
A view based analysis of workflow modeling languages

Martin Vasko and Schahram Dustdar
Vienna University of Technology, Distributed Systems Group (DSG),

Information Systems Institute, A-1040 Wien, Argentinierstrasse 8/184-1, Austria,
e0025379@student.tuwien.ac.at | dustdar@infosys.tuwien.ac.at

Abstract

The different approaches of emerging workflow
modeling languages are manifold. Today, there exist
many notations for workflow modeling with various
specializations on different domains. In this paper we
analyze three well known business process (workflow)
modeling notations for their support for elaborated key
aspects in workflow modeling. The aim of this paper is
to discuss their differences and commonalities
concerning these aspects.

1. Introduction

This paper discusses the commonalities and the
differences of well known workflow modeling
languages: BPEL, BPMN and YAWL. After a short
introduction of the common features of each language,
we are going to skip right into the strengths and
weaknesses of them. These three modeling languages
cover a broad spectrum of workflow design notations.
BPEL arose from a consortium of industry leading
companies and therefore has strong vendor -
background and offers many implementations. YAWL
on the other side resulted from a formal specification
of workflows [1]. This scientific approach aims at a
more structured approach at the formal specification of
different kinds of dependencies in workflow
languages. The control – flow perspective has been
taken into focus but YAWL is not only limited to this
perspective. Current research is targeting data and
resource patterns. BPMN addresses the lack of B2B
standard notations. The visual notation will give
organizations the possibility to elaborate and optimize
their inherent business processes and communicate
them to partners to simplify business – to – business
transactions.

The motivation for business process modeling
notations lies in the possibility to formalize complex
orchestrations of formerly isolated Web Services.

Collections of services are assembled to a business
process.

Our comparison takes the aspects defined by
Jablonski and Bussler[2] as a basis and analyzes the
support in the three notations. First we analyze the
functional aspect in the three languages. Secondly we
discuss the support for the workflow patterns
elaborated by van der Aalst et al. [1] as part of the
behavioral aspect. The informational aspect is mostly
defined by data and data flow and defines the third
aspect. BPEL, BPMN and YAWL are examined for
their support for this aspect.

2. Modeling languages

In this section, we give a short overview about the
used standards of modeling languages. The structure
and commonly used samples are being introduced.

2.1. BPEL4WS

BPEL4WS (Business Process Execution Language
for Web Services) is currently standardized by OASIS
lead by a consortium of industry heavyweights such as
Microsoft, IBM, SAP, Siebel, and Oracle.

The goal of the Web Services effort is to achieve
universal interoperation and loosely coupled systems.
Layered on several XML specifications as WSDL 1.1,
XML Schema 1.0 and XPath 1.0, BPEL is a Business
Execution Language to enrich and standardize the
commonly used protocols, especially for long–running
business processes.

Among these XML based standards, WSDL has the
most influence on BPEL. The whole process model of
BPEL is layered on top of the service model defined
by WSDL 1.1. The peer-to-peer interaction between
the services described in WSDL is the conceptual basis
for process interaction in BPEL.

The definition of such business protocols is

Proceedings of the 14th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP’06)
1066-6192/06 $20.00 © 2006 IEEE

involving a mutual visible message exchange behavior
of each of the involved clients. The abstraction of
BPEL hides any implementation details from the
participating parties. The motivation of this design is
obvious: Businesses do not want to share internal
definitions and practices to others, maybe competitors.
On the other hand, abstraction simplifies modular
exchange and makes the whole system more flexible.

BPEL defines message-properties to identify
protocol relevant data embedded in messages. This
data can be used in a transparent or, alternatively, in an
opaque way. Transparent data affects the public
business protocol in a direct way, whereas opaque data
is significant primarily for back-end systems.

In general BPEL can be applied in two ways: The
business protocol can define abstract processes, which
approaches data handling in a way that reflects the
requirements of the workflow to execute.

Executable business processes on the other side
determine the nature and sequence of Web Service
interactions.

This basic concept model of distinction between
abstract and executable processes makes it possible to
export and import public aspects embodied in business
protocols as processes or role templates.

2.2 BPMN

The primary goal of BPMN is to provide a notation
that is readily understandable by all business users,
from the business analysts that create the initial drafts
of the process, to the technical developers responsible
for implementing the technology that will perform
those processes, and finally, to the business people
who will manage and monitor these processes. Thus,
BPMN closes the gap between process design and
process implementation.

Another design goal of BPMN is its compatibility to
XML – based workflow languages like BPEL.
Especially the visualization of processes designed with
these notations is important.

The intent of BPMN is to standardize the business
process design notation. Because of the complex
domain of business process design, BPMN covers a
variety of different modeling techniques and allows the
creation of end-to-end business processes. The
structural elements of BPMN will allow the viewer to
easy differentiate between diverse sections of the
diagram. The basic structure types of processes are the
following:

2.2.1 Private (Internal) business process
Private business processes are those internal to a
specific organization and concern the workflow
definitions in general.
2.2.2 Abstract (Public) business process
Abstract business processes define the interaction
between a private business process and other processes
or participants.
2.2.3 Collaboration (Global) business process
Collaboration business processes describe the
interactions between two or more business entities.

Currently these types of processes have not been
standardized and so the definitions are in a flux. The
World Wide Web Consortium (W3C) and the
Organization for the Advancement of Structured
Information Standards (OASIS) are addressing these
terms.

For this work, the mapping of BPMN to other
languages is of interest. The notation covers such a
wide range of usage that it will map to more than one
lower – level modeling language. As said above, BPEL
is the primary language that BPMN will map to.
Indeed, the mapping is restricted to a single executable
private business process. Abstract processes will be
mapped to Web Service Interface specifications,
comparable to BPEL. The Collaboration model of
BPMN may be mapped to Collaboration models such
as ebXML BPSS, RosettaNet and the W3C
Choreography Working group specification.

2.3 YAWL

To give a short overview about YAWL, we will
introduce the language and its core design. The details
are going to be analyzed in the following section,
considering workflow patterns. YAWL is inspired by
high-level Petri nets, but extended by some additional
features to meet the requirements, defined by the
workflow patterns elaborated by van der Aalst et. al.
[1, 9].

Especially the models defining multiple instances,
advanced synchronization and cancellation, are beyond
the scope of high level Petri nets.

A definition of a workflow specification in YAWL
is a set of extended workflow nets (EWF-nets) which
have a tree-like structure. There are two types of tasks
(the authors use the term task rather than activity to
remain consistent to earlier work on workflow
systems). Composite tasks consist of other composite
or atomic tasks and refer to a EWF-net. Atomic tasks
are no composition of tasks and do not have any sub-

Proceedings of the 14th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP’06)
1066-6192/06 $20.00 © 2006 IEEE

definitions. In the tree structure of EWF-nets the so
called top level workflow does not map composite
tasks. Conditions can be interpreted as places and each
EWF-net has one unique input and one output
condition.

Each task can have multiple instances, although the
maximum and minimum number of instances can be
configured.

Currently YAWL is implemented in a system
consisting of a YAWL Designer and a YAWL engine,
realized as a server side web-module. In the current
release (Beta 3), the module runs on the Apache
Tomcat Server. The engine verifies and registers the
tasks, which will be stored in the YAWL repository.
This repository manages a collection of executable
workflow specifications. After successful deployment,
the workflows can be invoked.
The environment of the YAWL system consists of so
called YAWL services, explained below.

YAWL worklist handler
This component assigns work to the users. Through

this service, users can accept work items and signal
their completion.

YAWL webservice broker
The webservice broker acts as the interface between

the YAWL engine and other webservices.
YAWL interop broker
The interoperability broker provides the possibility

to interconnect different workflow engines.
Custom YAWL service
A custom YAWL service can be of any kind, the

figure illustrates the modularity of the services. This
mechanism makes it possible for external services to
communicate through a “gateway” with the YAWL
engine.

After this short introduction of the three workflow
modeling languages we are going to analyze, we give a
short overview about those aspects we will discuss.

2.4 Aspects

Aspects are a collection of key functionalities of
different knowledge domains of a workflow system.
Jablonski et.al.[2] identified five key aspects which we
will concentrate on to broaden our focus. To provide
comprehensive support for workflow modeling we try
to elaborate identifying patterns of every key aspect.
The three notations previously introduced are
compared for the realization for these patterns. First
we will take a look at the functional aspect.
2.4.1 Functional Aspect. The functional aspect

concentrates on what has to be done in a workflow
process. It defines the hierarchical context of tasks and
sub-tasks. Petkov et.al. [4] define two modeling
concepts of workflows. Compositional workflows
either contain sub-workflows and are called composite
workflows or are of atomic kind. To analyze the
support for this functional aspect by the three notations
we compare the possibility for nesting constructs.

Constraints of workflows are a set of rules covering
consistency. There are three kinds of constraints
mentioned: Enter constraints are being evaluated
before the initiation of a workflow process. Runtime
constraints are verified during execution of the process
and exit constraints are checked at the completion time
of a workflow.
2.4.2 Behavioral Aspect. This aspect concentrates on
the control flow of the workflow model in the whole.
Execution order of the different activities is of main
interest. Van der Aalst et.al.[1] provide metrics for this
aspect. They elaborated a collection of patterns which
represent the smallest common set of activities to
design a complex workflow. We take these patterns as
our starting point for comparing the support by BPEL,
BPMN and YAWL.

The workflow patterns are presented as a benchmark
for the functionality of workflow systems in a number
of publications. We elaborate the commonalities and
differences between the three notations on the basis of
an abstract of the patterns. The interested reader may
refer to [1] for further details.
2.4.3 Informational Aspect. Jablonski and Bussler [2]
divide the Informational Aspect into a data and a data
flow perspective. The main focus lies on the data and
to provide relevant data at the right time. Data itself is
divided into two different kinds: Production data and
Control data.

Production data is consumed and produced by the
workflow system, whereas control data defines the
management of this process. This definition is closely
connected to the workflow control data definitions by
the Workflow Management Coalition [5].

To bring this aspect in our analysis, we define a
metric for the three notations covering this aspect. The
languages should support the data type they are
operating with. Russel et al. [5] defined workflow data
patterns, which we reference in general and analyze
the notations for the support for these patterns.

After this short overview of the aspects we examine
the commonalities more closely.

Proceedings of the 14th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP’06)
1066-6192/06 $20.00 © 2006 IEEE

3. Comparison

First we survey the functional aspect and the nesting
constructs of BPMN, BPEL and YAWL.

3.1 Functional Aspect

As we want to define what has to be done in the
workflow we keep focus on the meta modeling
capabilities of BPMN. According to the specification
(actual in revision 1.0 [7]) a core element named the
Data Object is provided to hold information about
what has to be done in associated tasks. Its visual
representation is comparable to UML Notes. As an
enhancement of Data Objects acts a textual annotation.

Richer support is provided for compositions in
BPMN. Core Business Process Diagrams contain Sub-
Processes. As the name already says, these processes
represent a visual approach for “hiding” workflow
complexity from the modeler. Collapsed Sub-processes
conceal the internal definitions of a process. Expanded
processes establish a view to the workflow internals.
This feature allows a kind of abstraction in workflow
modeling. In terms of the functional aspect the
possibility for nested/embedded sub-processes is of
great interest. This element is an implicit extension of
the previously explained sub-process and explicitly
shares the same set of data as its parent process. Data
needs to be passed to the sub-process.

Since BPEL [8] is based on WSDL, the notation
inherits the description features of WSDL which fit
perfect to the functional aspect. BPEL’s process model
is layered on top of the service model provided by
WSDL. As part of the notation, the most relevant
element of WSDL concerning the functional aspect is
the operation attribute. It provides an abstract
description of an action supported by the service.
YAWL [9] extends workflow nets [10] among other
things by composite tasks. These tasks refer to one or
more EWF – nets which again consist of one or more
tasks or composite tasks. These constructs provide
good nesting features for modeling. On the other hand
we found no support for any kind of meta-modeling. In
other words it is not possible to describe what will be
done by a concrete workflow definition in YAWL.

3.2 Behavioral Aspect

As an in depth analysis of all provided patterns for
all three notations would go beyond the scope of this

article we summarized the patterns into six different
groups. A more detailed discussion will be provided in
our future work.

Commencing the basic control patterns, all three
notations provide support for sequential execution,
conditional and simple decision based branching.

The Advanced Branching and Synchronization
patterns provide some difficulties. BPMN solves many
of these patterns by the usage of gateways. Gateways
are used to control branching and merging flows. If
there are multiple paths (incoming and outgoing)
involved, these core elements of BPMN are extended
by Tokens which take control over these multiple
possibilities. Only the Multiple Merge pattern solution
does not use gateways because the number of Tokens
involved is not controlled. For each incoming
Sequence Flow a separate instance of activity will be
generated.
BPEL on the other hand does not provide rich support
for this group of patterns. Only the Multiple Choice
pattern can be realized by using the flow statement of
BPEL. In listing 1 an example for the syntax of this
statement is provided.
Listing 1
<flow>
 <links>
 <link name=”L1”/>
 <link name=”L2”/>
 <link name=”L1s”/>
 <link name=”L2s”/>
 </links>
 <empty>
 <source linkName=”L1”
transitionCondition=”C1” />
 <source linkName=”L2”
transitionCondition=”C2” />
 </empty>
 activityA1
 <target linkName=”L1”>
 <source linkName=”L1s”>
 activityA2
 <target linkName=”L2”>
 <source linkName=”L2s”>
</flow>

The underlying principle of this structure is called
dead-path elimination and states, that the value of an
incoming link is propagated to its outgoing link.
According to listing 1, a multiple choice pattern
occurs, if the conditions C1 and C2 evaluate to true. If
this is the case, activity A1 and activity A2 are
executed.
The numerous split - and join – tasks of YAWL
provide very good support for these patterns. In Figure
1, task B, C, D or any combination thereof is executed
after task A. The tasks are connected via an OR-split.

Proceedings of the 14th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP’06)
1066-6192/06 $20.00 © 2006 IEEE

Figure 1. YAWL: Multiple Choice

Therefore, it is a solution for a Multiple Choice
pattern and illustrates the visual representation of
YAWL. On the other hand a synchronizing merge
pattern is realized by the OR – join in YAWL. This
element is presented in figure 2. The tasks B, C and D
in Figure 2 are ORed and task A is executed if all of
them are completed. The join stalls execution until all
participating tasks are finished.

Figure 2. YAWL: Synchronizing Merge

Structural patterns deal with loops and the
independence of separate process paths. BPMN
provides upstream activities which make an access of
the process in an arbitrary way possible. Concerning
the Implicit Termination of a process, BPMN provides
End Events. These Events have internal markers that
indicate with a result the ending of the current path.
This Terminate End Event causes the entire path to be
stopped, even if there are activities that have not been
started before or are still active.

Although BPEL provides a while statement, it is
not supported to jump into the process in an arbitrary
way, and as a consequence, the Arbitrary Cycle pattern
is not supported. Realizing the explicit termination, the
flow statement ends when all structured activities
defined in the scope of the statement completed. Using
link activities, a subprocess can have multiple tasks not
being source of any link without requiring a unique
termination action.

Since YAWL defines no restrictions on cycles the
Arbitrary Cycle pattern is supported. YAWL provides
no solution for the Implicit Termination pattern. This
design decision was made to force the modeler of the
workflow process to think carefully for the termination
construct of the process. It is possible to achieve

similar behavior through the connection of all final
tasks with an or-join.

The next group of patterns we are going to analyze
concern multiple instances. Problems occurring in the
scope of the activities involved are synchronization
and knowledge of the number of instances to be
created.

BPMN provides no possibility to spawn multiple
instances in an unsynchronized way. This absence
makes the realization of the pattern dealing with
multiple instances without synchronization impossible.
Furthermore, only a workaround is possible when the
number of required instances is not known before
runtime. This pattern is comparable to the functional
behavior of a while loop, unless the execution takes
place in parallel.

In all other patterns the number of required instances
is known at runtime or at design time. These patterns
are supported by BPMN by the definition of powerful
attributes in the activity element covering multiple
instances control.

BPEL provides rich support for patterns attending
multiple instances. The flow statement for example
enables concurrency and synchronization within a set
of activities by enclosing a group of statements. If
there is no synchronization required, the receive
statement provides an additional createInstance
attribute. If this is set to yes for every incoming link an
instance is spawned. For patterns without runtime
knowledge (neither at design time, nor at runtime the
number of needed instances is known) BPEL provides
the pick statement. Pick enables a messaging-
mechanism (comparable to exceptions in common
programming languages) embedded in a while

statement. In listing 2 there are three different message
types defined: StartNewActivityA to indicate that a
new instance is required. According to the previous
pattern, this message can be created at runtime.
ActivityAFinished signals, that the execution of an
instance has come to an end. NoMoreInstances
represents the end of the creation. Note that this code
excerpt is only a workaround for the two patterns and
BPEL does not support these patterns directly.
Listing 2
moreInstances:=True
i:=0
<while moreInstances OR i>0>
 <pick>
 <onMessage StartNewActivityA>
 invoke activityA
 i:=i+1
 </onMessage>
 <onMessage ActivityAFinished>
 i:=i-1

Proceedings of the 14th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP’06)
1066-6192/06 $20.00 © 2006 IEEE

 </onMessage>
 <onMessage NoMoreInstances>
 moreInstances:=False
 </onMessage>
 <pick>
</while>

The implementation and visual notation support for
patterns dealing with multiple instances in YAWL is
straight forward as explained in Figure 3. After activity
A has completed n tasks of B are created. When all
instances of B have come to an end, the final task C is
executed. If the number of instances is known at
design time, N has to be defined at design time.
Assumed that the number of required instances is
known at runtime, the number of n is defined by
XQuery expressions which are evaluated at runtime. In
the case of no knowledge about the number of required
instances, XQueries are evaluated to determine the n
extended by the possibility to add instances
dynamically.

Figure 3. YAWL: Multiple instances with a
Priori Design Time knowledge

The next group of patterns defines how the behavior
of a business process may sometimes be affected by
outside tasks, not under control of the workflow
system. BPMN defines rich messaging capabilities and
provides good support for these patterns with the
Exclusive Data Based Gateway.

This structure represents a point in the workflow
where one of several alternative branches is chosen.
The decision is based, as required, on an external
Event and is followed by Intermediate Events.

BPMN features the possibility to visualize ad-hoc
processes. This type of process represents a set of
activities that can be executed in an arbitrary order to
support interleaved parallel routing. Although BPMN
provides these rich messaging functionalities, the
realization of the Milestone pattern is only possible
through a workaround. Here we used the inter-process
messaging provided to communicate between two
defined sub-processes.

BPEL provides comparable structures with the
previous mentioned pick statement. The specification
of BPEL defines scopes. Scopes can be serialized by
setting the variableAccessSerializable attribute
to “yes”. This attribute guarantees concurrency
control in governing access to shared variables.

Serialized scopes must not be nested. This is essential
for the arbitrary access of the execution of different
activities as in the pattern interleaved parallel routing
pattern defined. As in BPMN, BPEL does not provide
direct support for the Milestone pattern. It is possible
to achieve similar functionality with the messaging
mechanism of pick.

In all State-based patterns YAWL makes use of the
mutual exclusion mechanism inherited from Petri Nets.
Task C in Figure 4 can only be executed after task A
has finished.

Figure 4. YAWL: Milestone pattern

A special requirement is achieved by positioning the
mutual exclusion before task B. So the commitment of
task C is delimited to execute before task B.

3.3 Informational Aspect

The integral part of this aspect is data which is being
processed in workflow systems. Russell et al. [5]
divided data by the following characteristics: Data
visibility, Data interaction, Data transfer and Data-
based routing.

We are going to compare the three notations by their
support for the four characteristics. The interested
reader may refer to [5] for detailed workflow data
patterns.

Data visibility concerns in general the support for
access constraints of data elements in different tasks,
scopes or in case of multiple instances distinct
instances.

In BPMN data visibility is mainly implemented by
so called Pools and Lanes. A pool provides the
possibility to partition a set of activities from other
pools. To achieve a splitting within the pools, lanes are
provided. These elements deal with enfolding parts of
workflow processes. Beside a more detailed view
BPMN provides sub-processes. These elements hide in
the collapsed state all internal process definitions and
processed data from other tasks. The data interchange
takes place over the powerful messaging mechanism of
BPMN, as described in the next section.

In BPEL the data visibility is controlled by the

Proceedings of the 14th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP’06)
1066-6192/06 $20.00 © 2006 IEEE

definition of scopes. A scope can provide fault
handlers, event handler, a compensation handler, data
variables and correlation sets. From the view of data
visibility the variableAccessSerializable attribute of a
scope is very interesting. If this attribute is set to yes
the scope provides concurrency control in governing
access to shared variables. The second relevant
features of scopes in BPEL are correlation sets. All
values of the properties of a correlation set must be
identical for all messages and invocations that carry
this initiated set and are executed in the current scope
until its completion. This guarantees data integrity
during the performance of the scope.

YAWL provides rich support concerning data
visibility. The power of YAWL lies in the extensive
use of XQuery to map data between different levels of
abstraction in the use of multiple instances. Especially
the treat of data in association with multiple instances
is far from trivial. All required data needs to be split
over all spawned instances and after the tasks all
completed, the data must be aggregated again to
represent the result of all instances.

 As data interaction and data transfer are tightly
coupled, we are going to summarize these two aspects
in one paragraph.

BPMN implements a rich messaging mechanism
which deals with data transfer. The previous
mentioned pools support message flow. All other
elements described earlier support this type of data
interaction too. The data interaction between defined
elements within the workflow is realized well in
BPMN. On the other side the data interaction with
external sources, operated outside the context of the
workflow engine is not provided. The modeler is able
to define some kind of workaround by the use of pools
for external sources.

In BPEL the transfer of data is defined in the assign
statement. This statement copies data from one
variable to another, as well as construct and insert new
data using expressions. The motivation for the support
for expressions arose from the need for simple
computation, such as incrementing sequence numbers.
The to- and from-specs defined in an assignment have
to be from the same type (for example the from-spec is
a variable of a WSDL message type and the to-spec is
a variable of a WSDL message type). This loose
definition makes interaction with external data sources
easier than in BPMN.

In YAWL the use of XQuery expressions is mostly
used by the decomposition of different tasks and to
access nodes in the workflow definition in an arbitrary

way. This leads us to the last data aspect view, data
based routing.

As mentioned previously XQuery is used in YAWL
to retrieve and interpret information from different
sources used during the workflow. Data-based routing
is provided in YAWL through this powerful feature, in
conjunction with XPath. These two XML – languages
together form a good basis for numerous data based
routing mechanisms.

BPMN uses different kinds of gateways to enable
routing in the process definition. These gateways
generally provide OR/XOR/AND and more complex
decision based functions. Important for this aspect is
the fact, that these elements of BPMN also accept data
as a decision basis. That means that data-based routing
is made possible by definition, and no additional
features, such as XPath or XQuery in YAWL is
needed to support this part of aspect.
BPEL provides through the utilization of link
conditions and the exception mechanism support for
any kind of task pre- and post conditions. Only a data-
based task trigger can be realized indirectly.

4. Conclusion

The three analyzed business modeling notations all
have their strengths and weaknesses. BPMN is a well
elaborated visual modeling notation which provides
good support for behavioral aspects of workflow
design and is able to map to BPEL4WS. Although it is
not extensible to define organizational structures,
functional breakdowns, data and informational models
and business rules it provides a de-facto standard to
model business processes. BPMN is targeted to all
business users and tries to close the gap between
business process design and business process
implementation.

BPEL is probably the most frequently used and
widely accepted industry business process execution
language. It is based on Web Service standards and
supports most of the elaborated workflow patterns. The
notation has its weaknesses in dealing with data
structures and complex control flows. As the process
model is based on WSDL it perfectly fits in Web
Service architectures.
YAWL extends Petri nets by numerous mechanisms
and features to enable complex multiple instances
workflows and advanced branching and
synchronization patterns. BPEL is based on well
known web service technologies. Its strengths lie in the
good support for workflow patterns and its powerful

Proceedings of the 14th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP’06)
1066-6192/06 $20.00 © 2006 IEEE

data structures support by extensive use of XQuery.
Regardless it has to penetrate the web service market
to unleash its full potential. The reference
implementation of the YAWL system provides a good
starting point.
Table 1. Comparison of notations1

BPEL BPMN YAWL
Functional Aspect

Compositions X X X
Constraints X X X

Behavioral Aspect
Basic control patterns X X X
Advanced branching
and synchronization
patterns

- X X

Structural patterns O X X*
Patterns involving
multiple instances

X O X

State – based patterns X* X* X
Cancelation patterns X X X

Informational Aspect
Seperation of
Control/Production
Flow

O O -*

Based on the previously introduced aspects we want to
give a short outlook for future work in Business
process modeling notations. Will van der Aalst et al.
[1] provide a comprehensive reference for the
behavioral aspect a notation has to be compliant with.
They already published data and resource patterns and
are currently working on an implementation for
YAWL to demonstrate the support for these patterns
[12,13]. Beside YAWL BPEL4WS has to support
these patterns representing a reference model for
informational and operational aspects. Apart from
these scientific interests the analyzed workflow
modeling notations and their implementations should
be widened in usage and expanded in numerous
features like modeling tools for domain and problem
specific scenarios to simplify their insert.

5. References

[1] W.M.P. van der Aalst, A.H.M. ter Hofstede, B.
Kiepuszewski and A.P. Barros. Workflow Patterns,
Distributed and Parallel Databases, 14, 5-51, 2003, Kluwer.

1 X … This feature is full supported,
O … a workaround is possible,
* … Supported with limitations.

[2] S. Jablonski and C. Bussler. Workflow Management:
Modeling Concepts, Architecture and Implementation.
International Thomson Computer Press, 1996.

[3] W.M.P. van der Aalst, L. Aldred, M. Dumas and A.H.M
ter Hofstede, Design and Implementation of the YAWL
System, Proceedings of The 16th International Conference on
Advanced Information Systems Engineering, 2004, Springer
Verlag.

[4] Simeon Petkov, Eyal Oren and Armin Haller. Aspects in
Workflow Management, DERI Technical Report, April 2005.

[5] Nick Russel, A. H. M. ter Hofstede, David Edmond,
Workflow Data Patterns
[6] C. Brussler, Organisationsverwaltung in Workflow-
Management-System. Ph.D. thesis, University of Erlangen
1997.
[7] BPMN Specification, Version 1.0 from May 3, 2004;
http://www.bpmn.org, available on Tuesday, 24. May, 2005

[8] BPEL4WS Specification, Version 1.1 from May, 2003;
http://www-
128.ibm.com/developerworks/library/specification/ws-bpel/
available on Tuesday, 24. May, 2005

[9] W.M.P. van der Aalst and A.H.M. ter Hofstede, YAWL:
Yet Another Workflow Language, Information Systems,
30(4):245-275, 2005.

[10] W.M.P. van der Aalst, The application of Petri Nets to
Workflow Management, The Journal of Circuits, Systems and
Computers, 8(1):21-66, 1998.

[11] W.M.P. van der Aalst et. al., Design and
Implementation of the YAWL system, Proceedings of The
16th International Conference on Advanced Information
Systems Engineering (CAiSE 04), Riga, Latvia, June 2004

[12] N. Russell, A.H.M. ter Hofstede, D. Edmond, W.M.P
van der Aalst, Workflow Resource Patterns, BETA Working
Paper Series, WP 127, Eindhoven University of Technology,
Eindhoven, The Netherlands, 2004.

[13] N. Russell, A.H.M. ter Hofstede, D. Edmond, W.M.P
van der Aalst, Workflow Data Patterns, Technical Report
FIT-TR-2004-01, Queensland University of Technology,
Brisbane, Australia, April 2004

Proceedings of the 14th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP’06)
1066-6192/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

