
Master’s Thesis

Generating Web Applications

with Abstract Pageflow Models

carried out at the

Information Systems Institute
Distributed Systems Group

Vienna University of Technology

under the guidance of
o.Univ.Prof. Dr. Dustdar Schahram

and
Univ.Ass. Dipl.Ing. Vasko Martin

as the contributing advisor responsible

by

Ernst Oberortner
Poststrasse 4

9551 Bodensdorf
Matr.Nr. 0027144

Bodensdorf, 03. May 2007

i

Acknowledgements

First and mostly important I thank my parents, Christine and Ernst, who
always supported me during my whole studies.

Furthermore I want to thank my advisors Schahram Dustdar and Martin
Vasko for their help, guidance and standby during the realization of this
work.

Finally I thank all my colleagues and friends that I met during my uni-
versity life for their great teamwork and collaboration in order to graduate
studies.

ii

Abstract

Due to the fact of platform-independence and worldwide accessibility, the
popularity of the Web leads to countless Web applications. In the course
of this work, a possibility for an automated generation of Web applications
based on a MDA (Model-Driven Architecture) is introduced.

This work is concentrated on the definition of a meta-model for modeling Web
applications based on the principles of the MVC (Model-View-Controller)
pattern. The main task is the automated generation of modeled Web ap-
plications. Models of Web applications contain information about graphical
user interfaces on Web pages and the pageflow within the Web application.
Hence the defined meta-model specifies the syntax and structure of Models.
Furthermore the meta-model serves for validating models.

The primary aim is the automated generation of the layout and structure
of Web pages, hence the View of the MVC pattern. Furthermore an XML
file is generated that serves as input for the Controller that controls the
pageflow. For the time being the developer is responsible for the Model of
the MVC pattern. Therefore a methodology for dealing with generated and
manually written code is developed in order that the manually written code
does not become overwritten in a subsequent generator run.

To prove our approach of generating Web applications based on a MDA,
a prototype is introduced. This prototype is a JSF (JavaServer Faces) Web
application for the Apache Tomcat Web server.

iii

Zusammenfassung

Die Beliebtheit von Web Applikationen ist aus Gründen der Plattformunab-
hängigkeit und des weltweiten Zugriffs stark gestiegen. Aus diesem Grund
beschäfigt sich diese Arbeit mit der automatischen Generierung von Web
Applikationen basierend auf einer MDA (Model-Driven Architecture).

Insbesondere konzentriert sich diese Arbeit auf die Definition eines Meta-
Modells für die Modellierung von Web Applikationen welche auf dem MVC
(Model-View-Controller) Pattern aufbauen. Die Hauptaufgabe besteht in der
automatischen Generierung der modellierten Web Applikationen. Die Mod-
elle der Web Applikationen beinhalten Informationen über die Webseiten
und den Page-Flow innerhalb der zu generierenden Web Applikation. Da-
her wurde ein Meta-Modell entwickelt welches die Syntax und die Struktur
solcher Modelle beschreibt. Weiters dient das Meta-Modell zur Validierung
der Modelle.

Das Hauptaugenmerk liegt in der Generierung der grafischen Oberflächen
von Webseiten, also im View des MVC Patterns. Der Controller steuert den
Page-Flow. Eine XML Datei wird vom Generator erzeugt welche die Infor-
mationen über den Page-Flow beinhaltet und als Input für den Controller
dient. Zurzeit ist der Programmierer für die Programmierung des Modells des
MVC Patterns zuständig. Aus diesem Grund muss bei der Codegenerierung
zwischen generiertem und dem vom Programmierer geschriebenen Code un-
terschieden werden um ein Überschreiben des handgeschriebenen Codes bei
einer erneuten Codegenerierung zu verhindern.

Um die Arbeitsweise unseres Ansatzes zu demonstrieren haben wir einen
Prototyp erstellt. Dieser Prototyp ist eine JSF (JavaServer Faces) Web App-
likation welche auf dem Apache Tomcat Web Server ausgeführt werden kann.

iv

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Problem Definition . 3
1.3 Organization of this thesis . 4

2 Theory 5
2.1 The Model-View-Controller (MVC) Pattern 5
2.2 The JavaServer Faces (JSF) Framework 8

2.2.1 JSF Technology . 9
2.2.2 JSF Web Applications 10
2.2.3 Guidance for developing JSF Web Applications 10

2.2.3.1 Mapping the FacesServlet instance 11
2.2.3.2 Creation of JSP Web pages 11
2.2.3.3 Defining the Pageflow 13
2.2.3.4 Development of the Java Beans 14
2.2.3.5 Adding managed bean declarations 15

2.2.4 Benefits of JSF Web applications 16
2.3 Model Driven Architecture (MDA) 17

2.3.1 Terminology . 17
2.3.1.1 Model . 17
2.3.1.2 Model Driven 17
2.3.1.3 Architecture 17
2.3.1.4 Platform . 17
2.3.1.5 Platform Independent Model (PIM) 17
2.3.1.6 Platform Specific Model (PSM) 18
2.3.1.7 Model Transformations 18
2.3.1.8 Domain . 19
2.3.1.9 Meta-model 19
2.3.1.10 Abstract Syntax 19
2.3.1.11 Static Semantic 19
2.3.1.12 Domain Specific Language (DSL) 19
2.3.1.13 Meta Object Facility (MOF) 19
2.3.1.14 XML Metadata Interchange (XMI) 20

2.3.2 Aims of MDA . 20
2.3.3 Metamodeling . 21

2.4 Eclipse Modeling Framework (EMF) 23

v

2.5 openArchitectureWare (oAW) 25
2.5.1 Workflow Engine . 25
2.5.2 Expression Framework 26
2.5.3 Xpand2 . 26
2.5.4 Xtend . 26
2.5.5 Check . 27

2.6 Apache Ant . 28
2.7 Separation of Generated and Handwritten Code 29

2.7.1 Protected Regions . 29
2.7.2 Solutions for Protected Regions 30

3 Related Work 32

4 Description of our Approach 38
4.1 The Meta-Model . 38

4.1.1 Modeling of Web pages 39
4.1.2 Modeling of the Pageflow 44

4.2 Code Generation with oAW 46
4.2.1 Workflow . 46
4.2.2 Check - Model Validation 50
4.2.3 Xpand2 - Templates 50

4.3 A Prototype for Visualizing the Mode of Operation 60
4.3.1 The Generated Prototype Web Application 64

4.3.1.1 Generated Web Pages 65
4.3.1.2 Generated Java Beans 69
4.3.1.3 Generated Pageflow Information 71

5 Evaluation 73
5.1 Evaluation of the Meta-Model 73
5.2 Evaluation of the Templates 74
5.3 Evaluation of the Prototype 74
5.4 Evaluation of Code Separation 75

6 Further Work 76
6.1 The Meta-Model . 76
6.2 Model Transformations . 76

7 Summary and Conclusion 77

vi

A Figures 79

B Tables 80

C Listings 81

D Bibliography 82

1

1 Introduction

The main purpose of this project is the development of a Model-Driven Archi-
tecture (MDA) ([9]) for an automatic generation of Web applications that are
based on the Model-View-Controller (MVC) ([8]) pattern. To demonstrate
the functioning of our approach, JavaServer Faces (JSF) ([6]) are used be-
cause they are popular Web applications based on the MVC pattern. For the
realization of this project the Eclipse Modeling Framework (EMF) ([15]) in
companion with the openArchitectureWare (oAW) ([18]) plug-in for Eclipse
([13]) were used because they provide helpful and strong facilities for model-
ing software systems and code generation.

The MVC pattern separates data and their graphical appearance. The page-
flow is controlled by the Controller. The Model is responsible for fetching
data (e.g. by accessing a database) and the View is responsible for the graph-
ical appearance of the data within Web pages. The JSF framework provides
an implemented Controller that needs an XML file that describes the page-
flow as input. JavaServer Pages (JSP) represent the View and Enterprise
Java Beans (EJB) represent the Model.

Our MDA is built-up on models that describe the structure of a Web ap-
plication that should be generated. These models contain information about
graphical user interfaces on Web pages as well as the pageflow. To define the
syntax of models, the so-called Domain Specific Language (DSL), a meta-
model was introduced. The meta-model is also responsible for the validation
of models.

The modeling of Web applications can be done in any CASE tool that pro-
vides an exportation of the model to the eXtensible Metadata Interchange
(XMI) file format. This XMI file is passed to our generator and if the model
is valid, the Web application is generated.

One benefit of applying a MDA is to reduce the time-consuming process
of developing Web applications. Furthermore the quality of the generated
code as well as the maintenance are improved.

1.1 Motivation 2

1.1 Motivation

The popularity of the Web and its advantages as a client-server platform led
to countless Web applications. Web applications are global environments for
delivering all kinds of applications. One reason for the popularity of Web
applications is the facility to access an application from all over the world on
any platform. Furthermore the maintenance of Web applications is arranged
in a centralized way at minimal costs [4].

We base the necessity of developing Web applications in a rapid and high-
quality way on the following statements:

Web Applications are becoming the first choice for most business applica-
tion development [23].

Designing and maintaining Web applications is one of the major challenges
for the software industry [22].

The maintenance of a Web application is getting difficult due to the inherent
complexity of the system [24].

A MDA improves the quality and speed of developing Web applications as
well as their maintenance. Furthermore a MDA unifies the steps of develop-
ment and the integration from business modeling through architectural and
application modeling [12].

To prove our approach of generating Web applications based on a MDA,
the JSF framework is used because it is currently a popular Web oriented
MVC implementation. Most Web applications are based on the MVC pat-
tern for separating data and their presentation. The JSF framework provides
server side user interface components for Web applications based on the Java
technology. The main reason for our choice of the JSF framework lies in the
ready-made Controller that controls the pageflow.

1.2 Problem Definition 3

1.2 Problem Definition

The main purpose of this project lies in an automated generation of Web
applications based on a MDA. A MDA achieves a certain level of abstraction
that leads in an improvement of automation, productivity, quality and main-
tenance in the field of developing Web applications. Moreover MDA aims
for interoperability, portability and standardization of models for popular
application areas [3].

Web applications are described in models that define the user interfaces of
Web pages as well as the pageflow. The pageflow describes all kinds of subse-
quent Web pages of a certain page. Our approach aims to a process-oriented
definition of the pageflow to improve the clarity and understanding. For
the definition of the structure and syntax of models, a meta-model has to
be defined. Hence, the meta-model defines the DSL. Each model is an in-
stance of the meta-model. The meta-model is also used for validating models.

Our approach describes a MDA for generating Web applications based on
the MVC pattern. To demonstrate the functioning of our approach we are
concentrated in an automated generation of JSF Web applications that are
deployed especially on the Apache Tomcat Web server. Therefor a prototype
is introduced that is described later in this work. Further works can be done
to generate Web applications that can be deployed not only for a certain
Web server.

Our defined meta-model supports the modeling of Web pages and the page-
flow. The Controller is given by the JSF framework that controls the page-
flow. Our code generator generates an XML file that serves as input for this
Controller. This XML is built-on the given model that describes the Web
application. Presently the developer is responsible for the Model of the MVC
pattern, hence for fetching data, e.g. accessing a database. This results in
the problem of handling generated and manually written code.

At present our generator generates the Web pages, a configuration file for
the Tomcat Web server, an XML file that contains the information about
the pageflow that serves as input for the JSF Controller, Java Beans to store
data as well as an XML file for Apache Ant that eases the deployment of the
generated Web application for the Tomcat Web server.

1.3 Organization of this thesis 4

1.3 Organization of this thesis

This section gives an overview of the sections in this report and their contents.

• Section 2 - Theory
This section describes the main technologies used in this work. The
characteristics of the MVC pattern are specified. Furthermore we in-
troduce the JSF framework. Then an overview of MDA is given where
the main part lies in the Metamodeling section. Moreover the EMF as
well as the oAW plug-in for Eclipse are described. The Theory section
ends with an overview of possibilities how generated and handwritten
code can be separated.

• Section 3 - Related Work
The Related Work section gives an overview about research works for
modeling Web applications. We specify the characteristics of other
approaches introduced by researching teams on other universities or
laboratories.

• Section 4 - Description of our Approach
Section 4 specifies our defined approach how to generate a given mod-
eled Web application. First we introduce our defined meta-model. Af-
terwards we describe how the Web application is generated with the
oAW plug-in for Eclipse. Subsequently we introduce a prototype that
demonstrates the functioning of our approach. The prototype is a JSF
Web application that can be deployed on the Apache Tomcat Web
server.

• Section 5 - Evaluation
This section serves for an evaluation of our approach. We evaluate our
defined meta-model, the defined templates for generating the Web ap-
plication, the prototype as well as our utilized solution for the problem
of handling generated and manually written code.

• Section 6 - Further Work
Section 6 qualifies how our approach can be extended and improved in
future work.

• Section 7 - Summary and Conclusion
The Summary and Conclusion section repeats all important aspects of
this work and serves as conclusion of our work.

5

2 Theory

2.1 The Model-View-Controller (MVC) Pattern

Web applications present contents in numerous pages containing various data
to users. Developer teams are responsible for the design, implementation and
maintenance of such Web applications. Therein rests the problem that mul-
tiple types of user interfaces must be supported, e.g. HTML Web pages for
users and Java Web pages for developers. This problem forces that the same
data needs to be accessed in different views. Furthermore an update of the
same data can be done through different user interfaces. Supporting multi-
ple types of views and interactions should not impact the components that
provide the core functionality of the Web application [7].

The MVC pattern is used to put this things right by separating the core
business functionality from the presentation and control logic. Such separa-
tion allows multiple views of the same data. This eases to implement, test
and maintan multiple clients.

Figure 1: Model-View-Controller

Figure 1 demonstrates the division of the MVC pattern into the Model, View
and Controller components and their relationships. Solid lines indicate direct
associations and dashed lines indirect associations [8]. The MVC pattern is
divided into three elements:

2.1 The Model-View-Controller (MVC) Pattern 6

• Model
The Model encapsulates the functional core of an application. It rep-
resents the data and grants access to the data.

• View
The View is responsible for the rendering of the data of the Model,
typically user interface elements. It specifies exactly how the data
should be presented. The View must update the presentation of the
data if the data in the Model has been changed [8]. Generally, the View
has read-only access to the Model because the View should not change
the state of the Model.

• Controller
The Controller is responsible for calling methods of the Model that
change the data. The Controller and the View have equal opportunity
to access the Model. The Controller does not copy data values from the
Model to the View, although it may place values in the Model and tell
the View that the data of the Model has been changed. The Controller
may also select a new View that should be presented to the user, e.g.
a Web page of results [8].

In Web applications based on the MVC pattern the View is the actual HTML
document and the Controller is responsible for the content within the HTML
code as well as the control of the pageflow. The Model is represented by the
actual content stored in a database or XML-files.

The following scenario shows actions that occur if a user interacts with the
View [8]:

1. The user interacts with an user interface

2. The View recognizes that an action has occurred and calls a method
that is registered to be called when such an action occurs

3. The View calls the appropriate method on the Controller

4. The Controller accesses the Model

2.1 The Model-View-Controller (MVC) Pattern 7

5. The Model notifies all Views that the data has been changed. In Java
technology-based applications the Controller may also be responsible
for updating the View.

The benefits of MVC are:

• Substitutable user interfaces
Different Views and Controllers can be substituted to provide alternate
user interfaces for the same Model.

• Multiple simultaneous views of the same Model

• Synchronized Views

• Easier user interface changes

• Easier testing

On the other hand the drawbacks of MVC are:

• Increased complexity

• Close coupling of View and Controller to the Model:
Changes of the data require changes in the View and may require ad-
ditional changes in the Controller

• Close coupling between View and Controller
A strict separation between View and Controller is difficult

2.2 The JavaServer Faces (JSF) Framework 8

2.2 The JavaServer Faces (JSF) Framework

The JSF framework is a server-side framework for user interface components
for Web applications based on the MVC pattern.

• Model
The Model is represented by Enterprise Java Beans (EJB).

• View
The View is represented by JavaServer Pages (JSP).

• Controller
The Controller is represented by Java Servlets.

First we’ll take a closer look to EJB and JSP:

• Enterprise Java Beans (EJB)
An EJB is a pieces of code that has properties and methods to im-
plement modules of the business logic [5]. There are three kinds of
EJB:

– Session Beans
A Session Bean represents a transient conversation with the client.
They are valid until the client finishes its execution. [5].

– Entity Beans
Entity Beans are distributed objects that have a persistent state
where the persistency may or may not be managed by the bean it-
self. Hence, they are divided into Container-Managed Persistence
(CMP) and Bean-Managed Persistence (BMP).

• JavaServer Pages (JSP)
JSP allow the programmer to put Java code and certain pre-defined
actions into HTML documents. A JSP page is a text-based document
that contains static data and JSP tags that construct dynamic content
[5]. The JSP tag libraries act as extensions to the standard HTML
or XML. Tag libraries provide a platform independent extension of a
Web server. Static data can be expressed in any text-based formats
such as HTML [5]. JSP pages are compiled into Java Servlets by a
JSP compiler that generates a Java Servlet in Java code or directly in
byte-code. JSP can be seen as an abstraction of Java Servlets. Sun

2.2 The JavaServer Faces (JSF) Framework 9

recommends that the MVC pattern should be used with the JSP files
in order to split the presentation from request processing and data
storage. Either regular Java Servlets or separate JSP files are used to
process the request. After the request processing has finished, control
is passed to a JSP page for creating the output.

2.2.1 JSF Technology

Like mentioned above, the JSF framework provides server-side components
for Java based Web applications. The framework consists of two main com-
ponents [5]:

• An API for representing user interface components and managing their
state, handling events, server-side validation, defining page navigation
and supporting internationalization and accessibility

• Two JSP custom tag libraries for expressing user interface components
within a JSP page

Figure 2: JavaServer Faces [5]

Figure 2 shows the organization of JSF Web applications. The client (Browser)
requests the JSP page myform.jsp that contains JSF tags. The user interface
created by the JSF framework, that is represented by myUI in the figure,
runs on the server and renders back to the client [5]. The user interface
manages the objects referenced by the JSP page. These objects include:

• User interface component objects that are mapped by the tags in the
JSP page

2.2 The JavaServer Faces (JSF) Framework 10

• Event listeners, validators and converters

• Java Bean components that contain the data and application specific
functionalities.

2.2.2 JSF Web Applications

A typical JSF Web application consists of [5]:

• A set of JSP pages

• A set Java Beans that define the properties and functionality for user
interfaces

• An application configuration file that defines page navigation rules and
configures the used Beans (faces-config.xml)

• A deployment descriptor (web.xml)

• Possibly a set of custom objects that include validators, converters or
listeners

• A set of custom tags for representing custom objects

The next paragraph describes the steps of developing a JSF Web applications
that can be deployed on the Apache Tomcat Web server.

2.2.3 Guidance for developing JSF Web Applications

The development of JSF Web applications consists of the following steps [5]:

• Mapping the FacesServlet instance in the web.xml file

• Creation of the JSP Web pages using the user interface components
and core tags

• Defining the pageflow in the faces-config.xml file

• Development of the Java Beans

• Adding managed bean declarations in the faces-config.xml file

2.2 The JavaServer Faces (JSF) Framework 11

2.2.3.1 Mapping the FacesServlet instance

The FacesServlet is the controller for the entire Web application. It re-
ceives and processes incoming requests and has to be included by every JSF
application. The following snippet shows the binding of the FacesServlet

in the deployment descriptor web.xml [5].
<servlet >

<display -name >FacesServlet </display -name >

<servlet -name >FacesServlet </servlet -name >

<servlet -class >javax.faces.webapp.FacesServlet </servlet -class >

<load -on-startup >1</load -on -startup >

</servlet >

<servlet -mapping >

<servlet -name >FacesServlet </servlet -name >

<url -pattern >/ appname /*</url -pattern >

</servlet -mapping >

Listing 1: Mapping the FacesServlet instance

The <servlet-mapping> tag specifies that any requests made through the
<url-pattern>/appname/</url-pattern> will be processed by the FacesServlet
specified through the <servlet-name> tag. By specifying any (*) request af-
ter /appname/ only those with the .jsp or .jsf suffix will be processed by the
FacesServlet.

That is all what has to be included in the deployment descriptor web.xml
of the JSF Web application. Subsequently the creation of the Web pages can
start.

2.2.3.2 Creation of JSP Web pages

Every JSP page needs access to the two standard JSF tag libraries, the
HTML component tag library and the core tag library using taglib decla-
rations [5]:
<%@ taglib uri="http :// java.sun.com/jsf/html" prefix ="h" %>

<%@ taglib uri="http :// java.sun.com/jsf/core" prefix ="f" %>

Listing 2: Loading the standard JSF tag libraries

Each tag library has to be assigned with a prefix. The HTML component tag
library is declared with the prefix h and the core tag library with the prefix f.

2.2 The JavaServer Faces (JSF) Framework 12

Afterwards the creation of the view can take place. All JSF component
tags must be inside of a <f:view> tag.
<f:view >

<h:form id=" formID">

...

</h:form >

</f:view >

Listing 3: Creation of the Web pages

The <h:form> tag represents a set of input components, such as textfields or
menues, that allow the user to input data and submit it to the server [5].

Component Declaration

Output Text <h:outputText id=" outputID"

value ="{ beanName.attribute }" />

Input text
<h:inputText id=" inputID"

label ="input label"

value ="{ beanName.attribute }" />

Button
<h:commandButton id=" buttonID"

action =" buttonAction"

value =" Submit" />

Hyperlink

<h:commandLink id=" linkID"

action =" linkAction">

<h:outputText value =" linkValue" />

</h:commandLink >

Table 1: JSF user interface component tags

Table 1 shows the main JSF user interface component tags that are used for
the definition of user interfaces for user interaction. Each component can get
an ID by setting the id attribute. The value attribute for input and output
components (<h:inputText> and <h:outputText>) binds the component to
the given attributes of the given bean. The <h:commandButton> tag is uti-
lized for sending the entered data in the textfields of the form to the server.
Each commandButton contains an action attribute that helps the navigation
mechanism decide which page to open next [5]. A <h:commandLink> consists
beside the id attribute of an action attribute that defines the outcome of the
link. The <h:commandLink> tag must include a <h:outputText> tag that
defines the caption of the link.

After the creation of the Web pages is done the pageflow definition can start.
The next paragraph describes how the pageflow of a JSF Web application is
described.

2.2 The JavaServer Faces (JSF) Framework 13

2.2.3.3 Defining the Pageflow

The page navigation is defined in the application configuration file faces-
config.xml. Each page of the application can have so-called outcomings. The
navigation rules in the application configuration file define which page has
to be displayed when the current page delivers a certain outcome. A page
delivers outcomings when the user clicks a button or a hyperlink.

The following snipped shows an example of defining a navigation rule:
<navigation -rule >

<from -view -id >/login.jsp </from -view -id >

<navigation -case >

<from -outcome >success </from -outcome >

<to-view -id >/ success.jsp </to -view -id >

</navigation -case >

<navigation -case >

<from -outcome >invalid </from -outcome >

<to-view -id >/ invalid.jsp </to -view -id >

</navigation -case >

</navigation -rule >

Listing 4: Definition of navigation rules

This navigation rule is an example navigation rule defined for the page lo-
gin.jsp. A navigation rule consists of multiple navigation cases. Each navi-
gation cases defines which page has to be displayed for a specific outcome of
the login.jsp page. In this example it is defined to go to the page success.jsp
if the outcome equals to success or to go to the page invalid.jsp if the out-
come is equal to invalid. The logical outcomings have to be defined in the
action attribute of a commandButton or of a commandLink, e.g.
<h:commandButton id=" buttonID"

action =" success"

value =" Submit" />

<h:commandLink id=" linkID"

action =" success">

<h:outputText value =" linkValue" />

</h:commandLink >

The logical outcome can also come from the return value of a method of a
Java Bean. For example, the method checks whether the entered values for
username and password are valid or not. If they are valid it returns the String
success and if not it returns the String invalid. If the outcome should be
delivered by a method of a Bean, the definition of the action attribute of the
commandButton or commandLink looks like follows:

2.2 The JavaServer Faces (JSF) Framework 14

<h:commandButton id=" buttonID"

action ="#{ userBean.checkData }"

value =" Submit" />

<h:commandLink id=" linkID"

action ="#{ userBean.checkData }">

<h:outputText value =" linkValue" />

</h:commandLink >

Listing 5: Binding of outcomings to Bean methods

After the defining the pageflow, the development of the Java Beans is done.
The creation of Java Beans is described in the next paragraph.

2.2.3.4 Development of the Java Beans

Java Beans define properties and methods that are associated with user in-
terface components. A typical JSF Web application couples each page of the
application with a Bean [5].

The following example shows the binding of a textfield with the attribute
username of a Bean called UserBean:
<h:inputText id=" userName"

label =" Username"

value ="#{ UserBean.username}">

Listing 6: Binding of a textfield with an attribute of a Bean

The declaration of the Java Bean UserBean is described in the following
listing:
public class UserBean {

private String username = null;

...

public void setUsername(String username) {

this.username=username;

}

public String getUsername () {

return this.username;

}

...

}

Listing 7: Declaration of a Bean

2.2 The JavaServer Faces (JSF) Framework 15

Every Java Bean needs get- and set-methods for the bonded attributes to
user interface components, e.g. getUsername and setUsername.

The next paragraph demonstrates the definition of the declared Java Beans
in the JSF Web applications configuration file faces-config.xml.

2.2.3.5 Adding managed bean declarations

Every managed Bean has to be defined in the application configuration file
faces-config.xml. The following snipped demonstrates the definition of the
UserBean in the faces-config.xml file:
<managed -bean >

<managed -bean -name >UserBean </managed -bean -name >

<managed -bean -class >UserBean </managed -bean -class >

<managed -bean -scope >session </managed -bean -scope >

<managed -property >

<property -name >username </property -name >

<property -class >String </property -class >

<value >null </value >

</managed -property >

</managed -bean >

Listing 8: Adding managed Bean declarations

Each Bean is defined within the <managed-bean> tags. The <managed-bean-name>
tag defines the name of the Bean and the <managed-bean-class> tag depicts
the name of the Java class where the Bean is defined.

The <managed-bean-scope> defines the duration of the availability of the
Beans and accepts four scopes:

• none
The Bean is instantiated new when an item is referenced. A possible
reason to use this kind of scope is when a managed Bean references
another managed Bean.

• request
A Bean with a request scope will have values that are stored only for
the duration of a single request.

• session
Bean properties will stay alive during multiple requests. Objects stored

2.2 The JavaServer Faces (JSF) Framework 16

in a session will expire if the session times out or if they are cleaned by
the application explicitly.

• application
Beans created in an application scope will exist during the entire
lifetime of the Web server.

A very important point about managed Beans referencing other managed
Beans is that a managed Bean can only refer to Beans that do not have a
scope that is equal nor longer.

Initialization values of the properties of the Bean can be set within the
<managed-property> tags. The name of the property of the Bean is de-
fined within the <property-name> tags. The type is specified through the
<property-class> tag. The initialization value is given by the <value> tag.

After all parts of the development process of a JSF Web application are
finished the JSF Web application can be deployed on a Web server, e.g.
Apache Tomcat. The advantages of JSF Web applications are described in
the next section.

2.2.4 Benefits of JSF Web applications

The benefits of JSF Web applications are [5]:

• Clean separation between behavior and presentation
JSF can map HTTP requests to component specific event handling and
manage elements of user interfaces as stateful objects on the server.

• Improves sectioning of development teams
Due to the separation of logic from presentation each developer in a
Web application development team can focus on his or her field of
functions of the development process.

• Rich architecture for user input validation, component state managing,
component data processing and event handling.

2.3 Model Driven Architecture (MDA) 17

2.3 Model Driven Architecture (MDA)

A MDA is an evolutionary step in the field of developing software [10] and
it provides an approach for developing software with a strict separation of
functionality and technology. The main idea behind MDA is to separate
the business and application logic from the underlying platform. MDA was
adopted in 2001 by the Object Management Group (OMG) to use models in
the software development process [10]. The main motivations of MDA are
interoperability and portability of software systems. Interoperability aims
to vendor independence through standardization and portability to platform
independence [3].

2.3.1 Terminology

2.3.1.1 Model
A Model describes or specifies a system and its environment for a certain
purpose [10]. It is an abstract representation of structure, functionality and
behavior of a system [3]. Normally models are defined with the Unified
Modeling Language (UML).

2.3.1.2 Model Driven
A MDA involves models in the software development process. MDA is Model
Driven because it operates on underlying models for understanding, design,
construction, deployment, operation, maintenance and modification [10].

2.3.1.3 Architecture
An Architecture describes parts and connectors of a system and rules for the
interaction between the parts using the connectors. A MDA describes the
different kind of models and their relationships [10].

2.3.1.4 Platform
A Platform is a well defined architecture with an appropriate runtime system
[3].

2.3.1.5 Platform Independent Model (PIM)
A PIM is a view of a system from a platform independent viewpoint [10].
Functional specifications are defined in the PIM by using a formal modeling
language, e.g. UML. A PIM is an abstraction of technological details [3].

2.3 Model Driven Architecture (MDA) 18

2.3.1.6 Platform Specific Model (PSM)
A PSM is a view of a system from a platform specific viewpoint. A PSM is
achieved by a transformation of the PIM. Next to the specifications in the
PIM, the PSM contains details that specify how that system uses a particular
type of platform [10]. A PSM uses the concepts of a platform to describe a
system [3].

2.3.1.7 Model Transformations
A Model Transformation maps a model to another model of the same system.
Figure 3 demonstrates the transformation of a PIM into a PSM by using
transformation rules [10]. Most MDA tools define the rules of transformations
in so called templates.

PIM
Transformation

Rules

Transformation

PSM

Figure 3: Model Transformation

2.3 Model Driven Architecture (MDA) 19

2.3.1.8 Domain
A Domain is a bounded region of interests or knowledge. Domains can be
assembled by multiple sub domains [3].

2.3.1.9 Meta-model
A Meta-model is responsible for the formalization of the structure of a do-
main. A meta-model enfolds abstract syntax and static semantic [3].

2.3.1.10 Abstract Syntax
An Abstract Syntax defines the structure of a language. The implementation
of an abstract syntax is called concrete syntax. Multiple concrete syntaxes
can have one abstract syntax in common.

2.3.1.11 Static Semantic
The Static Semantic immobilizes the criteria of shapeliness. A typical exam-
ple is that variables in a programming language have to be declared before
they can be assigned or used [3]. Static semantic is very important in the
field of model driven software development because it can be used for the
detection of malfunctions of the model.

2.3.1.12 Domain Specific Language (DSL)
A DSL is used to model the key aspects of a domain. A DSL contains a
meta-model including the static semantic and the corresponding concrete
syntax [3]. Furthermore it needs a semantic to denotate the constructs of
the meta-model. The semantic is relevant to help modelers to understand
the meanings of the provided constructs.

2.3.1.13 Meta Object Facility (MOF)
The MOF describes the meta-meta-model. MOF is used to define the meta-
model. This includes the definition of classes, attributes, relations and con-
straints of the meta-model. Furthermore the MOF contains repositories to
save meta information about meta-models [11]. The main disadvantages of
the MOF is that there is no support provided for the definition of concrete
syntax, versioning and the composition of sub-meta-models to a meta-model
[3].

2.3 Model Driven Architecture (MDA) 20

2.3.1.14 XML Metadata Interchange (XMI)
XMI is a mapping of XML for MOF. XMI builds the basis for the interop-
erability of models between different MDA tools [3].

2.3.2 Aims of MDA

• Increasing the speed of development
Executable code can be achieved in a fast way by applying model trans-
formations

• Better maintenance of software
Bugs within the generated code can be abolished by simply changing
the transformation rules. This results in a better avoidance of re-
dundancy and improved maintenance facilities.

• Higher degree of reusing software
Once defined architectures, modeling languages and transformations
can be reused for the development of other software systems.

• Better manageability of complexity by abstraction
The efforts of programming should be eliminated through modeling
languages.

• Interoperability and portability

2.3 Model Driven Architecture (MDA) 21

2.3.3 Metamodeling

Metamodeling is one of the main issues in the model driven software devel-
opment process. Metamodeling is used for the following problems [3]:

• Construction of DSL:
The abstract syntax of the language is defined by the meta-model.

• Validation of models:
Validation of models against defined constraints in the meta-model.

• Model-to-model transformations:
Definition of mapping rules between meta-models.

• Generation of code:
Templates for the generation of code refer to the meta-model of the
DSL.

• Integration of tools:
A meta-model is used for the adaption of modeling tools for a certain
domain.

A meta-model defines the structure of models. It defines in an abstract
way the constructs of a modeling language and their relations. Hence, a
meta-model defines the abstract syntax and the static semantic of a model-
ing language. Vice versa every formal language (e.g. Java or UML) owns a
meta-model [3].

All models are instances of a meta-model [3].

Models can be described by any modeling language but the domain should be
crucial for the assortment of the language. It is important that the selection
of the modeling language depends on the applicable tools provided by the
modeling language. Hence, UML is the primary choice nowadays [3].

Figure 4 points to the four meta layers for metamodeling defined by the OMG
MOF [3].

• M0: Layer M0 is responsible for the construction of instances of classes
defined in M1. This is the assignment of values to the attributes of the
class.

2.3 Model Driven Architecture (MDA) 22

Figure 4: The four meta layers of the OMG

• M1: The declaration of classes takes place in layer M1.

• M2: M2 is the meta-model. It serves for the definition of constructs
that can be used in the underlying layer M1. Hence, the elements of
layer M1 are instances of layer M2.

• M3: M3 defines so called Meta Object Facilty (MOF) classes. The
MOF is the meta-meta-model defined by the OMG. MOF is used to
define modeling languages for layer M2, e.g. for UML.

There are no more meta layers above the MOF in the OMG model. Therefore,
the MOF describes itself [3].

2.4 Eclipse Modeling Framework (EMF) 23

2.4 Eclipse Modeling Framework (EMF)

The EMF is a Java based framework and code generation facility for building
tools and applications based on a structured model. EMF is a facility to
generate correct and easily customizable Java code in an efficient way . EMF
consists of two fundamental frameworks [15]:

• core framework
The core EMF framework includes a meta-model (Ecore) for defining
models. Beside it contains a runtime support for the models including
change notification, persistence support with default XMI serialization,
and a efficient API for manipulating EMF objects.

• EMF.Edit
EMF.Edit extends and builds on the core framework, adding support
for generating adapter classes that enable viewing and command-based
editing of a model, and even a basic working model editor.

Because EMF uses XMI for the definition of models there are several ways
to import the definition of models into EMF:

• Creating the XMI file directly with a XML editor
This approach is very complex and only recommendable to those who
have a good experience with XML.

• Export the XMI document from a modeling tool
This is the most desirable approach.

• Annotate Java interface with model properties
This is a low-cost approach to get the benefits of EMF and its code
generator.

• Use XML schema to describe the form of a serialization of the
model
This approach is applicable for applications that must read or write a
particular XML file format.

Once defining an EMF model the EMF generator can create a corresponding
set of Java implementation classes. After generating the Java implementa-
tion classes one can add methods and instance variables to these generated
classes and still regenerate from the model while the additions will be pre-
served during the regeneration [15].

2.4 Eclipse Modeling Framework (EMF) 24

The benefits of EMF are:

• Increasing the productivity

• Notifications of model changes

• Persistence support including default XMI and schema-based XML se-
rialization

• Framework for model validation

• Efficient API for manipulating EMF objects

• EMF provides interoperability with other tools and applications based
on EMF

2.5 openArchitectureWare (oAW) 25

2.5 openArchitectureWare (oAW)

oAW is a platform for model driven software development and is free avail-
able under the Eclipse Plugin License. It provides facilities to parse, validate
and transform models as well as to generate code based on a model. Editors
for oAW are based on the Eclipse platform. Hence, oAW has strong support
for models based on EMF but it can also work with other models too, e.g.
UML [18].

The core of oAW provides the following features [18]:

• A workflow engine that controls the workflow of the generator.

• A suitable instantiator to read any model.

• A statically typed language to check, modify and transform models
as well as to generate code.

• Xpand2 that is a powerful template language.

• A functional model transformation language Xtend to extend the
meta-model.

• An Object Constraint Language (OCL) to define constraints that is
called Check.

2.5.1 Workflow Engine

The oAW Workflow Engine is an XML based configuration language to de-
scribe the generators workflow. A generator workflow consists of workflow
components that are executed sequentially in a single Java Virtual Machine
(JavaVM). Workflow components are usually model parsers, model valida-
tors, model transformers and code generators [18].

A workflow description consists of a list of configured workflow components
[18]:
<workflow >

<property name=’baseDir ’ value=’./’/>

<property file=’\${baseDir }/my.properties ’/>

<component class =" firstWorkflowComponent ">

<property value =" prop1" />

2.5 openArchitectureWare (oAW) 26

</component >

<component class =" secondWorkflowComponent ">

<property value =" prop2" />

</component >

<component class =" thirdWorkflowComponent ">

<property value =" prop3" />

</component >

</workflow >

Listing 9: Definition of workflow components

This workflow consists of three components where the order of the compo-
nents is important. Each component consists of a property. Properties can
be declared anywhere in a workflow file. Properties are separated into simple
properties and properties files. A simple property can be used in attributes in
the workflow file after their declaration. Property files use the Java properties
file syntax [18].

2.5.2 Expression Framework

Check, Xtend and Xpand2 are built up on a common expression language and
type system. Therefore they can operate on the same models without using
different syntaxes. The expressions framework provides a uniform abstraction
layer over different meta-meta-models like EMF Ecore. Additionally, it offers
a statically typed expressions language [18].

2.5.3 Xpand2

Xpand2 is a special language inside the oAW framework that is used to
control the output of the generator within templates. Templates are stored
in files with a .xpt prefix. Templates must reside on the Java classpath of
the generator process [18].

2.5.4 Xtend

Xtend provides the possibility to define libraries of independent operations
and metamodel extensions based on either Java methods or oAW expressions.
Those libraries can be referenced from all other textual languages, that are
based on the expressions framework [18].

2.5 openArchitectureWare (oAW) 27

2.5.5 Check

Check is a DSL that is specialized on model validation. Model validation
should happen as early as possible in a development process. The best way
to achieve this is to integrate it in the model editor. Check files have the
prefix .chk and must reside on the Java classpath of the generator process.
Check can be used to specify constraints in model transformation steps. It
can be used with all kinds of model representations as long as a suitable
meta-model implementation is available [18].

2.6 Apache Ant 28

2.6 Apache Ant

Apache Ant is a software tool for building software applications, primary
Java applications. Ant is written in Java and therefor it needs a Java plat-
form. Ant is similar to make but Ant uses XML for the description of the
build process. The default XML file for Ant is named build.xml.

Each buildfile contains one project and at least one default target. Each
target consists of one or more tasks which are executed.

• Project:
The <project> tag consists of the attributes name, default and basedir.
The optional name attribute contains the name of the project. The
default attribute is also optional and can contain the name of a default
target. The basedir attribute contains the base directory from which
all path calculations are done.

• Targets:
Targets can depend on other targets. Therefore the <target> tag pro-
vides beside the name attribute a depends attribute. The name con-
tains the name of the target and the depends attribute the targets on
which the current target depends. The depends attributes specify the
order in which targets should be executed [2].

• Tasks:
A task is a piece of code that can be executed. A task can have multiple
attributes where the value of an attribute can contain references to a
property. These references will be resolved before the task is executed.

A project can have a set of properties. These might be set within the
<project> tag or in an external property file. Each property consists of
a name and a value where the name is case-sensitive. Properties can be used
in the values of task attributes.

2.7 Separation of Generated and Handwritten Code 29

2.7 Separation of Generated and Handwritten Code

Due to the fact that the developer is responsible for the Model of the MVC
pattern in the course of this work, a solution for separating generated and
non-generated code must be found. The simplest method to combine gener-
ated and handwritten code are so called Protected Regions.

2.7.1 Protected Regions

Protected regions are labeled areas within the generated code in which the
developer can insert code. Protected regions are designated that they can
be read by the generator and they will not be overwritten in a subsequent
generator run [3].

The following snippet shows protected regions within a generated Java class:
public class GeneratedClass {

...

public void foo() {

// protected region begins - 0001

// place code here

// protected region ends - 0001

}

public void bar() {

// protected region begins - 0002

// place code here

// protected region ends - 0002

}

...

}

Listing 10: Protected regions within a Java class

Protected regions are labeled by comments and consecutive numbers in this
example. The generator notices the designated region and does not over-
write the code between the comments //protected region begins and
//protected region ends.

However, the main disadvantage of protected regions lies in the fact that the
developer must work within the generated code and therefore the developer
must understand the generated code which is not always easy. Furthermore
the utilization of protected areas results in a more complex generator because

2.7 Separation of Generated and Handwritten Code 30

the generator has to recognize the protected areas and has to preserve the
manually written code. Practical experiences show that a preservation of
handwritten code is not easily accomplished, hence pieces of code get lost.
Moreover the separation between generated and non-generated code becomes
blurred because both are in the same file or rather in the same class.

2.7.2 Solutions for Protected Regions

As result of this disadvantages a solution must be found. Popular solutions
are the utilization of interfaces, abstract classes and design patterns in object-
oriented languages like Java. Figure 5, that was taken from [3], demonstrates
possible object-oriented solutions for handling generated and non-generated
code where the white boxes denote generated and black boxes non-generated
code.

Figure 5: Handling generated and non-generated code [3]

Case a) demonstrates generated code that calls non-generated code. b) shows
that manually written code calls generated code. Thereby a problem exists
because manually written code must know the generated code and this can
lead to unpleasant dependencies during the build process. Case c) denotes

2.7 Separation of Generated and Handwritten Code 31

that generated code can inherit from handwritten code or implement an
handwritten interface. d) shows an implementation call that inherits from
the generated class. e) depicts that a generated class can inherit from a
non-generated class or invoke its operations. Case f) shows that manually
written classes call operations of generated subclasses.

If files with generated code are never modified, the generated can can simply
be overwritten in subsequent generator runs. Protected regions should be
used if generated code must be modified manually. [3] gives the following
important advices:

Keep generated and non-generated code in separate files!
Never modify generated code!

These statements discourage from the usage of protected regions. Protected
regions should only be used if the target platform does not support any other
options to place manually written code within generated code.

32

3 Related Work

A lot of work is done in the field of an automated generation of Web ap-
plications based on a MDA. We mention the three papers [19], [21] and [22]
because they have something in common. All those works are concentrated on
Web applications based on the MVC pattern. They introduced meta-models
for the Model, the View as well as the Controller. Paper [24] describes the
modeling of Web applications based on Java and XML technologies. [23]
introduce a methodology for testing Web applications. Furthermore [25] de-
scribes JBoss Seam that offers facilities to model the pageflow of a Web
application.

Paper [19] introduces the WebSA as well as the UWE (UML-based Web En-
gineering) approaches for the model-driven development of Web applications.
The WebSA approach aims to avoiding gaps between Web design models and
the final implementation. It covers all phases of the development process of
Web applications where the focus lies on the software architecture. Besides it
defines a set of architectural models for the specification of the architectural
viewpoint. Furthermore it establishes an instance of the MDA development
process. The WebSA approach is divided into three phases:

1. Analysis phase
The analysis phase divides the Web application into the functional and
architectural viewpoints. The functional perspective is given by Web
functional models provided by Web methods. The architectural view
contains a subsystem model and a configuration model to define the
software architecture of the Web application.

2. PIM-to-PIM transformations
The analysis models are transformed to platform independent design
models. The output is an integration model that contains information
about the functionality and architecture.

3. PIM-to-PSM transformations
The model transformations for each platform are built-up on the inte-
gration model. The output of this phase is the specification of the Web
application for a given platform.

33

The UWE approach defines a meta-model that acts as a conservative exten-
sion of the UML meta-model that has a mapping to an UML profile. UWE
separates the modeling of different points of view into content, navigation
structure, business process and presentation. The content is modeled by
UML class diagrams. The navigation structure is based on all conceptual
classes that are relevant for the navigation structure and represents the navi-
gation paths. The behavior of the business logic describes the processflow in
UML activity diagrams. The presentation model is used to sketch the layout
of the web pages.

[20] uses the WebSA approach to achieve a logical architectural view for Web
applications. Three models are defined by the WebSA approach that are re-
sponsible for the definition of the logical components and their relationships
within a system.

• Subsystem Model (SM)
The Subsystem Model reduces the complexity of the Web application
by providing an abstract perspective of the logical architectural view.
Subsystems obtained in this phase are later identified with each logical
layer in the application.

The subsystem model is divided into subsystems and dependency rela-
tionships. Subsystems define groups of software components to support
the functionality of certain logical layer. Dependency relationships de-
scribe the relationship between subsystems.

• Web Component Configuration Model (WCCM)
The WCCM consists of abstract elements that are produced in the
refinement process performed on each subsystem. It contains abstract
components as well as abstract connectors. Abstract components are
abstractions of one or more software components with shared func-
tionalities. Abstract connectors represent dependency relationships be-
tween two abstract components.

Architectural design patterns are used for powerful configurations, reuse
mechanisms and contributions to more efficient development processes.

• Web Component Integration Model (WCIM)
For the connection of functional and architectural views under a com-

34

mon set of concrete components the WCIM is used. It is defined during
the WebSA platform-independent phase. The WCIM consists of Con-
crete Components (CC), Modules (M) and Concrete Connectors (CN).
CCs represent software components in a certain application domain.
Ms are containers of one or more concrete elements. CNs express the
relationship between two CCs.

Muller et al. [21] deal with the question of making a new meta-model or
to customize an existing one. Customizing existing meta-models is known
under the term Profiling. They are coming to the following conclusion:

Creating a new meta-model makes more sense than profiling when the se-
mantic distance between existing UML modeling elements and newly defined
modeling elements is becoming too large.

Furthermore a separation into three meta-models is described:

• Business Model
The Business Model is built-up on the entity-based structural model
introduced by paper [22]. UML class diagrams are used to represent the
business classes. Furthermore the business model is used to describe
session management, personalization, search or statistics. An action
language Xion is introduced which describes the behavior of classes
represented by their methods. Xion is based on the syntax of OCL
augmented with Java-like control structures and affections. Xion is
used to create, update and delete instances at runtime.

• Hypertext Model
The Hypertext Model is an abstract description of composition of Web
pages and navigation between Web pages. In other words, it describes
how Web pages are linked and built. The composition describes the
way the various Web pages are composed from other pages as well
as the inclusion of information coming from the business model. The
navigation describes the links and specifies the parameters between
Web pages.

• Presentation Model
The Presentation Model is responsible for the graphical appearance of
the Web pages.

35

The Web Modeling Language (WebML) is introduced in paper [22]. WebML
is based on four Models:

• Structural Model
The Structural Model is responsible for the data content of a Web page.

• Hypertext Model
The Hypertext Model consists of the Composition and Navigation Mod-
els. The Composition Model specifies which pages compose the hyper-
text and which content units make up a page. The Navigation Model
describes how pages and contents are linked to form the hypertext.

• Presentation Model
The Presentation Model expresses the layout and graphical appearance
of the Web pages.

• Personalization Model
The Personalization Model administrates user and user groups. Hence,
contents can be stored user- or group-specific.

Chung and Lee [24] describe the modeling of Web applications using Java and
XML related technologies. They consider Web applications that are built-on
a three-tier architecture. Visual models are proposed and analyzed based
upon criteria for relative model comparison. Two criteria are proposed: the
degree of language independence and the degree of location independence.
Furthermore comparison criteria are used to figure out how relatively difficult
it is to model which component. A component means a physical and replace-
able part of a system. To compare the modeling complexity of components
the Rational Unified Process (RUP) in companion with UML is applied. By
applying RUP to a software system the architectural views of models can be
achieved.

Alava et al. [23] introduce a methodology to test Web applications based on
a Design View (DView) of the pageflow model. A DView is a representation
of the pageflow based on graphs. The methodology extracts information from
a pageflow model and creates a Typed Attributed Directed Graph (TGraph)
that is used in the analysis of test coverage criteria. TGraphs are used to

36

model an object-oriented view of the system where vertices and edges rep-
resent objects and relationships. TGraphs are used to apply traditional test
coverage criteria in terms of Action, Forward, Link and Page are the test
coverage criteria that are used by TGraphs. Action maps incoming HTTP
requests to the corresponding methods for execution. Forward represents
a destination to which the pageflow controller might be directed to. Links
represent the actual HTTP request from the JSP pages to the Actions. A
Page is a JSP page that handles user interfaces. A TGraph is transformed to
an Attributed Directed Graph (AGraph) and the resulting graph is analyzed
to obtain traditional structural testing criteria.

JBoss Seam [25] provides the business process manager jBPM to represent
business processes or user interactions as graphs. The graphs are defined in
an XML dialect, called jPDL. jPDL is suitable to define the pageflow of a
Web application. Seam provides two ways to define the pageflow:

• JSF/Seam
JSF/Seam provides a stateless definition of the pageflow. The stateless
model defines a set of named, logical outcomes of events (buttons and
links on Web pages). Each event is bonded to an action listener method
that must make decisions of the pageflow, since only they have access
to the current state of the Web application.

• jPDL
jPDL provides a stateful model that defines a set of transactions be-
tween a set of named, logical Web application states. It is possible to
write action listener methods that are completely unaware of the flow
of interactions because the flow of any user interaction can be expressed
entirely in the jPDL pageflow definition.

JSF/Seam navigation rules are much simpler but the underlying Java code
is more complex to understand. On the other hand, jPDL makes user inter-
actions immediately understandable without looking to the JSP or Java code.

Stateful models are more constrained. For logical state there are a con-
strained set of possible transactions to other states. The stateless model is
more suitable to relatively unconstrained navigation rules where the user de-
cides which Web page to display next, not the application.

37

Like mentioned above, this approaches can help us for further work. Mainly
for modeling the Model component of the MVC pattern for an automated
generation of fetching data, e.g. from databases. The next section describes
our approach of modeling Web application.

38

4 Description of our Approach

With all this theoretical background about the JSF framework and MDA,
it is time to make something useful of it. This section describes our defined
meta-model that defines the DSL as well as the process of generating a JSF
Web application based on a given model that is an instance of the defined
meta-model. Furthermore a prototype of a JSF Web application is introduced
that demonstrates the functioning of our approach.

4.1 The Meta-Model

Page

−name : String
−stylesheet : String [0..1]

OutputPage

−name : String
−description : String
−isPassword : boolean = false
−type : String

TextField

InputPage

Form

−name : String
−scope : String = session

NavigationRule

If

−outcome : String

Decision

WebApplication

−name : String

SubmitButton

−name : String
−value : String
−methodname : String

Link

−name : String
−value : String
−methodname : String

ElseIf

−outcome : String

Else

StaticText

Text

−name : String

DynamicText

gotopage

navigationrule
1

navigationrule
1

1

0..*

1

link

0..*

dynamictext

0..*

0..*

textfield

1..*

submitbutton

1

startpage

1 1..*

staticttext
1..*

form
1

0..1

Figure 6: Metamodel

4.1 The Meta-Model 39

Figure 6 shows our defined meta-model illustrated by an UML class diagram.
A certain Web application is an instance of this meta-model. Our meta-model
provides the modeling of Web pages as well as the modeling of the pageflow.
First we will describe the parts of our meta-model that are responsible for
modeling the Web pages.

4.1.1 Modeling of Web pages

Page

−name : String
−stylesheet : String [0..1]

WebApplication

−name : String

startpage

1 1..*

Figure 7: Relation between a WebApplication and Pages

Each WebApplication consists of:

• An attribute name of type String that specifies the name of the Web
application.

• A startpage and

• one or more (1..*) Pages.

The relationships between the classes WebApplication and Page is illus-
trated in Figure 7.

4.1 The Meta-Model 40

The class Page is responsible for Web pages characterized by the following
attributes:

• A name of type String:
The attribute name contains the name of the Web page as well as the
title.

• A stylesheet of type String:
The stylesheet attribute is an optional attribute that can contain the
filename of an user-defined stylesheet for a certain page. If the stylesheet
attribute is not given, the generator depicts a default stylesheet.

We divide Web pages into InputPages and OutputPages. This is depicted
in Figure 8. An input-page contains components of user interfaces where the
user can enter data. On the other hand an output-page is only responsible
for displaying data. Both can contain one or more (0..*) Links that are
responsible for the pageflow.

Page

−name : String
−stylesheet : String [0..1]

OutputPageInputPage Link

−name : String
−value : String
−methodname : String

link

0..*

Figure 8: Division of Page into InputPage and OutputPage

The Link class contains the following attributes:

• A name attribute of type String that specifies the name of the link
component,

• a value of type String that captures the link and

4.1 The Meta-Model 41

• a methodname of type String that contains the name of the method
of a Java Bean that is responsible for delivering the outcomings of the
given link.

Now we will take a closer look to input-pages. An InputPage consists of
one (1) Form. A Form contains one or more (1..*) TextFields and one (1)
SubmitButton. These relationships are demonstrated in Figure 9.

TextField

−name : String
−description : String
−isPassword : boolean = false
−type : String

Form

−name : String
−scope : String = session

InputPage

SubmitButton

−name : String
−value : String
−methodname : String

textfield

1..*

submitbutton

1

form
1

Figure 9: Composition of InputPage

A Form is described by the following attributes:

• A name of type String that indicates the name and

• A scope of type String that specifies the duration of validity of the en-
tered data within the form. Valid values of the scope are: application,
session, request and page.

4.1 The Meta-Model 42

A TextField consists of the following attributes:

• A name of type String that contains the name of the textfield,

• a description of type String that captures the textfield,

• an attribute isPassword of type boolean that indicates if the textfield
is a password field or not and

• a type of type String that specifies the type of the value of the textfield.
Valid values are: int and String.

A SubmitButton is characterized by the following attributes:

• A name of type String that contains the name of the button,

• a value of type String that specifies the caption of the button and

• a methodname of type String that qualifies the method of a Java Bean
that is responsible for the outcome of the button.

Next, we will take a closer look to output-pages. Figure 10 demonstrates the
constitution of an output-page. An OutputPage consists of DynamicText

and StaticText. DynamicText and StaticText are composed to the class
Text that consists of the attribute name of type String that specifies the
name of the text component.

The StaticText class is specified by the value attribute of type String

that contains the value of the static text. DynamicText fetches the value
from data that was entered by the user in a textfield. Hence an association
between DynamicText and TextField exists.

4.1 The Meta-Model 43

OutputPage

−name : String
−description : String
−isPassword : boolean = false
−type : String

TextField

StaticText

Text

−name : String

DynamicText

1

0..*

staticttext

1..*

dynamictext

0..*

Figure 10: Composition of OutputPage

After modeling the Web pages of a Web application we can model the page-
flow. The parts of our defined meta-model that are responsible for the mod-
eling of the pageflow are described in the following section.

4.1 The Meta-Model 44

4.1.2 Modeling of the Pageflow

Due to the fact that only links and buttons are responsible for outcomings
that define the pageflow we defined navigation rules that are associated with
the Link and SubmitButton classes. These associations are shown in Figure
11.

Page

−name : String
−stylesheet : String [0..1]

If

−outcome : String

NavigationRule

Decision

SubmitButton

−name : String
−value : String
−methodname : String

Link

−name : String
−value : String
−methodname : String

ElseIf

−outcome : String

Else

gotopage

1

navigationrule

1

navigationrule

1

0..*

0..1

Figure 11: Modeling of the Pageflow

Each SubmitButton and each Link consists of one or more (1..*) NavigationRules.
Due to the fact that we wanted to achieve a process-oriented modeling of the
pageflow, our meta-model contains classes that enable the pageflow model-
ing through Java-like IF-ELSE statements. A NavigationRule consists of
one (1) If statement. The If class is specified by the outcome attribute of
type String that is responsible for the decision which Web page has to be

4.1 The Meta-Model 45

displayed next. An If can consist of one or more (0..*) ElseIf statements.
Each ElseIf statement consists of an outcome attribute that has the same
signification as the outcome attribute for the If class. Furthermore an If

statement can consist of an (0..1) Else statement. If, ElseIf and Else are
composed to the Decision class that is associated with the Page class that
defines the Web page that has to be displayed next.

Our defined meta-model provides possibilities to model the Web pages as
well as the pageflow of a Web application. How a modeled Web application
is generated based on our defined meta-model is described in the following
section.

4.2 Code Generation with oAW 46

4.2 Code Generation with oAW

oAW provides a helpful plug-in for Eclipse ([13]) to generate a Web applica-
tion based on a given model. Like mentioned in the Theory section, the oAW
core consists of a number of features. The main part of the code generator
builds the workflow that is described in the following section.

4.2.1 Workflow

The workflow builds the engine of the code generator. Like described in the
Theory section, the workflow can consist of a number of components. Our
workflow consists of seven components that are responsible to generate cer-
tain parts of the Web application. Furthermore our Workflow uses a property
file that contains the name of the XMI file where the model is located as well
as the path where the generated code should be placed. The name of the
property file is specified by the file attribute within the <property> tag.
The following listing depicts an example for a property file:

model = model.xmi

srcGenPath = src -gen

Listing 11: Workflow property file

The main components of our workflow to generate a Web application are:

• XMI Reader Component

The XMI Reader component reads a given model that is specified
by the <modelFile> tag and puts it into the outputSlot. Further-
more our defined meta-model must be passed to the XMI Reader com-
ponent. This is done by the <metaModelFile> tag. Now the input
model can be referenced by the value attribute specified within the
<outputSlot> tag. The following listing demonstrates the definition
of the XMI Reader component.

<component class ="org.openarchitectureware.emf.XmiReader">

<!-- Specify the Meta -Model -->

<metaModelFile value =" metamodel/MetaModel.ecore" />

<!-- Specify the Model -->

<modelFile value ="${model }" />

4.2 Code Generation with oAW 47

<!-- Load model into outputSlot -->

<outputSlot value =" model" />

</component >

Listing 12: The XMI Reader Component of the Workflow

• Check Component

The second component of the workflow is the Check component that
is used for model validation. The Check component needs the meta-
model that is specified by the <metaModel> tags. The meta-model
serves as basis for the model validation. Furthermore the check file has
to be specified. This is done by the <checkFile> tag within the Check
component. The Check component requires the given model as input
that has to be validated. This is specified through the <expression>

tag. The value attribute accords to the value of the <outputSlot> tag
of the XMI Reader component. The following listing demonstrates the
declaration of the Check component within our defined Workflow.

<!-- COMPONENT: CHECK -->

<component id=" checker"

class ="org.openarchitectureware.check.CheckComponent">

<!-- Specify the Meta -Model -->

<metaModel class ="oaw.type.emf.EmfMetaModel"

metaModelPackage ="org.eclipse.emf.ecore.EcorePackage">

<metaModelFile value =" metamodel/MetaModel.ecore" />

</metaModel >

<!-- fully qualified name of the check -file (.chk) -->

<checkFile value ="check :: JSFChecks"/>

<!-- check the model against constraints -->

<!-- defined in the check -file -->

<emfAllChildrenSlot value ="model"/>

</component >

Listing 13: The Check Component of the Workflow

• Generator Components

The Generator components are responsible for the code generation.
Again, the meta-model must be specified within the <metaModel> tag.
The <expand> tag refers to a template that contains the transformation

4.2 Code Generation with oAW 48

rules that are responsible for the code generation. The template files
are described later in this section. The value attribute of the <expand>
tag refers to the root of the template. Furthermore the path where
the generated code should be placed is specified within the <outlet>

tag. Finally two code beautifiers are specified within the <beautifier>
tags. Beautifiers beautify the generated code for improving the clarity.
oAW supports two code beautifiers: a Java- and a XML-code beauti-
fier. Due to the fact that we have to generate Java- and XML-code,
both beautifiers are included within the particular generator compo-
nent. The following listings describe our defined components that are
responsible for generating Web pages, Java Beans and the XML file
that contains information about the pageflow.

– Component to generate Web pages

<!-- COMPONENT to generate Web pages -->

<component

id=" generator"

class ="org.openarchitectureware.xpand2.Generator">

<!-- Specify the Meta -Model -->

<metaModel

class ="org.openarchitectureware.type.emf.EmfMetaModel">

<metaModelFile value =" metamodel/MetaModel.ecore" />

</metaModel >

<!-- Using Template for Code Generation -->

<expand value =" templates :: generatePages ::Root FOR model"/>

<!-- Specify Output Path -->

<outlet path="${srcGenPath }"/>

</component >

Listing 14: The Generator Component for Web pages

– Component to generate Java Beans

<!-- COMPONENT to generate Java Beans -->

<component

id=" BeanGenerator "

class ="org.openarchitectureware.xpand2.Generator">

<!-- Specify the Meta -Model -->

<metaModel

class ="org.openarchitectureware.type.emf.EmfMetaModel">

<metaModelFile value =" metamodel/MetaModel.ecore"/>

</metaModel >

4.2 Code Generation with oAW 49

<!-- Using Template for Code Generation -->

<expand value =" templates :: generateBeans ::Root FOR model"/>

<!-- Specify Output Path -->

<outlet path="${srcGenPath }"/>

<!-- Code Beautifiers -->

<beautifier

class ="org.openarchitectureware.xpand2.output.JavaBeautifier "/>

</component >

Listing 15: The Generator Component for Java Beans

– Component to generate the Pageflow

<!-- COMPONENT to generate the Pageflow -->

<component

id=" PageFlowGenerator"

class ="org.openarchitectureware.xpand2.Generator">

<!-- Specify the Meta -Model -->

<metaModel

class ="org.openarchitectureware.type.emf.EmfMetaModel">

<metaModelFile value =" metamodel/MetaModel.ecore"/>

</metaModel >

<!-- Using Template for Code Generation -->

<expand

value =" templates :: generateFacesConfigXML ::Root FOR model"/>

<!-- Specify Output Path -->

<outlet path="${srcGenPath }"/>

<!-- Code Beautifier -->

<beautifier

class ="org.openarchitectureware.xpand2.output.XmlBeautifier "/>

</component >

Listing 16: The Generator Component for the Pageflow information

To validate a given model, the Check component of the Workflow is used.
The definition of the check constraints within this project is described in the
next section.

4.2 Code Generation with oAW 50

4.2.2 Check - Model Validation

As mentioned in the Theory section, oAW provides a feature for model vali-
dation that is called Check. All defined constraints must be located in a file
with the prefix .chk. The following listing shows a snippet of the check file
used in the course of this project:

import MetaModel;

context MetaModel :: WebApplication

ERROR ’a WebApplication must have a name!’:

this.name!=null;

context MetaModel :: WebApplication

ERROR ’invalid name for WebApplication !’:

name.length >0;

Listing 17: The chk file

This snippet checks if a name is given for WebApplication as well as that
the name is not empty in the given model. Furthermore checks are done if
values are set correctly within the given model, e.g. the scope attribute of
a Form can only contain the values application, session, request or page.

After the given model is validated the process of code generation is accom-
plished. The templates that are used as the basis for generating code are
described in the next section.

4.2.3 Xpand2 - Templates

oAW provides a special language called Xpand2 that is used in templates to
control the code generation. Templates must resist in files with the prefix
.xpt. The tag brackets («,») are characters introduced by oAW to define
control sequences like FOREACH or IF within the template files to control the
generation of code. The following listings describe the defined template files
within this project to generate the Web pages, the Java Beans as well as the
XML file that contains the pageflow information.

4.2 Code Generation with oAW 51

• Template to generate Web pages

The following listing shows how Web pages are generated with an oAW
template file:

<<FOREACH inputpage AS p>>

<<FILE p.name +".jsp">>

<%@ taglib uri="http :// java.sun.com/jsf/html" prefix ="h" %>

<%@ taglib uri="http :// java.sun.com/jsf/core" prefix ="f" %>

<html >

<head >

...

</head >

<body >

<f:view >

<<EXPAND InputJSP FOR p>>

</f:view >

</body >

</html >

<<ENDFILE >>

<<ENDFOREACH >>

Listing 18: Template to generate Web pages

For each instance of the class InputPage we create a JSP file that
is equivalent to the name of the given input-page. First the tag li-
braries for JSP are generated through the <taglib> tags. Afterwards
the header information including the stylesheet is generated. Then
the user interface components of an input-page are generated. That
is achieved by calling the subrouting InputJSP. This subroutine is re-
sponsible to generate JSP code for all instances of the Form, TextField,
SubmitButton and Link classes. The following listing shows the sub-
routine InputJSP.

<<DEFINE InputJSP FOR MetaModel ::InputPage >>

<h:form id="<<form.name >>">

<<FOREACH form.textfield AS tf >>

<!-- TEXTFIELD -->

<h:outputText id="<<tf.description >>"

value="<<tf.description >>" />

<<IF tf.isPassword >>

<h:inputSecret id="<<tf.name >>"

value ="#{ Generated <<name.toFirstUpper ()>>Bean.

<<tf.name >>}" />

4.2 Code Generation with oAW 52

<<ELSE >>

<h:inputText id="<<tf.name >>"

value ="#{ Generated <<name.toFirstUpper ()>>Bean.

<<tf.name >>}" />

<<ENDIF >>

<<ENDFOREACH >>

<!-- SUBMITBUTTON -->

<h:commandButton id="<<form.submitbutton.name >>"

action ="#{ Generated <<name.toFirstUpper ()>>Bean.

<<form.submitbutton.methodname >>}"

value="<<form.submitbutton.value >>" />

</h:form >

<!-- LINKS -->

<<FOREACH link AS l>>

<h:form >

<h:commandLink id="<<l.name >>"

action ="#{ Generated <<name.toFirstUpper ()>>Bean.

<<l.methodname >>}">

<h:outputText value="<<l.value >>" />

</h:commandLink >

</h:form >

<<ENDFOREACH >>

<<ENDDEFINE >>

Listing 19: Generating user interface components for InputPage

First we generate the JSF tags for each textfield. If the attribute is-
Passwort of the TextField is set to true a password field is generated
otherwise a textfield. All Textfields get an id that is derived from the
name attribute. Next the JSF tag for the SubmitButton is generated.
The button gets an id, a value and an action. The action is linked
to a method of a Java Bean that is executed when the user pressed
the button and returns a certain outcome. The name of the method is
given by the methodname attribute of the SubmitButton class. Finally
the JSF tags for links are generated. Similar to buttons the action of
a link is linked to a method of a Java Bean that is responsible for the
outcome of the link, hence for the pageflow.

After all input-pages are generated the generation of the output-pages
can start. The generation of output-pages is similar to the approach
of generating input-pages. The only difference is that the subroutine
for generating the components of an output-page. The subroutine for
output-pages is shown in the following listing:

4.2 Code Generation with oAW 53

<<DEFINE OutputJSP FOR MetaModel ::InputPage >>

<!-- STATIC OUTPUT TEXT -->

<<FOREACH staticoutputtext AS t>>

<h:outputText id="<<t.name >>"

value="<<t.value >>" />

<<ENDFOREACH >>

<!-- DYNAMIC OUTPUT TEXT -->

<<FOREACH dynamicoutputtext AS t>>

<h:outputText id="<<t.name >>"

value="<<t.textfield >>" />

<<ENDFOREACH >>

<!-- LINKS -->

<<FOREACH link AS l>>

<h:form >

<h:commandLink id="<<l.name >>"

action ="#{ Generated <<name.toFirstUpper ()>>Bean.

<<l.methodname >>}">

<h:outputText value="<<l.value >>" />

</h:commandLink >

</h:form >

<<ENDFOREACH >>

<<ENDDEFINE >>

Listing 20: Generate user interface components for OutputPage

The subroutine OutputJSP generates tags for each staticoutputtext

and for each dynamicoutputtext. The ids are the name of the labels.
The difference between static and dynamic text is that the value of a
static text contains a String and a dynamic text is linked to the value
of a textfield of an input-page. Afterwards the JSF tags for links are
generated similar to the subroutine for input-pages.

• Template to generate Java Beans

Java Beans are generated for each input-page as well as for each output-
page that contain at least one link. Furthermore Java classes are gener-
ated for each output-page containing links. The following listing shows
a snippet of the template file:

<<FOREACH inputpage AS p>>

<<FILE "Generated "+p.name.toFirstUpper ()+" Bean.java">>

public class Generated <<p.name.toFirstUpper ()>>Bean {

4.2 Code Generation with oAW 54

public Generated <<p.name.toFirstUpper ()>>Bean() {}

<<EXPAND FormBeans FOR p.form >>

...

<<ENDFOREACH >>

Listing 21: Template to generate Java Beans

For each instance of the class InputPage we create a Java class that gets
the suffix Generated and the prefix Bean. This should help the pro-
grammer to distinguish between generated classes and manually written
classes. First we create the constructor that is equivalent to the class
name. Afterwards the subroutine FormBeans declares a variable for
each textfield within the form and generates get- and set-methods for
each variable.

The following listing describes the generation of methods that are linked
to buttons that are responsible for returning the outcomings:

<<IF p.form.submitbutton.navigationrule !=null >>

public String <<p.form.submitbutton.methodname >>() {

<<p.name.toFirstUpper ()>>Util util <<p.name.toFirstUpper ()>> =

new <<p.name.toFirstUpper ()>>Util ();

String strOutcome = util <<p.name.toFirstUpper ()>>.

<<p.form.submitbutton.methodname >>(

<<FOREACH p.form.textfield.name AS tf SEPARATOR ’,’>>

this.<<tf >>

<<ENDFOREACH >>);

...

Listing 22: Generating methods for each SubmitButton

We achieve that the programmer has to create for each input-page a
Java class that accords to the name of the input-page with the prefix
Util. Furthermore the programmer must implement a method that
matches the value of the methodname attribute of the SubmitButton

class. This method gets the values from the textfields as parameters
and must return the defined outcomings in the given model. Therefor

4.2 Code Generation with oAW 55

we generate code that compares the returned String from the manually
written method. This is shown in the following listing:

<<IF p.form.submitbutton.navigationrule.if!=null >>

if(strOutcome.equals ("

<<p.form.submitbutton.navigationrule.if.outcome >>")) {

return "<<p.form.submitbutton.navigationrule.if.outcome >>";

}

<<IF p.form.submitbutton.navigationrule.if.elseif.size >0>>

<<FOREACH p.form.submitbutton.navigationrule.if.elseif AS ei >>

else if(strOutcome.equals("<<ei.outcome >>")) {

return "<<ei.outcome >>";

}

<<ENDFOREACH >>

<<ENDIF >>

<<IF p.form.submitbutton.navigationrule.if.else!=null >>

else {

return "*";

}

<<ELSE >>

return null;

<<ENDIF >>

<<ELSE >>

return null;

<<ENDIF >>

Listing 23: Generate outcomings for each method

To achieve the correct outcomings we have to define IF-ELSE state-
ments that are derived from the process-oriented definition of the page-
flow within the model. First, code is generated for the IF branch. Af-
terwards is code generated for each ELSEIF branch. Finally the ELSE

branch is generated if it is given. Otherwise the method returns null

within the else branch. With this approach we achieve that the pro-
grammer is responsible for returning the correct outcomings through
manually written methods. Otherwise the wildcard * or null is re-
turned that signifies that the current page is displayed again.

Thereby we solve the problem of dealing with generated and manually
written code because the programmer is responsible to validate the en-
tered data in the textfields, e.g. by accessing a database. Moreover the
manually written code does not become overwritten in a subsequent
generator run because it exists outside the generated code.

4.2 Code Generation with oAW 56

To separate generated from manually written code we chose the proven
approach to call handwritten Java classes by generated code to avoid
severe effects in case of interventions in the model. Changes in the tem-
plates lead to changes in the generated code. This can further leads
to the problem that the developer must change the manually written
classes that extend generated classes. To avoid this problem and de-
crease the coupling of the generated and the manually written code we
propose the following solution: generated code calls methods of hand-
written classes.

• Template to generate Pageflow information

The template to generate information about the pageflow generates
an XML file that serves as input for a Java Servlet that is provided by
the JSF framework. This Java Servlet is responsible for controlling the
pageflow based on the outcomings of buttons and links. The following
listing shows the template that generates the XML file:

<<FILE "faces -config.xml">>

...

<<FOREACH inputpage AS p>>

<<IF p.form.submitbutton.navigationrule !=null >>

<navigation -rule >

<from -view -id >/ pages/<<p.name >>.jsp </from -view -id >

<<EXPAND NavigationCase FOR

p.form.submitbutton.navigationrule >>

<<IF p.link.size >0>>

<<FOREACH p.link AS l>>

<<EXPAND NavigationCase FOR l.navigationrule >>

<<ENDFOREACH >>

<<ENDIF >>

</navigation -rule >

<<ENDIF >>

<<ENDFOREACH >>

<<FOREACH outputpage AS p>>

<<IF p.link.size >0>>

<navigation -rule >

<from -view -id >/ pages/<<p.name >>.jsp </from -view -id >

<<FOREACH p.link AS l>>

<<EXPAND NavigationCase FOR l.navigationrule >>

<<ENDFOREACH >>

</navigation -rule >

<<ENDIF >>

4.2 Code Generation with oAW 57

<<ENDFOREACH >>

Listing 24: Template to generate Pageflow information

First we generate information about the pageflow for each InputPage.
Information about the outcomings delivered from the method of the
SubmitButton is generated. Therefor the subroutine NavigationCase

is called. Aftwards information about the outcomings delivered from
the Links is generated. The NavigationCase is called for each link.
After generating the pageflow information for each input-page the page-
flow information for each OutputPage is generated. This is similar to
InputPage. The following listing shows the subroutine NavigationCase:

<<DEFINE NavigationCase FOR MetaModel :: NavigationRule >>

<navigation -case >

<from -outcome ><<if.outcome >></from -outcome >

<to -view -id >/ pages/<<if.gotopage.name >>.jsp </to-view -id >

</navigation -case >

<<IF if.elseif.size > 0>>

<<FOREACH if.elseif AS e>>

<navigation -case >

<from -outcome ><<e.outcome >></from -outcome >

<to -view -id >/ pages/<<e.gotopage.name >>.jsp </to -view -id >

</navigation -case >

<<ENDFOREACH >>

<<ENDIF >>

<<IF if.else!=null >>

<navigation -case >

<from -outcome >*</from -outcome >

<to -view -id >/ pages/<<if.else.gotopage.name >>.jsp </to-view -id >

</navigation -case >

<<ENDIF >>

<<ENDDEFINE >>

Listing 25: Generating navigation-cases

First we generate the navigation-cases for the IF branch of the process-
oriented defined pageflow. A navigation-case consists of an outcome
and a Web page that has to be displayed by the certain outcome. Af-
terwards the navigation-cases for each ELSEIF branch are generated.
Finally the ELSE branch outcome is generated.

4.2 Code Generation with oAW 58

After generating Web pages, Java Beans and information about the
pageflow an Apache Ant file is generated that facilitates the deploy-
ment of the generated JSF Web application on the Apache Tomcat
Webserver. The generation of the Ant file is described next.

• Template to generate the Apache Ant File

This template is used to generate the build.xml file that is executed
by the developer using Apache Ant. Apache Ant is used to ease the
deployment of the generated Web application on the Apache Tomcat
Web server. Listing 26 shows a snippet with the main components of
the template that generates the build.xml file.

<<DEFINE Root FOR MetaModel::WebApplication >>

<<FILE name+"\\ant\\ build.xml">>

<project name="jsf" basedir="../" default="deploy">

<property file="ant/build.properties" />

...

<!-- Deploy Web application -->

<target name="deploy" depends="war">

<copy file="${ build.dir }/${ project.distname }.war"

todir="${ tomcat.dir}" />

</target >

<!-- Create WAR file -->

<target name="war" depends="build">

<mkdir dir="${ build.dir}" />

<war basedir="${ webroot.dir}"

warfile="${build.dir }/${ project.distname }.war"

webxml="${ webinf.dir}/web.xml">

<exclude name="WEB -INF/${ build.dir }/**"/>

<exclude name="WEB -INF/src /**"/>

<exclude name="WEB -INF/web.xml"/>

</war>

</target >

<!-- Build entire project -->

<target name="build" depends="prepare ,compile"/>

<target name="prepare">

<tstamp/>

</target >

<!-- Compile Java files -->

<mkdir dir="${ webinf.dir}/ classes" />

<target name="compile" depends="prepare ,resources">

4.2 Code Generation with oAW 59

<javac srcdir="JavaSource" destdir="${ webinf.dir}/ classes">

<classpath refid="compile.classpath"/>

</javac >

</target >

...

</project >

<<ENDFILE >>

<<ENDDEFINE >>

Listing 26: Generating the Apache Ant file build.xml

The build.xml file is located in the ant directory of the generated Web
application. Like mentioned in the Theory section, an Apache Ant
file consists of multiple targets. Our generated Ant file has a deploy

target that is set to default in the attributes of the <project> tag.
The deploy target depends on the war target. The war target is used
to create a war file that is copied to the webapps directory of the
Apache Tomcat Web server within the deploy target. The war target
depends on the build target that is used to compile the Java source
files. The compilation of the Java files results in errors if the developer
does not implement the Java classes in which the called methods rely
that are called by the generated Java Beans. After compiling the Java
sources the war file is created and copied to the webapps directory of
the Apache Tomcat Web server. Our generated build.xml file uses a
properties file that is specified within the <property> tag at the top
of the build.xml file. The property file contains all needed directories
of the build.xml file, e.g. ${build.dir}.

After the JSF Web application is generated the developer can deploy the
generated Web application using the Ant file. Ant checks if the developer
implemented all needed classes and methods called by the generated Java
Beans. By starting the Apache Tomcat Web server the war file is extracted
and the whole JSF Web application relies in the webapps directory. To
demonstrate the functioning of our approach a prototype JSF Web applica-
tion was generated that is described in the following section.

4.3 A Prototype for Visualizing the Mode of Operation 60

4.3 A Prototype for Visualizing the Mode of Operation

In this section we want to introduce a prototype to demonstrate the func-
tioning of our approach. The prototype features a JSF Web application that
can be deployed on the Apache Tomcat Web server. Our prototype pictures
a Web application that consists of a registration feature. To login to a certain
Web application, a user has to register first. A model-driven development of
such a registration Web application is demonstrated by our prototype.

First, the Web application that should be generated must be described in
a model. Figure 12 shows the UML class diagram of a Web page that con-
tains a form for user registration.

<<WebApplication>>

Register Web Application

<<Link>>

LostPassword

−lostPassword : methodname
−Lost Password : Value

<<TextField>>

Surname

−surname : Description
−false : IsPassword
−String : Type

<<SubmitButton>>

RegisterButton

−Register : Value
−registerUser : methodname

<<InputPage>>

Register

<<Form>>

RegisterForm

<<TextField>>

EMail

−e−mail : Description
−false : IsPassword
−String : Type

<<TextField>>

Forename

−forename : Description
−true : IsPassword
−String : Type

11

1

1

startpage

1 1

1 1

Figure 12: Model of a Web page

4.3 A Prototype for Visualizing the Mode of Operation 61

The class Register Web Application has the stereotype «WebApplication»
that was introduced by the meta-model. The class Register with the stereo-
type «InputPage» is denoted as an input-page as well as the start-page of
the Web application. The page Register consists of one (1) Form and one
(1) Link. The RegisterForm consists of one (1) Forename textfield, one
(1) Surname textfield, one (1) EMail textfield and one (1) RegisterButton.
The attribute methodname of RegisterButton is set to registerUser that
denotes the methodname of the Java Bean that has to be executed if the but-
ton is pressed. The LostPassword link utilizes the method lostPassword.
These methods are described later in this section.

Analog to the Register Web page all Web pages of the Web application must
be modeled. Our prototype consists of the following Web pages beside the
Register Web page:

• thanks.jsp

This page is displayed after the registration was successful. The Web
page thanks.jsp is an output-page that contains a static text as well
as a link.

• failed.jsp

This page is displayed when the registration failed, e.g. the entered
e-mail address already exists in the database. failed.jsp is an output-
page with a static text and a link like the Web page thanks.jsp.

• lost.jsp

The Web page lost.jsp is an input-page and contains a form where
the user can enter an e-mail address to which the password should be
sent.

• login.jsp

The Web page login.jsp is an input-page that contains textfields where
the user can enter the e-mail address and the corresponding password
to login a Web application.

4.3 A Prototype for Visualizing the Mode of Operation 62

A graphical representation of the pageflow of our prototype is shown in Fig-
ure 13.

register.jsp thanks.jsp

failed.jsp lost.jsp

login.jsp

lostPasswort

failed

success

back

ba
ck

success

gotoLogin

failed

Figure 13: Pageflow of our Prototype

The subsequent Web pages of register.jsp dependent on the outcome of
the RegisterButton and the LostPassword link. If the outcome of the
RegisterButton is success, thanks.jsp is displayed next. Otherwise, if the
outcome is failed the failed.jsp Web page is displayed. If the user clicks
the LostPassword link that delivers the outcome lostPassword, lost.jsp is
displayed.

The output-page thanks.jsp consists of two links with the outcomings go-
toLogin and back. If the user clicks the Goto Login link, the outcome is
gotoLogin and the user is forwarded to login.jsp Web page. Else if the user
clicks the Back link that delivers the outcome back, the register.jsp Web
page is displayed next.

The output-page failed.jsp consists only of the Back link that delivers the
outcome back. The register.jsp Web page is displayed next.

The input-page login.jsp does not deliver outcomings in our prototype be-
cause it acts as an interface to an Web application where the user has to
login first before using the functionality of this Web application.

4.3 A Prototype for Visualizing the Mode of Operation 63

<<Link>>

LostPassword

−lostPassword : methodname
−Lost Password : Value

<<InputPage>>

Register

<<ElseIf>>

ElseIf

−failed : Outcome

<<NavigationRule>>

NavigationRule

<<SubmitButton>>

RegisterButton

−Register : Value
−registerUser : methodname

<<Form>>

RegisterForm

<<NavigationRule>>

NavigationRule

<<If>>

If

−lostPassword : Outcome

<<If>>

If

−lostPassword : Outcome

<<OutputPage>>

Failed

<<InputPage>>

Lost

<<OutputPage>>

ThanksgotoPage

gotoPage

11

gotoPage

1

1

1

1

1

1

Figure 14: Modeling of Pageflow for the Register Web page

Figure 14 demonstrates the modeling of the pageflow for the Registration
Web page. Like mentioned before, the Web page Register consists of a
RegisterForm with a RegisterButton and of a LostPassword link. Navi-
gation rules are assigned to buttons and links. The RegisterButton contains
one (1) NavigationRule that consists of one (1) If branch. The modeled If

branch defines if the Outcome is success than gotoPage Thanks. The ElseIf
branch defines if the Outcome is failed than gotoPage Failed.

4.3 A Prototype for Visualizing the Mode of Operation 64

The pageflow modeling for a Link is analog to the modeling of the pageflow
for a SubmitButton. The LostPassword link consists of one (1) NavigationRule
that consists of one (1) If branch. The modeled If branch defines if the
Outcome is lostPassword than gotoPage LostPassword.

The modeling of the pageflow for the Web pages thanks.jsp, failed.jsp,
lostPassword.jsp and login.jsp is analog to the pageflow model of the
register.jsp Web page demonstrated in Figure 14.

After modeling the Web application we can start to generate the Web ap-
plication. The following section shows the generated Web pages, Java Beans
and pageflow information generated by our created templates.

4.3.1 The Generated Prototype Web Application

Each generated Web application contains the following directory structure.
/<WebApplicationName >

/ant

build.xml

/JavaSource

/WebContent

/pages

jsf -impl.jar

jsf -api.jar

/lib

/WEB -INF

faces -config.xml

web.xml

Listing 27: Generated directory structure

Each Web application consists of three directories:

• ant

The ant directory contains an Ant build file named build.xml. This file
is responsible for compiling the Java classes as well as to generate a
war file that can be deployed on an Apache Tomcat Web server.

• JavaSource

The JavaSource directory contains all generated Java Beans. Java
Beans are generated for each input-page as well as for each output-
page that contains at least one link.

4.3 A Prototype for Visualizing the Mode of Operation 65

• WebContent

The WebContent directory contains of the pages directory that con-
tains all generated Web pages. Moreover it contains a lib directory
that holds Java libraries (jar files required by the JSF Web pplication.
The lib directory contains the Java library files jsf-impl.jar and
jsf-api.jar. These files are needed by every JSF Web application be-
cause they contain Java classes that are needed by the JSF framework,
e.g. the FacesServlet Servlet that controls the pageflow. Furthermore
the WebContent directory consists the WEB-INF directory that contains
configuration files for the JSF framework and the Apache Tomcat Web
server. The faces-config.xml file contains information about the page-
flow of the generated Web application as well as information about all
Java Beans that are used within the Web application. faces-config.xml
is utilized as input for the FacesServlet of the JSF framework that
controls the pageflow. The web.xml is a configuration file for the Web
application that runs on the Apache Tomcat Web server. This file is
used to include the FacesServlet in the JSF Web application.

4.3.1.1 Generated Web Pages

The following listing shows the generated register.jsp Web page.
<%@ taglib uri="http :// java.sun.com/jsf/html" prefix ="h" %>

<%@ taglib uri="http :// java.sun.com/jsf/core" prefix ="f" %>

<html >

<head > ... </head >

<body >

<f:view >

<h:form id=" registerForm">

<h:outputText id=" Forename" value =" Forename" />

<h:inputText id=" forename"

value ="#{ GeneratedRegisterBean.forename }" />

<h:outputText id=" Surname" value =" Surname" />

<h:inputText id=" surname"

value ="#{ GeneratedRegisterBean.surname }" />

<h:outputText id="E-Mail" value ="E-Mail" />

<h:inputText id=" email"

value ="#{ GeneratedRegisterBean.email }" />

<h:commandButton id=" btnRegister"

action ="#{ GeneratedRegisterBean.registerUser }"

value =" Register" />

</h:form >

<h:form >

<h:commandLink id=" lostPassword"

action ="#{ GeneratedRegisterBean.lostPassword }">

<h:outputText value ="Lost Password ?" />

4.3 A Prototype for Visualizing the Mode of Operation 66

</h:commandLink >

</h:form >

</f:view >

</body >

</html >

Listing 28: Generated register.jsp

The register.jsp Web page contains a form with textfields and a button as
well as a link. All user interface components are within the <f:view> tag.
Buttons and links are bound to methods of a Java Bean that is generated
for the certain Web page. Those methods are executed if the user presses
the button or clicks the link. Furthermore, those methods are responsible
for the outcomings of the Web page. The outcome builds the basis for the
decision which Web page has to be displayed next. The graphical appearance
of register.jsp is shown in Figure 15.

Figure 15: register.jsp

All Web pages are generated analog to the register.jsp Web page. The fol-
lowing figures demonstrate the graphical appearance of the other generated
Web pages of our prototype.

Figure 16 shows the thanks.jsp Web page that is displayed if the regis-
ter.jsp Web page delivers the outcome success. thanks.jsp consists of a
static output text that displays the string Thank you!. thanks.jsp consists

4.3 A Prototype for Visualizing the Mode of Operation 67

also of a back link that is used to display register.jsp again. Furthermore
thanks.jsp has a login link that is responsible to display the login.jsp Web
page.

Figure 16: thanks.jsp

Figure 17 shows the failed.jsp Web page that is displayed if the register.jsp
Web page delivers the outcome failed. failed.jsp consists of a static out-
put text that displays the string Registration failed!. failed.jsp consists
also of a back link that is used to display register.jsp again.

Figure 17: failed.jsp

4.3 A Prototype for Visualizing the Mode of Operation 68

Figure 18 shows the lost.jsp Web page that is displayed if the user clicks the
Lost Password link of the register.jsp Web page. lost.jsp is an input-page
that contains a form with a textfield and a button. The textfield is used for
the user to enter an e-mail address if the user has forgotten the password.
The method of the Java Bean bounded to the button is responsible to check
the entered e-mail address and deliver an outcome. Depending on the out-
come the login.jsp or failed.jsp Web page is displayed next.

Figure 18: lost.jsp

Figure 19 shows the login.jsp Web page that contains a form where the user
can enter the e-mail address and the password.

Figure 19: login.jsp

4.3 A Prototype for Visualizing the Mode of Operation 69

The following section depicts the generated Java Beans of our prototype
that are responsible to store the entered values in textfields as well as for the
delivery of the outcome of a certain Web page.

4.3.1.2 Generated Java Beans

Java Beans are generated for each input-page as well as for each output-
page that contains links. Java Beans are responsible for the Model of the
MVC pattern. Thus, Java Beans are used to fetch the by the Web applica-
tion needed data, e.g. accessing a database. Due to the fact that we only
generate Web pages as well as information about the pageflow, the developer
is responsible for fetching data. Hence we have to generate code within the
Java Beans that calls a method of a Java class that has to be implemented
by the developer.

The following source code listing shows the generated Java Bean for the
register.jsp Web page.
public class GeneratedRegisterBean {

private String forename;

private String surname;

private String email;

public GeneratedRegisterBean () {}

public void setForename(String forename) {

this.forename = forename;

}

public String getForename () {

return this.forename;

}

public void setSurname(String surname) {

this.surname = surname;

}

public String getSurname () {

return this.surname;

}

public void setEmail(String email) {

this.email = email;

}

public String getEmail () {

return this.email;

4.3 A Prototype for Visualizing the Mode of Operation 70

}

public String registerUser () {

RegisterUtil utilRegister = new RegisterUtil ();

String strOutcome = utilRegister.registerUser(this.forename ,

this.surname , this.email);

if (strOutcome.equals (" success ")) {

return "success ";

} else if (strOutcome.equals (" failed ")) {

return "failed ";

}

return null;

}

public String lostPassword () {

RegisterUtil utilRegister = new RegisterUtil ();

String strOutcome = utilRegister.lostPassword ();

if (strOutcome.equals (" lostPassword ")) {

return "lostPassword ";

}

return null;

}

}

Listing 29: Generated Java Bean for register.jsp

The generated Java Bean is a Java class named GeneratedRegisterBean.
The Bean contains the attributes forename, surname and email of type
String. The number of attributes as well as their names are derived from
the number and names of textfields of a Web page. For each attribute get-
and set-methods are generated, e.g. getEmail() and setEmail(String

email). Furthermore the Java Bean contains a method for the button, i.e.
the registerUser() method, as well as methods for each links, i.e. the
lostPassword method. Java code is generated within those methods that
instructs the developer to implement a Java class that provides the deliv-
ery of the outcomings, i.e. the registerUser(String forename, String

surname, String email) method for the button as well as the lostPassword()
method for the link of the RegisterUtil class. Furthermore the outcomings
of the manually written methods are verified so that the handwritten method
can not deliver an invalid outcome. If a method returns an invalid outcome
the generated method returns null that signifies that the current Web page
is displayed again.

Analog to the register.jsp, Java Beans are generated for each input-page
as well as for each output-page that contains links. Due to the fact that all
output-pages of our prototype contain links, Java Beans are generated for

4.3 A Prototype for Visualizing the Mode of Operation 71

each Web page.

The following section describes the generated file that contains information
about the pageflow as well as information about all Java Beans used within
the Web application.

4.3.1.3 Generated Pageflow Information

The JSF framework consists of a Java Servlet FacesServlet that controls
the pageflow. This Servlet needs as input an XML file that describes the
pageflow the Java Beans that are used within the Web application.

The following listing depicts the generated information about the pageflow
for the register.jsp Web page.
<navigation -rule >

<from -view -id >/ pages/register.jsp </from -view -id >

<navigation -case >

<from -outcome >success </from -outcome >

<to -view -id >/ pages/thanks.jsp </to -view -id >

</navigation -case >

<navigation -case >

<from -outcome >failed </from -outcome >

<to -view -id >/ pages/failed.jsp </to -view -id >

</navigation -case >

<navigation -case >

<from -outcome >lostPassword </from -outcome >

<to -view -id >/ pages/lost.jsp </to -view -id >

</navigation -case >

</navigation -rule >

Listing 30: Generated information about Pageflow

For each Web page that delivers outcomings a <navigation-rule> tag must
be generated. The <from-view-id> tag specifies the name of the Web page.
For each outcome a <navigation-case> tag must be generated that consists
of a <from-outcome> tag and a <to-view-id> tag. The <from-outcome>

tag specifies the outcome and the <to-view-id> tag specifies which Web
page has to be displayed for this outcome.

The register.jsp Web page has the outcomings success, failed and
lostPassword. Dependent on the outcome the thanks.jsp, failed.jsp or
lost.jsp Web page is displayed next.

4.3 A Prototype for Visualizing the Mode of Operation 72

The following listing depicts the generated information within the faces-
config.xml file that describes all used Java Beans within the generated Web
application.
<managed -bean >

<managed -bean -name >GeneratedRegisterBean </managed -bean -name >

<managed -bean -class >GeneratedRegisterBean </managed -bean -class >

<managed -bean -scope >session </managed -bean -scope >

</managed -bean >

<managed -bean >

<managed -bean -name >GeneratedLoginBean </managed -bean -name >

<managed -bean -class >GeneratedLoginBean </managed -bean -class >

<managed -bean -scope >session </managed -bean -scope >

</managed -bean >

<managed -bean >

<managed -bean -name >GeneratedLostBean </managed -bean -name >

<managed -bean -class >GeneratedLostBean </managed -bean -class >

<managed -bean -scope >session </managed -bean -scope >

</managed -bean >

<managed -bean >

<managed -bean -name >GeneratedThanksBean </managed -bean -name >

<managed -bean -class >GeneratedThanksBean </managed -bean -class >

<managed -bean -scope >session </managed -bean -scope >

</managed -bean >

<managed -bean >

<managed -bean -name >GeneratedFailedBean </managed -bean -name >

<managed -bean -class >GeneratedFailedBean </managed -bean -class >

<managed -bean -scope >session </managed -bean -scope >

</managed -bean >

Listing 31: Generated information about Java Beans

Like mentioned above, every Web page of our prototype contains a form or
links. Hence, for each Web page a Java Bean is generated. Java Beans are
specified within the <managed-bean> tags. Each <managed-bean> tag con-
sists of the <managed-bean-name>, <managed-bean-class> and
<managed-bean-scope> tags. The <managed-bean-name> tag denotes the
name of the managed Bean, the <managed-bean-class> specifies the class
file where the Java Bean resides and the <managed-bean-scope> tag denotes
the duration of validity of the Java Bean.

This section described a Web application that was generated based on our
created meta-model and templates. To following section evaluates our ap-
proach of a MDA that generates a modeled Web application automatically.

73

5 Evaluation

In order to implement a MDA that generates modeled Web applications
automatically we defined a meta-model that defines the syntax and struc-
ture of models. Furthermore we introduced model transformations, so-called
templates, that generate the Web application automatically. Our defined
meta-model is a PIM that defines a DSL for modeling the Web pages and
the pageflow within Web applications. To demonstrate the functioning of
our approach we introduced a prototype. The prototype is a JSF Web ap-
plication that can be deployed on the Apache Tomcat Web server. Further
work must be done to define templates to generate modeled Web applica-
tions not only for the Apache Tomcat Web server. Like mentioned in the
Introduction section we provide only facilities to model the Web pages as
well as the outcomings of user interface components that are responsible for
the definition of the pageflow. The developer must implement the Model of
the MVC pattern for validating the entered data on Web pages by the user
through fetching data, e.g. by accessing a database. Hence, we introduced
possiblities to separate generated and manually written code.

5.1 Evaluation of the Meta-Model

The meta-model defines the DSL that is responsible to define the syntax
and structure of the models that contain a Web application that should be
generated. We wanted to create a meta-model to model the Web pages and
the pageflow of a Web application.

This aims were approached by defining an EMF Ecore Model that contains
classes to model the Web pages, their user interface components as well as
an process-oriented definition of the pageflow. The pageflow can be mod-
eled by the outcomings of action listener methods bonded to buttons and
links of the Web pages. We divided Web pages into input- and output-pages.
Input-Pages are Web pages that contain forms where the user can enter data.
Output-pages are responsible to display dynamic or static text. Furthermore
we introduced a possiblity to define the pageflow in a process-oriented man-
ner by defining navigation rules for buttons and links. Navigation rules are
modeled like if-else statements in Java.

This aspects lead to the conclusion that a possiblity was created for mod-

5.2 Evaluation of the Templates 74

eling Web pages and the pageflow of a Web application. A shortcoming of
our created meta-model is that there is no possibility to model the layout
of the Web pages. That is to model regions within Web pages that contain
different contents, e.g. TOP, LEFT, CENTER. This is an aspect that we
can incorporate for further works.

5.2 Evaluation of the Templates

Templates define transformation rules to transform a given model to another
model. Our defined templates generate from a given modeled Web applica-
tion a JSF Web application that can be deployed on the Apache Tomcat Web
server. We defined templates for generating JSP Web pages, Java Beans, the
configuration file faces-config.xml for the JSF framework, the configuration
file web.xml for the Web application for the Tomcat Web server as well as an
Apache Ant file build.xml to facilitate the deployment of the generated Web
application on the Apache Tomcat Web server. Templates that are responsi-
ble for generating Java Beans also generate Java code that calls a method of
an object of a class that must be implemented by the developer. Our chosen
methodology to separate generated and handwritten code is evaluated later
in this section.

Resultant we defined templates that generate a complete JSF Web appli-
cation where the developer is responsible for implementing classes for the
Model of the MVC pattern that are responsible for fetching the needed data,
e.g. accessing a database.

5.3 Evaluation of the Prototype

We wanted to demonstrate a prototype to show the functioning of our ap-
proach. Furthermore we wanted that the protoype should be a JSF Web
application that can be deployed on the Apache Tomcat Web server. Our in-
troduced prototype satisfies this requirements because our defined templates
generated a JSF Web application that can be deployed on the Apache Tom-
cat Web server. Furthermore we generated an Apache Ant file that compiles
all generated Java classes and produces an Apache Tomcat war file for de-
ploying the generated Web application. The compilation process checks if
the developer created Java classes that provide the called methods from the
generated Java Beans. The deployment process given through the Ant file

5.4 Evaluation of Code Separation 75

results in errors if the developer did not satisfy this requirements. Therefore
we force the developer to implement methods that process the entered data
by the user through the user interfaces on the Web pages.

5.4 Evaluation of Code Separation

We base the decision of how to handle generated and handwritten code on
the following statement:

Keep generated and non-generated code in separate files! [3]

The template that generates the Java Beans generates Java code that calls a
method of a class that has to be implemented by the developer. Due to the
fact that all Java classes reside in different files the developer must create a
new file that contains the Java class that must be implement by the devel-
oper. Therefore we satisfy the recommendation by [3].

To separate generated from manually written code we chose the proven ap-
proach to call handwritten Java classes by generated code to avoid severe
effects in case of interventions in the model. Changes in the templates lead
to changes in the generated code. This can further leads to the problem
that the developer must change the manually written classes that extend
generated classes. To avoid this problem and decrease the coupling of the
generated and the manually written code we proposed the following solution:
generated code calls methods of handwritten classes.

This section described the aims of this work and how we tried to reach
this aims. But there is still a lot of work to do in future. Further work is
characterized in the following section.

76

6 Further Work

Our approach covers only a small part of the science of modeling and gener-
ating Web applications. Therefore is still a lot of work to do in the future.
This section describes how our approach can be extended and improved by
further works.

6.1 The Meta-Model

Presently our defined meta-model provides facilities to model Web pages
and the pageflow of a Web application. We can extend the meta-model by
providing facilities to model the layout of Web pages so that the developer can
define and position regions or fragments within Web pages that contain user
interface components, e.g. TOP, LEFT, CENTER etc. For the time being
the developer has no possibilities to model the Model of the MVC pattern
that is responsible for fetching the needed data. This is also a big point
of further work. If we provide facilities to model the Model of the MVC
pattern we have to evaluate if a separation of the meta-model in multiple
meta-models makes sense. Related works, mentioned in the Related Work
section (Section 3), provide mutliple meta-models that are responsible for
modeling the View, the Controller as well as the Model of the MVC pattern.

6.2 Model Transformations

For the time being we transform a given modeled Web application only to
a JSF Web application. The generated JSF Web application is deployed on
the Apache Tomcat Web server. In the future we want to create more model
transformations so that the modeled Web application should not only be
generated for the Apache Tomcat Web server. To generate Web applications
beside JSF we have to deal with the question how the Controller of the MVC
pattern should be provided. Presently the Controller is given by the Java
Servlet FacesServlet of the JSF framework that controls the pageflow of the
generated Web application. We provide a template that generates the input
for this Java Servlet of the JSF framework in an XML file. Furthermore we
want to provide the generation of Web applications that are not based on
Java technologies, e.g. PHP Web applications.

77

7 Summary and Conclusion

This work introduced modeling and generating Web applications based on a
MDA. The generated Web applications are built-on the MVC pattern. The
focus of this work has been the definition of a meta-model that specifies the
DSL for models of Web applications. Furthermore transformation steps or so-
called templates were created to generate a modeled Web application based
on the JSF framework. The generated Web application can be deployed on
the Apache Tomcat Web server. Generating Web applications based on a
MDA improves the quality and speed of developing Web applications as well
as their maintenance.

As shown in section 1, Web applications are nowadays the first choice for
most business applications [23]. Therefore a MDA improves the development
and maintenance of Web applications. Hence the utilization of a MDA in the
field of an automated generation of modeled Web application is very helpful.

Section 2 has introduced the used technologies within this work. First it
describes the principles of the MVC pattern. Afterwards the JSF framework
is described. Then the theory of MDA as well as Metamodeling is introduced.
For the definition of the meta-model EMF was used. To generate a modeled
Web application we utilized the oAW plug-in for Eclipse. The Theory sec-
tion ends with a description of possiblities how to deal with generated and
handwritten code.

Section 3 shows related works in the field of generating Web applications
based on a MDA. Most of the related works provide multiple models for
modeling the Model, the View as well as the Controller of the MVC pattern.
This related works can help us in further works for evaluating a separation
of our defined meta-model in multiple meta-models.

The main focus of section 4 lies in the description of the definition of our
meta-model. Furthermore the created templates are described that are uti-
lized for the generation of the Web application. Finally we have introduced
a prototype that shows the functioning of our approach. The prototype is a
JSF Web application that is deployed on the Apache Tomcat Web server.

Section 5 evaluates our approach by evaluating the meta-model, the tem-

78

plates, the prototype as well as our chosen possiblity how to deal with gen-
erated and manually written code.

Work that should be done in the future is described in section 6. This
section gives an overview how our approach can be extended and improved
by extending and improving our defined meta-model as well as our created
templates for the generation of the modeled Web application.

To conclude this work we can say that this report has shown that the usage
of a MDA reduces the time-consuming process of developing Web applica-
tions. The field of an automatic generation of Web applications is very huge
and therefore is still a lot of work to do in the future. We hope that our
approach in the course of this work can support the evolution of MDAs for
an automated generation of Web applications.

79

A Figures

List of Figures

1 Model-View-Controller . 5
2 JavaServer Faces [5] . 9
3 Model Transformation . 18
4 The four meta layers of the OMG 22
5 Handling generated and non-generated code [3] 30
6 Metamodel . 38
7 Relation between a WebApplication and Pages 39
8 Division of Page into InputPage and OutputPage 40
9 Composition of InputPage . 41
10 Composition of OutputPage 43
11 Modeling of the Pageflow . 44
12 Model of a Web page . 60
13 Pageflow of our Prototype . 62
14 Modeling of Pageflow for the Register Web page 63
15 register.jsp . 66
16 thanks.jsp . 67
17 failed.jsp . 67
18 lost.jsp . 68
19 login.jsp . 68

80

B Tables

List of Tables

1 JSF user interface component tags 12

81

C Listings

Listings

1 Mapping the FacesServlet instance 11
2 Loading the standard JSF tag libraries 11
3 Creation of the Web pages . 12
4 Definition of navigation rules 13
5 Binding of outcomings to Bean methods 14
6 Binding of a textfield with an attribute of a Bean 14
7 Declaration of a Bean . 14
8 Adding managed Bean declarations 15
9 Definition of workflow components 25
10 Protected regions within a Java class 29
11 Workflow property file . 46
12 The XMI Reader Component of the Workflow 46
13 The Check Component of the Workflow 47
14 The Generator Component for Web pages 48
15 The Generator Component for Java Beans 48
16 The Generator Component for the Pageflow information . . . 49
17 The chk file . 50
18 Template to generate Web pages 51
19 Generating user interface components for InputPage 51
20 Generate user interface components for OutputPage 53
21 Template to generate Java Beans 53
22 Generating methods for each SubmitButton 54
23 Generate outcomings for each method 55
24 Template to generate Pageflow information 56
25 Generating navigation-cases 57
26 Generating the Apache Ant file build.xml 58
27 Generated directory structure 64
28 Generated register.jsp . 65
29 Generated Java Bean for register.jsp 69
30 Generated information about Pageflow 71
31 Generated information about Java Beans 72

82

D Bibliography

References

[1] Apache Software Foundation, The Jakarta Site - Apache Tomcat, HTML,
2007, http://tomcat.apache.org.

[2] Alan Williamson, Kirk Pepperdine, Joey Gibson, Andy Wu, Ant - Devel-
oper’s Handbook, Sams, ISBN 0-672-32426-1.

[3] Thomas Stahl and Markus Voelter, Modelgetriebene Softwareentwick-
lung: Techniken, Engineering, Management, ISBN 3-89864-310-7,
dpunkt.verlag GmbH (2005).

[4] H.-W. Gellersen, M. Gaedke, Object-Oriented Web Application Develop-
ment, IEEE Internet Computing, 3(1), Jan.-Feb.1999.

[5] Jennifer Ball, Debbie Carson, Ian Evans, Scott Fordin, Kim Haase and
Eric Jendrock, The JavaTMEE 5 Tutorial, For Sun Java System Appli-
cation Server Platform Edition 9, Sun Microsystems Inc, Santa Clara,
California 2006.

[6] Sun Microsystems Inc., JavaServer Faces Technology,
http://java.sun.com/javaee/javaserverfaces/.

[7] Java BluePrints, Model-View-Controller,
http://java.sun.com/blueprints/patterns/MVC-detailed.html,
Sun Microsystems Inc., 2007.

[8] Robert Eckstein, Java SE Application Design With MVC,
http://java.sun.com/developer/technicalArticles/javase/mvc,
Sun Microsystems Inc., 2007.

[9] Object Management Group (OMG), Model Driven Architecture,
http://www.omg.org/mda.

[10] Joaquin Miller, Jishnu Mukerji, MDA Guide Version 1.0.1, Object Man-
agement Group (OMG), 2003.

[11] Object Management Group (OMG), Meta Object Facility (MOF) Spec-
ification, April 2002.

REFERENCES 83

[12] Object Management Group (OMG), Unified Modeling Language,
http://www.uml.org/.

[13] Eclipse.org, Eclipse,
http://www.eclipse.org.

[14] Eclipse.org, Eclipse - Web Tools Platform (WTP),
http://www.eclipse.org/webtools.

[15] Eclipse.org, Eclipse Modeling Framework,
http://www.eclipse.org/emf.

[16] Sun Microsystems, Netbeans,
http://www.netbeans.org.

[17] Sun Microsystems, NetBeans Visual Web Pack,
http://www.netbeans.org/products/visualweb.

[18] openarchitectureware.org, openArchitectureWare,
http://www.openArchitectureWare.org.

[19] Santiago Melia and Andreas Krau and Nora Koch, MDA Transforma-
tions Applied to Web Application Development, Proc. 5th Int. Conf. Web
Engineering (ICWE’05), volume 3579 of Lect. Notes Comp. Sci., pages
465-471, 2005.

[20] S. Meliá, C. Cachero, An MDA Approach for the Development of Web
Applications, In Proc. of 4th ICWE 04, LNCS 3140, July 2004, 300-305.

[21] Pierre-Alain Muller and Philippe Studer and Jean Bézivin, Platform
Independent Web Application Modeling, Lecture Notes in Computer Sci-
ence, 2003, ISSU 2863, pp. 220-233.

[22] Stefano Ceri and Piero Fraternali and Aldo Bongio, Web Modeling Lan-
guage (WebML): a modeling language for designing Web sites, Diparti-
mento di Elettronica e Informazione, Politecnico di Milano, Italy, 2000.

[23] Jonatan Alava, Tariq M. King, and Peter J. Clarke, Automatic Valida-
tion of Java Page Flows Using Model-Based Coverage Criteria, Proceed-
ings of the 30th Annual International Computer Software and Applica-
tions Conference (COMPSAC 06), 2006.

REFERENCES 84

[24] Sam Chung, Yun-Sik Lee, Modeling Web Applications Using Java And
XML Related Technologies, Proceedings of the 36th Hawaii International
Conference on System Sciences (HICSS 03), 2002.

[25] JBoss, JBoss Seam,
http://www.jboss.com/products/seam, 2007.

Index

Abstract Syntax, 19
Adding managed bean declarations,

15
Analysis phase, 32
Apache Ant, 28
Approach, 38
Architecture, 17

Benefits of JSF Web applications, 16
Business Model, 34

Check, 27, 50
Check Component, 47
Code Generation, 46
Conclusion, 77
Controller, 6
Creation of JSP Web pages, 11

Decision, 45
Defining the Pageflow, 13
Development of the Java Beans, 14
Domain, 18
Domain Specific Language, 19
DSL, 19
DynamicText, 42

Eclipse Modeling Framework, 23
EJB, 8
Else, 45
ElseIf, 45
EMF, 23
Enterprise Java Beans, 8
Entity Beans, 8
Evaluation, 73
Evaluation of the Meta-Model, 73
Evaluation of the Prototype, 74

Evaluation of the Templates, 74
Expression Framework, 26

failed.jsp, 61, 67
Form, 41
Further Work, 76
Further Work - Model Transforma-

tions, 76
Further Work - The Meta-Model, 76

Generated Java Beans, 69
Generated Pageflow Information, 71
Generated Prototype, 64
Generated Web Pages, 65
GeneratedRegisterBean, 69
Generator Component, 47
Guidance for developing JSF Web Ap-

plications, 10

Hypertext Model, 34, 35

If, 44
InputPage, 40, 41
Introduction, 1

Java Server Faces, 8
JavaServer Pages, 8
JBoss Seam, 36
jPDL, 36
JSF Technology, 9
JSF Web Applications, 10
JSF/Seam, 36
JSP, 8

Link, 40
login.jsp, 61, 68
lost.jsp, 61, 68

INDEX 86

Mapping the FacesServlet instance,
11

MDA, 17
Meta Object Facility, 19
Meta-Model, 38
Meta-model, 19
Metamodeling, 21
Model, 6, 17
Model Driven, 17
Model Driven Architecture, 17
Model Transformations, 18
Model Validation, 50
Model-View-Controller Pattern, 5
MOF, 19
Motivation, 2

NavigationRule, 44

oAW, 25, 46
openArchitectureWare, 25, 46
Organization, 4
OutputPage, 40, 42

Page, 40
Pagflow-Modeling, 44
Personalization Model, 35
PIM, 17
PIM-to-PIM transformations, 32
PIM-to-PSM transformations, 32
Platform, 17
Platform Independent Model, 17
Platform Specific Model, 18
Presentation Model, 34, 35
Problem Definition, 3
Protected Region, 29
Prototype, 60
PSM, 18

register.jsp, 62, 66

Related Work, 32

Session Beans, 8
SM, 33
Static Semantic, 19
StaticText, 42
Structural Model, 35
SubmitButton, 42
Subsystem Model, 33
Summary, 77

Template, 50
Template to generate Java Beans, 53
Template to generate Pageflow infor-

mation, 56
Template to generate the Apache Ant

File, 58
Template to generate Web pages, 51
TextField, 42
thanks.jsp, 61, 66
Theory, 5

UWE approach, 32

View, 6

WCCM, 33
WCIM, 33
Web Component Configuration Model,

33
Web Component Integration Model,

33
WebApplication, 39
WebML, 35
WebSA, 32
Workflow, 46
Workflow Engine, 25

XMI, 20
XMI Reader Component, 46

INDEX 87

XML Metadata Interchange, 20
Xpand2, 26, 50
Xtend, 26

