. This work introduces model-driven integration of security con-
cerns into the development life cycle of web applications. In this pa-
per, a static design model is introduced which enables the assignment of
Role-Based Access Control (RBAC) to the pageflow at design time. The
approach is demonstrated by a generated web application with defined
security constraints which can be deployed on the Apache Tomcat web
server.

1 Introduction

Due to the increasing complexity of web applications, their development and
maintenance becomes more difficult [1]. To find a remedy, Model-Driven Soft-
ware Development (MDSD) can be used. It addresses the reduction of devel-
opment time, the quality of the software, a high level of abstraction for better
maintenance, as well as to achieve better portability and interoperability [2].

Besides rising demands on the web application architecture, the seamless inte-
gration of access control becomes important. Role-Based Access Control (RBAC)
is a technique for multiple user systems and networks and was introduced 1992
by Ferriaolo and Kuhn [3]. RBAC is used by organizations to protect their in-
formation resources from unauthorized access [4]. Nowadays, RBAC is a favored
technique because it provides an easy way of administrating security [5]. RBAC
provides possibilites to model security requirements of today’s web applications
through complex role hierarchies and restricted access to predefined users.

A common problem of securing web applications lies in the late integration
of security at the test phase or at the end of the development process. It is
recommended to integrate security into the life cycle of a web application [6].
The integration of security with MDSD leads to a high level formulation of

security aspects [7]. The model-driven integration of RBAC models into system
design models has been proved to be a feasible approach [8].

This work introduces a static design model which enables role-based securing
of web applications based on the pageflow. Our approach is focused on the design
of secure web applications. For the time being, no models are provided for model-
ing security which is established during runtime. Our approach is demonstrated
by a generated JavaServer Faces (JSF) [9] web application with defined security
constraints, and which is deployed on the Apache Tomcat web server [10].

This paper is organized as follows: Section 2 demonstrates a motivating ex-
ample for a model-driven approach for securing web applications. Section 3
shows the background of used technologies and methodologies. An architectural
overview gives Section 4. Section 5 demonstrates the implementation of our ap-
proach and an example. Section 6 highlights related work. Finally, Sections 7
and 8 complete the paper with future prospects and a conclusion.

2 Motivating example

A sample web application is introducing the motivation of our approach. The
application implements a user administration where visitors1 can list all users,
request detailed information on each user, add new users, delete existing users,
and change user details.

+PageID : string
+Name : string

Page

<<instance of>><<instance of>>

+changeUser()
+deleteUser()
+list()

+User

UserDetails:Page

+changeUser()
+deleteUser()
+list()
+addUser()
+detailUser()

ListUsers:Page

+list()

+User

AddUser:Page

+updateUser()
+list()
+detailUser()

+User

ChangeUser:Page

+deleteUser()
+list()
+detailUser()

+User

DeleteUser:Page

Fig. 1. An Object Diagram of the Web Pages Structure

1 As the term users might be ambiguous, we refer to web application users as visitors,
and the term users refers to the design model.

Figure 1 illustrates a UML [11] object diagram of the motivating web ap-
plication. Each Page class represents a web page, implementing the defined op-
erations. Beyond the stated functionality, the following security policy must be
applied:

1. Deny access to unregistered visitors to all web pages
2. Registered visitors need to be assigned to one of the following roles:

Admin, GroupLeader, or GroupMember
3. Members of the role Admin may access all web pages
4. Members of the role GroupMember may request only user details
5. Members of the role GroupLeader may access all information concerning the

members of the role

Derived from these security constraints, the UML statechart models, illus-
trated in Figure 2, demonstrates the resulting pageflows of each role.

List Users User Detail

Add Users

Delete User

Change User
Start

a) Web application

List Users User Detail
Start

c) Group Member

List Users User Detail

Add Users

Delete User

Change User
Start

b) Group Leader

Fig. 2. UML Statechart Models of the Role

Figure 2 a) defines all web pages of the web application. Figure 2 b) lists
all pages reachable for members of the role GroupLeader. Whereas from a func-
tional point of view, the state charts a) and b) are equivalent, the result of the
requests needs to be different (refer to security policy 5). The content of Lis-
tUsers web page depends on the role of the visitor. If the visitor is assigned to
the GroupAdmin role, the list contains all registered users. If the visitor is as-
signed to the GroupLeader role, the list includes only users assigned to his/her
role. Figure 2 c) presents the state chart for members of the GroupMember role.
Visitors assigned to this role are only allowed to request information about users
concerning to their role.

This sample web application indicates two restrictions:

1. Restricted Web Pages: Pages of the web application are restricted to a
predefined role of visitors. E.g., members of the GroupMember role do not
have access to the Add-, Change- or Delete User web pages.

2. Restricted Content: Results of requests to the application depend on the
requester’s role membership. E.g., members of the GroupLeader role, re-
questing a list of users, retrieve only users assigned to their role.

The stated restrictions can be divided into two categories: restrictions that
can be defined (1) at design time, and (2) at runtime of the web application. E.g.,
at design time it can be defined that only users of the Admin or GroupLeader roles
can access the AddUsers web page. But, the content of the web page depends on
the role of the visitor. The role of the visitor is known only at runtime. Hence,
the content must be generated at runtime. This is established by the business
logic of the web application.

We identified the definition of restrictions at design time as an ideal candidate
to integrate an RBAC model into the static design model and generate web
applications from these models. Throughout the paper, the approach of applying
RBAC on the pageflow is introduced.

3 Background

For a better understanding, this section provides an overview of used technologies
and methodologies. First, a definition of our understanding of a pageflow is given.
Afterwards, the application of MDSD on our approach is demonstrated.

3.1 Definition of Pageflow

The Model-View-Controller (MVC) [12] pattern is a design pattern which di-
vides the responsibilities clearly into Model, View and Controller. The Model
encapsulates data and behavior of web applications, independent of their rep-
resentation. The View represents the presentation layer and is responsible for
rendering the data, according to the type of client, by processing the results of
the Model. The Controller has to select the subsequent web page or view which
should be displayed to visitors by handling visitor’s interactions, e.g., submitting
the entered data of a form. These interactions are performed by calling actions
on the Model. Based on the interactions and the outcomings of the performed
actions, the Controller selects the next web page which is displayed to the visitor.

The basis of selecting the appropriate web page is defined in the pageflow.
Hence, the pageflow describes to which web pages visitors can navigate, depen-
dent on the current page. In our work, the visitor can only navigate to other
web pages by interactions with hyperlinks or buttons. The subsequent web page
depends on the hyperlink or button which the visitor clicks and in which roles
the visitor is member of. A well arranged readability of the pageflow can be
achieved by defining the pageflow with Java-like IF-ELSE statements.

3.2 Model-Driven Software Development (MDSD)

Figure 3 demonstrates the functioning of MDSD based on our approach of se-
curing web applications. The Pageflow- & RBAC Metamodel provides constructs
for modeling the pageflow and RBAC for web applications, i.e., the abstract syn-
tax. Web Application Models are instances of the metamodel. The validity of
models of web applications is checked by a Model Validator which consists

Pageflow- &
RBAC

Metamodel

defined on

 Web Application
Model

instanceof

oAW Check
Constraints

oAW Xpand
Templates

Model
Validator

Code
Generator

checked by

passed to

JSF
Web Application

generates

based on

based on

Fig. 3. The approach in the MDSD chain

of Constraints which are defined on the constructs of the metamodel. Valid
models are passed to the Code Generator which generates executable code and
the needed configuration files, i.e., in our case a JSF web application for the
Apache Tomcat web server. In our work, the code generation process is based
on Templates which are also defined on the constructs of the metamodel.

4 Architectural Overview

Figure 4 demonstrates the activity chain of developing web applications based
on MDSD. First, the model of a web application is defined by developers or
domain experts (activity 4(a)). The rectangles describe the accessible web pages
for the GroupLeader and GroupMember roles. The big rectangle depicts acces-
sible web pages for GroupLeaders, and the small one depicts accessible web
pages for GroupMembers. Generating modeled web application through MDSD
is demonstrated in activity 4(b). Activity 4(c) shows the generated web pages
and platform-specific configuration files, e.g., the deployment descriptor web.xml
for web applications of the Apache Tomcat web server [10]. Activity 4(d) refers
to the deployment phase. In the deployment phase, developers have to add hand-
written code or platform-specific configurations to the generated files of the web
application. Afterwards, the web application can be deployed and executed on a
web server.

5 Our Approach

This section presents implementation details to achieve joint modeling of RBAC
and pageflow of web applications. First, the used technologies are mentioned.

p1
p2 p3 p4

MDSD

<?xml . . .>
<web -app>
...
< /web-app>

public class {
...
}

(a)

(b) (c)

(d)

(e)

(a)

deploy

Fig. 4. The Procedures of a Model-Driven Approach

Then, the most important implementation details are presented: the metamodel,
the model validation constraints and the code generation templates. Afterwards,
an insight to the generated code is given. Finally, the feasibility of our approach
is demonstrated on the motivating example presented in Section 2.

5.1 Used Technologies

The metamodel is defined through an Eclipse Modeling Framework (EMF)
Ecore [13] model. For the time being, models are described in the XML Meta-
data Interchange (XMI) [14] format which is used for interchanging models
between different modeling tools. Model validation and code generation are im-
plemented by the use of openArchitectureWare (oAW) [15]. oAW is an Eclipse 2

based framework that affords model validation and template based code gen-
eration. Model validation is done through constraints which are defined in the
oAW Check Language. Also, oAW provides the Xpand language which is used
for the definition of the code generation templates. For the time being, only
secured JavaServer Faces (JSF) [9] web applications for the Apache Tomcat web
server [10] are generated.

2 http://www.eclipse.org

5.2 A Proposed Metamodel

The metamodel is presented by a UML class diagram in Figure 5. Each We-
bApplication consists of a number of Pages, and one page is depicted as the
startPage. Pages contain NavigationRules which define the pageflow. The
classes If, ElseIf and Else are defined to achieve a Java-like IF-ELSE pageflow
definition. These classes are derived from the Decision class which contains a
reference to the subsequent web page through the gotoPage association. The
referenced web page is displayed if the outcome of the performed actions is
equivalent to a corresponding outcome attribute, specified in the If and ElseIf
classes. If no corresponding outcome attribute is found, the web page specified
by the gotoPage reference of the Else class is displayed to the visitor.

-name : String

WebApplication

-Name : String

Page

NavigationRule Decision

-outcome : String

If

-outcome : String

ElseIf Else

-name : String

Role

-userID : String
-password : String

User

-description : String

Permission

1

-role

1..**

1..*

1

-page*

-startPage

1

*

1

1

1 *1 *

-gotoPage1

1..*

* page

*

startPage

gotoPage

role

* *

1

* *

*

*

1

*

Fig. 5. Pageflow- & RBAC Metamodel

The assignment of RBAC to the definition of the pageflow is provided through
the association between the Decision and Role classes. Hence, an IF-ELSE def-
inition of a rolebased pageflow definition is achieved, e.g.,

IF outcome="..." AND role="..." THEN gotoPage="..."

As introduced by Sandhu et. al. [5], a Role consists of one or more Users and of
one or more Permissions. For the time being, a Permission is responsible to
define if a user has access to a certain web page or not. It is planned that more
permissions will be introduced, e.g., write or publish web pages.

It is possible to use Aspect Oriented Modeling (AOM) for modeling the
pageflow and RBAC. AOM supposes a clear separation into multiple models.
This means, that our metamodel can be splitted into two separate metamodels,

one for modeling the pageflow, and one for modeling RBAC. But, AOM needs
clear defined integration points for merging the models. Our approach defines
an association between the classes Decision and Role, instead of integration
points. But, the use of AOM seems to be an alternative modelling technique.
This approach is subject of further research and evaluation and is out of the
scope of this work.

5.3 A Model of a Role-Based Pageflow

Figure 6 shows an excerpt of a UML object diagram which represents the mo-
tivating web application introduced in Section 2. Page ListUsers contains one
NavigationRule which consists of one If which refers to the UserDetails page
via the gotoPage reference. The specified outcome attribute in the if object
contains the string gotoUserDetails. Furthermore, a roles reference exists,
which references to the GroupMember role. Hence, the IF-ELSE definition of the
rolebased pageflow looks like:

IF outcome="gotoUserDetails" AND role="member1" THEN
gotoPage="UserDetails"

All navigation rules of all web pages and their associations to roles are defined
similar.

Login : WebApplication

name : String = List Users

ListUsers : Page

name : String = User Details

UserDetails : Page

1

1

name : String
description : String = Group Members

GroupMember : Role

11

name : String = member1

Member1 : User

name : String = member2

Member2 : User

outcome : String = gotoUserDetails

if : If

11

.

.

.

role

gotoPage

.

.

.

NavigationRule

1

Fig. 6. An Object Diagram of a Web Application

5.4 Model Validation

Figure 7 shows an excerpt of defined constraints by the oAW Check language.
The first constraint defines that each WebApplication must have a startPage.

The second one defines that each Role must have a name. The last one defines
that each NavigationRule must consist of at least one if. If models do not fulfill
these constraints, an error is raised, e.g., ’no name for role defined !’.

context WebApplication ERROR ’no start page defined!’:
startPage !=null;

context Role ERROR ’no name for role defined!’:
this.name!=null;

context NavigationRule ERROR ’no navigation rule defined!’:
this.ifDecision !=null;

Fig. 7. oAW Check Constraints

5.5 Code Generation Templates

Figure 8 displays an excerpt of the oAW Xpand code generation template to
generate the deployment descriptor web.xml. The code between the guillemets
(« and ») controls the code generation.

«DEFINE Root FOR RoleBasedPageflow :: WebApplication»
«FILE name +"/WEB -INF/web.xml"-»
...

«FOREACH this.role AS r»
«EXPAND GenRole FOR r-»

<security -constraint >
<display -name ></display -name >
«EXPAND GenRoleAccessPages (this) FOR r-»
<auth -constraint >

<description >«r.description» </ description >
<role -name >«r.name» </role -name >

</auth -constraint >
</security -constraint >
«ENDFOREACH -»

...
«ENDFILE»
«ENDDEFINE»
...

Fig. 8. oAW Xpand Template

First, a Root label is defined for objects of type WebApplication, i.e., that
each WebApplication gets its own web.xml file. For each Role, a <security-
constraint> element is generated which contains all web pages that can be
accessed by the members of this role. The <role-name> element is stated within
the <auth-constraint> element. The information of Pages is denoted by <web-
resource-collection> elements.

For the time being, only templates for web applications of the Apache Tomcat
web server [10] were implemented. For other web servers, new code generation
templates must be implemented.

5.6 Generated Code

Figure 9 contains excerpts of a generated web.xml file. The upper portion con-
tains that members of the GroupMember role can access the web page UserDe-
tails. Underneath, it is described that the web page DeleteUser can be accessed
by users of the GroupLeader role.

<security -constraint >
<web -resource -collection >

<web -resource -name >UserDetails </web -resource -name >
...

<auth -constraint >
<role -name >GroupMember </role -name >

</auth -constraint >
</security -constraint >

...
<security -constraint >

<web -resource -collection >
<web -resource -name >DeleteUser </web -resource -name >
...

<auth -constraint >
<role -name >GroupLeader </role -name >

</auth -constraint >
</security -constraint >

...

Fig. 9. Generated web.xml file

5.7 Example

Figure 10 demonstrates our approach on the basis of the motivating example of
Section 2. The example is shown for the visitor Member1 which is a member of
the GroupMember role.

First, a login mask appears where the visitor has to enter username and
password. The system checks if the visitor is authorized to access. If the visitor
is authorized, the system knows the role of the current visitor. Otherwise, the
visitor has no access to the web application. The first web page, the ListUsers
page, offers hyperlinks to other pages. Independent of the visitor’s role, all possi-
ble links are displayed, because restricted contents are out of scope of this work.
If the current visitor clicks the UserDetails link, the appropriate web page is
displayed. Otherwise, if the current visitor clicks the DeleteUser or AddUser
link, an “Access denied” web page is displayed. The depicted “Access denied”
web page is a predefined web page of the Apache Tomcat web server. On the
other hand, if the current visitor were member of the GroupLeader role, the
DeleteUser or AddUser web page would be displayed.

<<UserDe ta i l s>>

< < D e l e t e U s e r > > < < A d d U s e r > >

Fig. 10. An Example Web Application

6 Related Work

This section discusses similar approaches which deal with RBAC and web ap-
plications. It is divided into two parts: works dealing with (1) modeling web
applications and (2) securing web applications.

6.1 Modeling Web Applications

Baresi et. al. [17] present the W2000 MOF metamodel which is divided into four
higher level packages: (1) Information, (2) Navigation, (3) Presentation, and (4)
Dynamic Behavior. The first three packages define models, i.e., (1) Information
Model, (2) Navigation Model, and (3) Presentation Model. The Dynamic Be-
havior package is spread over all models. The Information Model contains the
contents available to the user. The Navigation Model is based on the Information
Model. In contrast to our approach, which controls the navigation between web
pages, the W2000 Navigation Model controls the navigation between information
elements on web pages.

Distante et. al. [18] introduce a model-driven approach for combining the
development of the Ubiquitous Web Applications (UWA) design framework, the
MVC pattern, and JavaServer Faces (JSF). UWA provides conceptual models
at a high level of abstraction which can be used by the stakeholders. To provide
useful information to the application developers, the UWA conceptual models
are transformed to UML-MVC logical models. Both, the conceptual and logical
models are platform independent. They are transformed to platform specific
models, i.e., JavaServer Faces.

Schwabe et. al. [20] introduce the Object-Oriented Hypermedia Design
Method (OOHDM) which provides multiple models for modeling web applica-
tions. The application domain is modeled with a conceptual design model. The
navigational model is defined through different views which are build upon the
conceptual model. This methodology allows the construction of different views
for different user profiles.

The Orbeon Page Flow Controller [22] provides a separation of describing
the site logic and the pageflow. Hence, the simplicity gets enhanced because
there is no need to write custom logic to perform redirects between pages or
to pass arguments. Furthermore, the maintainability is enhanced through the
independent implementation of pages and the pageflow. Hence, it is easier to
define the pageflow without effecting pages or vice versa. Security aspects are
not yet considered in the Oreon Page Flow Controller, i.e., the administrator
has to define the security manually in the web.xml deployment descriptor. In
contrast, our approach provides the modeling of those security aspects. Hence,
it will be an interesting research area how to combine our approach with the
Orbeon Page Flow Controller for future work.

6.2 Securing Web Applications

J.D. Meier [6] discusses common mistakes in the area of security engineering for
web applications: mistakes that are done (1) at the beginning (do-it-all-up-front),
(2) at the end (bolt-on), (3) during the test phase (big-bang), (4) by defining
security without targets, e.g., firewalls, SSL (buckshot) and, (5) by addressing
security after a failure (all-or-nothing). Meier gives the advice that the most
effective approach is to “bake” security into the application’s lifecycle.

Ceri et.al. introduce the Web Modeling Language (WebML) [19]. The ap-
proach provides multiple models for modeling different concerns of web appli-
cations. Due the relation to our work, we concentrated on the Navigation and
Personalization models. Contextual and non-contextual links are provided. Fur-
thermore, not only the user chooses what content to see, e.g., by clicking hy-
perlinks, but also the system determines which page and/or content should be
show automatically. Regarding security of web applications, the personalization
model is introduced, for defining users and user groups, as well as customiza-
tions. Users and user groups are mapped to WebML users and groups. At this
point we can engage the creation of code generation templates which generate
WebML users and groups. Furthermore, we can consider the WebML solution
for modeling runtime security concerns in our future works.

Zang, Baumeister, Koch and Knapp [23] propose an aspect-oriented tech-
nique for access control in web applications. The approach is associated to the
Navigation Model of UML-based Web Engineering (UWE) [24]. UML state ma-
chines are used to specify access control. Each navigation node is extended by
a state machine that specifies the behavior. Furthermore, constraints are intro-
duced which check that each navigation node has exactly one state machine. To
introduce aspect oriented access control, the stereotype « aspect » is defined.
Aspects are sets of web pages. Access control rules are defined on aspects. Hence,

rules need to be specified once for a number of web pages. Furthermore, aspects
can contain other aspects.

Bammigatti and Rao introduce the GenericWA-RBAC approach [25] which
is based on the constrained RBAC model, introduced by Sandhu et. al. [5]. The
original RBAC model is extended by an ORGN component that represents a
set of organizations that have access to the system. A modular system archi-
tecture is introduced that is divided into: (1) An Access Control Module which
is a process responsible for authentication of roles and authorizations, (2) the
ORGN Manager which determines the origin of the requested organization, (3) a
Role-to-Role mapper that maps roles of the external organization to native orga-
nization roles, (4) a Role-to-Access right mapper which decides access rights for
the mapped role, and (5) an Object Management component that is responsible
for checking requested queries against sensitive data.

Lodderstedt et. al. introduce the SecureUML approach [7]. SecureUML is an
extension to the UML metamodel for RBAC. The SecureUML model is bound
to the ModelElement class of the UML metamodel. It provides possiblities to de-
fine roles, users, and permissions. Furthermore, additional support for specifying
authorization constraints and action types is given. An authorization constraint
expresses a precondition imposed on every call to an operation of a particular
resource. An action type is a class of security operations to protect particular
types of resources. SecureUML is an approach for integrating security concerns
into UML based model-driven application engineering.

7 Future Work

Our current approach is able to assign RBAC to the pageflow of web applications
based on MDSD. But, there is still a lot of work to do in the future. One of
the major future prospects is to have a closer look to existing model-driven
approaches for securing web applications, e.g., WebML, OOHDM, or UWE. We
have to consider how they can be combined with our work. Furthermore, we need
to consider web applications that can be deployed on other web servers than
the Apache Tomcat web server. Another future prospects regards the modeling
access control of restricted contents, i.e., access control at runtime.

Our approach assigns a simple RBAC model in contrast to the RBAC mod-
els introduced by Sandhu et. al. [5]. First, we have to define many-to-many
relations for user and permission assignments to roles. Besides we have to define
sessions that are also included in RBAC models. Furthermore we want to do
more research for applying Static Separation of Duty (SSD) as well as Dynamic
Separation of Duty (DSD) to the meta-model. When we apply the complete
RBAC models to our approach, we have to evaluate if applying Aspect Oriented
Modeling (AOM) on the metamodels is advisable, i.e., a separation into naviga-
tion and access metamodels. A separation into multiple models can bring better
maintainability as well as a better separation into the development team. But
good integration points for merging have to be defined.

A lot of work has been done in the area of modeling security for web services.
Certainly, it is important to have a closer look into this approaches for a possible
application to our approach. Also, further work can be applied to have a closer
look to model actions. Actions are executed if a violation was prevented, e.g.,
sending a mail to an administrator or raising an alarm.

8 Conclusion

This paper gave an overview of our approach of assigning RBAC to the page-
flow of web applications based on MDSD. Thereby, the security concerns can be
applied at a high level of abstraction, independent of the desired platform. Our
approach concentrated on defining RBAC at the design time of web applications.
Security concerns which must be checked at runtime, were out of scope. A static
design model, model validation constraints, and a code generation component
were introduced. Finally, an example of a generated web application demon-
strated our approach.

This work has shown that it is feasible to use MDSD for integrating RBAC
to the pageflow of web applications. Hence, this approach facilitates a seamless
integration of access control and the modeling web application.

References

1. Sam Chung and Yun-Sik Lee: Modeling Web Applications Using Java and XML
Related Technologies. In: HICSS ’03: Proceedings of the 36th Annual Hawaii
International Conference on System Sciences (HICSS’03) - Track 9, Washington,
DC, USA, IEEE Computer Society (2003) 322

2. Thomas Stahl and Markus Voelter: Modellgetriebene Software Entwicklung: Tech-
niken, Engineering, Management. dpunkt.verlag GmbH (2005)

3. D. Ferraiolo and R. Kuhn: Role-Based Access Controls. In: 15th NIST-NCSC
National Computer Security Conference. (1992) 554–563

4. Indrakshi Ray and Na Li and Robert France and Dae-Kyoo Kim: Using UML to
Visualize Role-Based Access Control Constraints. In: SACMAT ’04: Proceedings
of the ninth ACM symposium on Access control models and technologies, New
York, NY, USA, ACM (2004) 115–124

5. Ravi S. Sandhu and Edward J. Coyne and Hal L. Feinstein and Charles E. Youman:
Role-Based Access Control Models. Computer 29(2) (1996) 38–47

6. Meier, J.D.: Web Application Security Engineering. Security & Privacy, IEEE 4(4)
(July-Aug 2006) 16–24

7. Torsten Lodderstedt and David A. Basin and Jürgen Doser: SecureUML: A UML-
Based Modeling Language for Model-Driven Security. In: UML ’02: Proceedings
of the 5th International Conference on The Unified Modeling Language, London,
UK, Springer-Verlag (2002) 426–441

8. David Basin and Jürgen Doser and Torsten Lodderstedt: Model Driven Security:
From UML Models to Access Control Infrastructures. ACM Trans. Softw. Eng.
Methodol. 15(1) (2006) 39–91

9. Mann, K.D.: JavaServer Faces in Action (In Action series). Manning Publications
Co., Greenwich, CT, USA (2004)

10. Apache Software Foundation: Apache Tomcat. Website (2008)
Available online at http://tomcat.apache.org/.

11. James Rumbaugh and Ivar Jacobsen and Grady Booch: The Unified Modeling
Language Reference Manual. Addison - Wesley (1998)

12. Robert Eckstein: Java SE Application Design With MVC (March 2007)
Available online at http://java.sun.com/developer/technicalArticles/javase/mvc/.

13. Eclipse Modeling Framework Project: (2008)
Available online at http://www.eclipse.org/modeling/emf/.

14. Object Management Group (OMG): XML Metadata Interchange (XMI), v2.1.1
(2007)
Available online at http://www.omg.org/technology/documents/formal/xmi.htm.

15. openArchitectureWare: (2008)
Available online at http://www.openarchitectureware.org/.

16. Pierre-Alain Muller and Philippe Studer and Jean Bézivin: Platform Independent
Web Application Modeling. In Stevens, P., Whittle, J., Booch, G., eds.: UML.
Volume 2863 of Lecture Notes in Computer Science., Springer (2003) 220–233

17. F. Garzotto, L. Baresi, and M. Maritati: W2000 as a MOF Metamodel. (2002) In
The 6th World Multiconf. on Systemics, Cybernetics and Informatics-Web Engi-
neering track.

18. Damiano Distante and Paola Pedone and Gustavo Rossi and Gerardo Canfora:
Model-Driven Development of Web Applications with UWA, MVC and JavaServer
Faces. In Baresi, L., Fraternali, P., Houben, G.J., eds.: ICWE. Volume 4607 of
Lecture Notes in Computer Science., Springer (2007) 457–472

19. Stefano Ceri and Piero Fraternali and Aldo Bongio: Web Modeling Language
(WebML): a modeling language for designing Web sites. Comput. Netw. 33(1-6)
(2000) 137–157

20. Daniel Schwabe and Gustavo Rossi: An Object Oriented Approach to Web-Based
Application Design. Theor. Pract. Object Syst. 4(4) (1998) 207–225

21. Natacha Güell and Daniel Schwabe and Patricia Vilain: Modeling Interactions and
Navigation in Web Applications. In: ER ’00: Proceedings of the Workshops on
Conceptual Modeling Approaches for E-Business and The World Wide Web and
Conceptual Modeling, London, UK, Springer-Verlag (2000) 115–127

22. Orbeon: Orbeon Forms User Guide - Page Flow Controller (May 2008)
Available online at http://www.orbeon.com/ops/doc/reference-page-flow.

23. Zhang, G., Baumeister, H., Koch, N., Knapp, A.: Aspect-Oriented Modeling of
Access Control in Web Applications. In: Proc. 6th Int. Wsh. Aspect Oriented
Modeling (WAOM’05), Chicago (2005)

24. Christian Kroiss and Nora Koch: UWE Metamodel and Profile: User Guide and
Reference. (2008) LMU Technical Report.

25. Bammigatti, P.H. and Rao, P.R.: GenericWA-RBAC: Role Based Access Con-
trol Model for Web Applications. Information Technology, 2006. ICIT ’06. 9th
International Conference on (18-21 Dec. 2006) 237–240

