
Author Name

Cloud Computing:
Methodology, System, and
Applications

2

Foreward

ii

Preface

iii

iv

Contributors

v

vi

List of Figures

1.1 FoSII . 8
1.2 LoM2HiS Framework Architecture 9
1.3 Host Monitoring System . 10
1.4 Communication Mechanism Scenario 11
1.5 Case-Based Reasoning Process Overview 14
1.6 Example of images for each of the three animations. 19
1.7 Behavior of execution time for each POV-Ray application. . . 20
1.8 Pov-Ray Evaluation Configuration. 21
1.9 POV-Ray experimental results 22
1.10 POV-Ray application cost relations. 25

vii

viii

List of Tables

1.1 Complex Mapping Rules. 13
1.2 Cloud Environment Resource Setup Composed of 10 Virtual

Machines. 18
1.3 POV-Ray Applications SLA Objective Thresholds 21
1.4 Measurement Intervals. 21
1.5 Monitoring Cost. 24

ix

x

Contents

I This is a Part 1

1 SOA and QoS Management for Cloud Computing 3
Vincent C. Emeakaroha, Michael Maurer, Ivan Breskovic, Ivona Brandic,

and Schahram Dustdar
1.1 Introduction . 3
1.2 Related Work . 5
1.3 Background and Motivations 7

1.3.1 FoSII Infrastructure Overview 7
1.4 Design of the LoM2HiS Framework 8

1.4.1 Host Monitor . 10
1.4.1.1 Host Monitor Design 10
1.4.1.2 Implementation of Host Monitor Component 11

1.4.2 Communication Mechanism 11
1.4.3 Run-Time Monitor . 12

1.4.3.1 Run-Time Monitor Design 12
1.4.3.2 Implementation of Run-Time Monitor Com-

ponent . 13
1.5 Knowledge Management . 14

1.5.1 Case-Based Reasoning Overview 14
1.5.2 Inferring Similarity of two Cases 16
1.5.3 Utility Function and Resource Utilization 16

1.6 Evaluations . 18
1.6.1 Experimental Environment 18
1.6.2 Image Rendering Application Use-Case Scenario . . . 19
1.6.3 Achieved Results and Analysis 21

1.7 Conclusion and Future Work 25

Bibliography 27

xi

xii

Symbol Description

α To solve the generator main-
tenance scheduling, in the
past, several mathematical

techniques have been ap-
plied.

Part I

This is a Part

1

1

SOA and QoS Management for Cloud
Computing

CONTENTS

1.1 Introduction . 3
1.2 Related Work . 5
1.3 Background and Motivations . 7

1.3.1 FoSII Infrastructure Overview . 7
1.4 Design of the LoM2HiS Framework . 7

1.4.1 Host Monitor . 10
1.4.1.1 Host Monitor Design . 10
1.4.1.2 Implementation of Host Monitor Component 11

1.4.2 Communication Mechanism . 11
1.4.3 Run-Time Monitor . 12

1.4.3.1 Run-Time Monitor Design . 12
1.4.3.2 Implementation of Run-Time Monitor Component 13

1.5 Knowledge Management . 14
1.5.1 Case-Based Reasoning Overview . 14
1.5.2 Inferring Similarity of two Cases . 15
1.5.3 Utility Function and Resource Utilization . 16

1.6 Evaluations . 17
1.6.1 Experimental Environment . 18
1.6.2 Image Rendering Application Use-Case Scenario 18
1.6.3 Achieved Results and Analysis . 20

1.7 Conclusion and Future Work . 24
Acknowledgments . 26

1.1 Introduction

In the recent years, Cloud computing has become a key IT megatrend that
will take root, although it is at infancy in terms of market adoption. Cloud
computing is a promising technology that evolved out of several concepts
such as virtualization, distributed application design, Grid, and enterprise IT
management to enable a more flexible approach for deploying and scaling
applications at low cost [8].

Service provisioning in the Cloud is based on Service Level Agreements
(SLA), which is a set of non-functional properties specified and negotiated
between the customer and the service provider. It states the terms of the

3

4 Cloud Computing: Methodology, System, and Applications

service including the quality of service (QoS), obligations, service pricing, and
penalties in case of agreement violations.

Flexible and reliable management of SLAs is of paramount importance for
both Cloud providers and consumers. On the one hand, the prevention of SLA
violations avoids penalties that are costly to providers. On the other hand,
based on flexible and timely reactions to possible SLA violation threats, user
interaction with the system can be minimized enabling Cloud computing to
take roots as a flexible and reliable form of on-demand computing.

In order to guarantee an agreed SLA, the Cloud provider must be ca-
pable of monitoring its infrastructure (host) resource metrics to enforce the
agreed service level objectives. Traditional monitoring technologies for sin-
gle machines or Clusters are restricted to locality and homogeneity of moni-
tored objects and, therefore, cannot be applied in the Cloud in an appropriate
manner. Moreover, in traditional systems there is a gap between monitored
metrics, which are usually low-level entities, and SLA agreements, which are
high-level user guarantee parameters.

In this book chapter we present a novel framework for the mapping of Low-
level resource Metric to High-level SLA parameters named LoM2HiS frame-
work, which is also capable of evaluating application SLA at runtime and
detecting SLA violation situations in order to ensure the application QoS.
Furthermore, we present a knowledge management technique based on Case-
Based Reasoning (CBR) that is responsible for proposing reactive actions to
prevent or correct detected violation situations.

The LoM2HiS framework is embedded into FoSII infrastructure aiming
at developing an infrastructure for autonomic SLA management and enforce-
ment. Thus, LoM2HiS represents the first building block of the FoSII [16] in-
frastructure. We present the conceptual design of the framework including the
run-time and host monitors, and the SLA mapping database. We discuss our
novel communication model based on queuing networks ensuring the scalabil-
ity of the LoM2HiS framework. Moreover, we demonstrate sample mappings
from the low-level resource metrics to the high-level SLA parameters. There-
after, we discuss some details of the CBR knowledge management technique
thereby showing how the cases are formulated and their similarities. Further-
more, we describe a utility function for calculating the quality of a proposed
action.

The main contributions of this book chapter are: (i) the design of the low-
level resource monitoring and communication mechanisms; (ii) the definition
of mapping rules using domain specific languages; (iii) the mapping of the low-
level metrics to high-level SLA objectives; (iv) the evaluation of the SLA at
run-time to detect violation threats or real violation situation; (v) the design
of the knowledge management technique; (vi) the evaluation of the LoM2HiS
framework in a real Cloud testbed with a use-case scenario consisting of an
image rendering application such as POV-Ray [19].

The rest of the book chapter is organized as follows. Section 1.2 presents
the related work. In Section 1.3 we present the background and motivation for

SOA and QoS Management for Cloud Computing 5

this research work. The conceptual design and implementation issues of the
LoM2HiS framework is presented in Section 1.4. In Section 1.5 we give the
details of the case-based reasoning knowledge management technique. Section
1.6 deals with the framework evaluation based on a real Cloud testbed with
POV-Ray applications and the discussion of the achieved results. Section 1.7
presents the conclusion of the book chapter and our future research work.

1.2 Related Work

We classify related work on SLA management and enforcement of Cloud based
services into (i) Cloud resource monitoring [18, 20, 32] (ii) SLA management
including QoS management [4, 10, 12, 17, 24, 31] and (iii) mapping techniques
of monitored metrics to SLA parameters and attributes [6,11,29]. Since there
is very little work on monitoring, SLA management, and metrics mapping in
Cloud systems we look particularly into related areas such as Grid and SOA
based systems.

Fu et al. [18] propose GridEye, a service-oriented monitoring system with
flexible architecture that is further equipped with an algorithm for prediction
of the overall resource performance characteristics. The authors discuss how
resources are monitored with their approach in Grid environment but they
consider neither SLA management nor low-level metric mapping. Gunter et
al. [20] present NetLogger, a distributed monitoring system, which monitors
and collects information from networks. Applications can invoke NetLoggers
API to survey the overload before and after some request or operation. How-
ever, it monitors only network resources. Wood et al. [32] developed a system,
called Sandpiper, which automates the process of monitoring and detecting
hotspots and remapping/reconfiguring VMs whenever necessary. Their moni-
toring system reminds ours in terms of goal: avoid SLA violation. Similar to
our approach, Sandpiper uses thresholds to check whether SLAs can be vio-
lated. However, it differs from our system by not allowing the mapping of low
level metrics, such as CPU and memory, to high-level SLA parameters, such
as response time.

Boniface et al. [4] discuss dynamic service provisioning using GRIA SLAs.
The authors describe provisioning of services based on agreed SLAs and the
management of the SLAs to avoid violations. Their approach is limited to Grid
environments. Moreover, they do not detail how the low-level metric are moni-
tored and mapped to high-level SLAs. Theilman et al. [31] discuss an approach
for multi-level SLA management, where SLAs are consistently specified and
managed within a service-oriented infrastructure (SOI). They present the run-
time functional view of the conceptual architecture and discuss different case
studies including Enterprise Resource Planning (ERP) or financial services.
But they did not address low-level resource monitoring and SLA mappings.

6 Cloud Computing: Methodology, System, and Applications

Koller et al. [24] discuss autonomous QoS management using a proxy-like ap-
proach. The implementation is based on WS-Agreement. Thereby, SLAs can
be exploited to define certain QoS parameters that a service has to maintain
during its interaction with a specific customer. However, their approach is lim-
ited to Web services and does not consider requirements of Cloud Computing
infrastructures like scalability. Frutos et al. [17] discuss the main approach
of the EU project BREIN [7] to develop a framework, which extends the
characteristics of computational Grids by driving their usage inside new tar-
get areas in the business domain for advanced SLA management. However,
BREIN applies SLA management to Grids, whereas we target SLA manage-
ment in Clouds. Dobson et al. [12] present a unified quality of service (QoS)
ontology applicable to the main scenarios identified such as QoS-based Web
services selection, QoS monitoring and QoS adaptation. However, they did not
consider low-level resource monitoring. Comuzzi et al. [10] define the process
for SLA establishment adopted within the EU project SLA@SOI framework.
The authors propose the architecture for monitoring of SLAs considering two
requirements introduced by SLA establishment: the availability of historical
data for evaluating SLA offers and the assessment of the capability to monitor
the terms in an SLA offer. But they did not consider monitoring of low-level
metrics and mapping them to high-level SLA parameters for ensuring the SLA
objectives.

Brandic et al. [6] present an approach for adaptive generation of SLA
templates. Thereby, SLA users can define mappings from their local SLA
templates to the remote templates in order to facilitate communication with
numerous Cloud service providers. However, they do not investigate mapping
of monitored metrics to agreed SLAs. Rosenberg et al. [29] deal with QoS at-
tributes for Web services. They identified important QoS attributes and their
composition from resource metrics. They presented some mapping techniques
for composing QoS attributes from resource metrics to form SLA parame-
ters for a specific domain. However, they did not deal with monitoring of
resource metrics. Bocciarelli et al. [11] introduce a model-driven approach for
integrating performance prediction into service composition processes carried
out using BPEL. In their approach, they compose service SLA parameters
from resource metrics using some mapping techniques. But they did neither
consider resource metrics nor SLA monitoring.

To the best of our knowledge, none of the discussed approaches deal with
mappings of low-level monitored metrics to high-level SLA guarantees as those
necessary in Cloud-like environments.

SOA and QoS Management for Cloud Computing 7

1.3 Background and Motivations

The processes of service provisioning based on SLA and efficient management
of resources in an autonomic manner are major research challenges in Cloud-
like environments [8,23]. We are currently developing an infrastructure called
FoSII (Foundations of Self-governing Infrastructures), which proposes models
and concepts for autonomic SLA management and enforcement in the Cloud.
The FoSII infrastructure is capable of managing the whole lifecycle of self-
adaptable Cloud services [5].

The essence of using SLA in Cloud business is to guarantee customers a
certain level of quality for their services. In a situation where this level of
quality is not met, the provider pays penalties for the breach of contract.
In order to save Cloud providers from paying costly penalties and increase
their profit, we devised the Low Level Metrics to High Level SLA—LoM2HiS
framework [13], which is a core component of the FoSII infrastructure for
monitoring Cloud resources, mapping the low-level resource metrics to high-
level SLA parameter objectives, and detecting SLA violations as well as future
SLA violation threats so as to react before actual SLA violations occur.

1.3.1 FoSII Infrastructure Overview

Figure 1.1 presents an overview of the FoSII infrastructure. Each FoSII service
implements three interfaces: (i) negotiation interface necessary for the estab-
lishment of SLA agreements, (ii) application management interface necessary
to start the application, upload data, and perform similar management ac-
tions, and (iii) self-management interface necessary to devise actions in order
to prevent SLA violations.

The self-management interface shown in Figure 1.1 is implemented by each
Cloud service and specifies operations for sensing changes of the desired state
and for reacting to those changes [5]. The host monitor sensors continuously
monitor the infrastructure resource metrics (input sensor values arrow a in
Figure 1.1) and provide the autonomic manager with the current resource
status. The run-time monitor sensors sense future SLA violation threats (input
sensor values arrow b in Figure 1.1) based on resource usage experiences and
predefined threat thresholds.

Logically, FoSII infrastructure consists of multiple components working
together to achieve a common goal. In this book chapter we focus on the
LoM2HiS framework and give some details of the knowledge management
technique since they are responsible for system monitoring, detection of SLA
violations and proposing of reactive actions to prevent or correct the violation
situation.

8 Cloud Computing: Methodology, System, and Applications

Monitoring	
Analysis	

Planning	 Execu4on	

Knowledge	

Sensor	
RT	

Sensor	
Host	

Run-‐4me	

Host	

Actuator	

FoSII Infrastructure

Se
rv
ic
e	
1	

Se
rv
ic
e	
n	

In
fr
as
tr
uc
tu
re
	 R
es
ou

rc
es
	

…
. .

LoM2HiS
Framework

Self-management Interface Input Sensor Values
Output Actuator Values

a

b

b

Knowledge Component

Negotiation Interface

Application Management Interface

Control Loop
Knowledge Access

FIGURE 1.1
FoSII Infrastructure Overview

1.4 Design of the LoM2HiS Framework

The LoM2HiS framework is the first step towards achieving the goals of the
FoSII infrastructure. In this section, we give the details of the LoM2HiS frame-
work and in the sections below we describe the components and their imple-
mentations.

In this framework, we assumed that the SLA negotiation process is com-
pleted and the agreed SLAs are stored in the repository for service provision-
ing. Beside the SLAs, the predefined threat thresholds for guiding the SLA
objectives are also stored in a repository. The concept of detecting future SLA
violation threats is designed by defining more restrictive thresholds known as
threat thresholds that are stricter than the normal SLA objective violation
thresholds. In this book chapter we assume predefined threat thresholds be-
cause the autonomic generation of threat thresholds is far from trivial and is
part of our ongoing research work.

Figure 1.2 presents the architecture of our LoM2HiS framework. The ser-
vice component including the run-time monitor represents the application
layer where services are deployed using a Web Service container e.g., Apache
Axis. The run-time monitor is designed to monitor the services based on the

SOA and QoS Management for Cloud Computing 9

Services	

Run-‐-me	 Monitor	

Push
Measured

Metrics

Notifications/
Thresholds

2.
Service

Request/
Response

Agreed	 SLA	
Repository	

Mapped	
Metrics	

Host	 Monitor	

Infrastructure	 Resources	
(Hardware)	

Kn
ow

le
dg
e	
Co

m
po

ne
nt
	

Raw Metrics

Get SLA Get/Store Values

Resource status

Execute
Rules

3.

4.

5. 6.

7.

8.

9.

FoSII Infrastructure
LoM2HiS Framework 1. Definition

of Mappings

Service
Provider

Service
Customer

FIGURE 1.2
LoM2HiS Framework Architecture

negotiated and agreed SLAs. After agreeing on SLA terms, the service provider
creates mapping rules for the low-level to high-level SLA mappings (step 1 in
Figure 1.2) using Domain Specific Languages (DSLs). DSLs are small lan-
guages that can be tailored to a specific problem domain. Once the customer
requests the provisioning of an agreed service (step 2), the run-time monitor
loads the service SLA from the agreed SLA repository (step 3). Service provi-
sioning is based on the infrastructure resources, which represent the physical-,
virtual machines, and network resources in a data centre for hosting Cloud
services. The resource metrics are measured by monitoring agents, and the
measured raw metrics are accessed by the host monitor (step 4). The host
monitor extracts metric-value pairs from the raw metrics and transmits them
periodically to the run-time monitor (step 5) and to the knowledge component
(step 6) using our designed communication mechanism.

Upon receiving the measured metrics, the run-time monitor maps the low-
level metrics based on predefined mapping rules to form an equivalent of the
agreed SLA objectives. The mapping results are stored in the mapped metric
repository (step 7), which also contains the predefined mapping rules. The run-
time monitor uses the mapped values and the predefined thresholds to monitor
the status of the deployed services. In case future SLA violation threats oc-
cur, it notifies (step 8) the knowledge component for preventive actions. The
knowledge component also receives the predefined threat thresholds (step 8)
for possible adjustments due to environmental changes at run-time. This com-

10 Cloud Computing: Methodology, System, and Applications

ponent works out an appropriate preventive action to avert future SLA viola-
tion threats based on the resource status (step 6) and defined rules [28]. The
knowledge components decisions (e.g., assign more CPU to a virtual host) are
executed on the infrastructure resources (step 9).

1.4.1 Host Monitor

This section describes the host monitor component, which is located at the
Cloud infrastructure resource level. We first explain its design and later present
the implementation details.

1.4.1.1 Host Monitor Design

The host monitor is responsible for processing monitored values delivered by
the monitoring agents embedded in the infrastructure resources. The moni-
toring agents are capable of measuring both hardware and network resources.
Figure 1.3 presents the host monitoring system.

Host	 Monitor	

Resource Pool

D6

D5

D4
D3

D1

D2

Accessing measured raw metrics
 Broadcast Message

 Resource Pool

D17

D16

D15

Resource Pool

….

FIGURE 1.3
Host Monitoring System

As shown in Figure 1.3, the monitoring agent embedded in Device 1 (D1)
measures its resource metrics and broadcasts them to D2 and D3. Equally,
D2 measures and broadcasts its measured metrics to D1 and D3. Thus, we
achieve a replica management system in the sense that each device has a
complete result of the monitored infrastructure. The host monitor can access
these results from any device. It can be configured to access different devices
at the same time for monitored values. In case one fails, the result will be
accessed from the other. This eradicates the problem of a bottleneck system
and offers fault-tolerant capabilities. Note that a device can be a physical
machine, a virtual machine, a storage device, or a network device. It should
also be further noted that the above described broadcasting mechanism is
configurable and can be deactivated in a Cloud environment where there are

SOA and QoS Management for Cloud Computing 11

lots of devices within resource pools to avoid communication overheads, which
may consequently lead to degraded overall system performance.

1.4.1.2 Implementation of Host Monitor Component

The host monitor implementation uses the GMOND module from the GAN-
GLIA open source project [27] as the monitoring agent. The GMOND module
is a standalone component of the GANGLIA project. We use it to monitor
the infrastructure resource metrics. The monitored results are presented in an
XML file and written to a predefined network socket. We implemented a Java
routine to listen to this network socket where the GMOND writes the XML
file containing the monitored metrics to access the file for processing. Fur-
thermore, we implemented an XML parser using the well-known open source
SAX API [30] to parse the XML file in order to extract the metric-value pairs.
The measured metric-value pairs are sent to the run-time monitor using our
implemented communication mechanism. These processes can be done once
or repeated periodically depending on the monitoring strategy being used.

1.4.2 Communication Mechanism

The components of our FoSII infrastructure exchange large number of mes-
sages with each other and within the components. Thus, there is a need for a
reliable and scalable means of communication. Figure 1.4 presents an example
scenario expressing the usage of the communication mechanism.

Run-‐%me	
Monitor	

Host	 Monitor	
Ac%veMQ	 	
5.3.0	

 Cloud Resources

Access measured metrics
 Distribute measured results

Send message

Queue In Queue Out

ESPER	
3.2.0	 …

.

FIGURE 1.4
Communication Mechanism Scenario

The scenario of Figure 1.4 depicts the processes of extracting the low-level
metrics from the monitoring agents embedded in the Cloud resources and
passing them to the run-time monitor for mapping and further processing.

To satisfy this need of communication means, we designed and imple-
mented a communication mechanism based on the Java Messaging Service
(JMS) API, which is a Java Message Oriented Middleware (MOM) API for
sending messages between two or more clients [22]. In order for us to use JMS,

12 Cloud Computing: Methodology, System, and Applications

we need a JMS provider that manages the sessions and queues. Thus, we use
the well-established open source Apache ActiveMQ [3] for this purpose.

The implemented communication model is a sort of queuing mechanism.
It realizes an inter-process communication for passing messages within FoSII
infrastructure and between components of the LoM2HiS framework, due to the
fact that the components can run on different machines at different locations.
This queue makes the communication mechanism highly efficient and scalable.

1.4.3 Run-Time Monitor

The run-time monitor component, which is located at the application level in
a Cloud environment is presented in this section. We first describe the design
of the component and later explain its implementation details.

1.4.3.1 Run-Time Monitor Design

The run-time monitor performs the mappings and based on the mapped val-
ues, the SLA objectives, and the predefined thresholds it continuously moni-
tors the customer application status and performance. Its operations are based
on three information sources: (i) the resource metric-value pairs received from
the host monitor; (ii) the SLA parameter objective values stored in the agreed
SLA repository; and (iii) the predefined threat threshold values. The metric-
value pairs are low-level entities and the SLA objective values are high-level
entities, so for the run-time monitor to work with these two values, they must
be mapped into common values.

Mapping of low-level metric to high-level SLAs: As already dis-
cussed in Section 1.4, the run-time monitor chooses the mapping rules to
apply based on the service being provisioned. That is for each service type
there is a set of defined rules for performing their SLA parameter mappings.
These rules are used to compose, aggregate, or convert the low-level metrics to
form the high-level SLA parameter. We distinguish between simple and com-
plex mapping rules. A simple mapping rule maps one-to-one from low-level to
high-level, as for example mapping low-level metric disk space to high-level
SLA parameter storage. In this case only the units of the quantities are con-
sidered in the mapping rule. Complex mapping rules consist of predefined
formulae for the calculation of specific SLA parameters using the resource
metrics. Table 1.1 presents some complex mapping rules.

In the mapping rules presented in Table 1.1, the downtime variable rep-
resents the mean time to repair (MTTR), which denotes the time it takes to
bring a system back online after a failure situation and the uptime represents
the mean time between failure (MTBF), which denotes the time the system was
operational between the last system failure to the next. Rin is the response
time for a service request and is calculated as packetsize

availablebandwidthin−inbytes in
milliseconds. Rout is the response time for a service response and is calculated

SOA and QoS Management for Cloud Computing 13

TABLE 1.1
Complex Mapping Rules.

Resource Metrics SLA Parameter Mapping Rule

downtime, uptime Availability (A) A = 1− downtime
uptime

inbyte, outbytes, packetsize,
avail.bandwidthin,
avail.bandwidthout Response Time (Rtotal)Rtotal = Rin + Rout (ms)

as packetsize
availablebandwidthout−outbytes in milliseconds. The mapped SLAs are stored

in the mapped metric repository for usage during the monitoring phase.

Monitoring SLA objectives and notifying the knowledge com-
ponent: In this phase the run-time monitor accesses the mapped metrics’
repository to get the mapped SLA parameter values that are equivalent to
the agreed SLA objectives, which it uses together with the predefined thresh-
olds in the monitoring process to detect future SLA violation threats or real
SLA violation situation. This is achieved by comparing the mapped SLA val-
ues against the threat thresholds to detect future violation threats and against
SLA objective thresholds to detect real violation situations. In case of detec-
tion it dispatches notification messages to the knowledge component to avert
the threats or correct the violation situation. An example of SLA violation
threat is something like an indication that the system is running out of storage.
In such a case the knowledge component acts to increase the system storage.
Real violations probably occur if the system is unable to resolve the cause of
a violation threat notification.

1.4.3.2 Implementation of Run-Time Monitor Component

The run-time monitor receives the measured metric-value pairs and passes
them into the Esper engine [15] for further processing. Esper is a component
for CEP and ESP applications, available for Java as Esper, and for .NET as
NEsper. Complex Event Processing (CEP) is a technology to process events
and discover complex patterns among multiple streams of event data. Event
Stream Processing (ESP) deals with the task of processing multiple streams
of event data with the goal of identifying the meaningful events within those
streams, and deriving meaningful information from them.

We use this technology because the JMS system used in our communication
model is stateless and as such makes it hard to deal with temporal data and
real-time queries. From the Esper engine the metric-value pairs are delivered
as events each time their values change between measurements. This strategy
drastically reduces the number of events/messages processed in the run-time
monitor. We use an XML parser to extract the SLA parameters and their
corresponding objective values from the SLA document and store them in

14 Cloud Computing: Methodology, System, and Applications

a database. The LoM2HiS mappings are realized in Java methods and the
returned mapped SLA objectives are stored in the mapped metrics database.

1.5 Knowledge Management

In this section we give some details about Case-Based Reasoning (CBR),
which is the knowledge management technique we are currently investigat-
ing for proposing reactive actions to SLA violation threats or real violation
situations. CBR was first built on top of FreeCBR [1], but is now a com-
pletely independent Java framework taking into account, however, basic ideas
of FreeCBR. We first explain the ideas behind CBR, describe how to infer the
similarity of two cases, and finally derive a utility function to estimate the
“goodness” of a reactive action in a specific situation.

1.5.1 Case-Based Reasoning Overview

Case-Based Reasoning is the process of solving problems based on past ex-
periences [2]. In more detail, it tries to solve a case, which is a formatted
instance of a problem by looking for similar cases from the past and reusing
the solutions of these cases to solve the current one.

Rules	 to	
Engage	
CBR	

Case	
Based	

Reasoning	

Measure	
Results	

Trigger	
Selected	
Ac7on	

No7fica7on	
Message	

DB1	 DB2	

Thresholds

FIGURE 1.5
Case-Based Reasoning Process Overview

As shown in Figure 1.5 the ideas of using CBR in SLA management is to
have rules stored in a database that engage the CBR system once a threshold
value has been reach for a specific SLA parameter. The notification informa-
tion are fed into the CBR system as new cases by the monitoring component.
Then, CBR prepared with some initial meaningful cases stored in database 2
(Figure 1.5), chooses the set of cases, which are most similar to the new case
by various means as described in Section 1.5.2. From these cases, we select the
one with the highest utility measured previously and trigger its corresponding

SOA and QoS Management for Cloud Computing 15

action as the proposed action to solve the new case. Finally, we measure in a
later time interval the result of this action in comparison to the initial case
and store it with its calculated utilities as a new case in the CBR. Doing this,
we can constantly learn new cases and evaluate the usefulness of our triggered
actions.

In general, a typical CBR cycle consists of the following phases assuming
that a new case was just received:

1. Retrieve the most similar case or cases to the new one.

2. Reuse the information and knowledge in the similar case(s) to solve
the problem.

3. Revise the proposed solution.

4. Retain the parts of this experience likely to be useful for future
problem solving. (Store new case and corresponding solution into
knowledge database.)

In order to relate the cases to SLA agreement, we formalize the language
elements used in the remaining of the book chapter. Each SLA has a unique
identifier id and a collection of Service Level Objectives (SLOs), which are
predicates of the form

SLOid(xi, comp, πi) with comp ∈ {<,≤, >,≥,=}, (1.1)

where xi ∈ P represents the parameter name for i = 1, . . . , nid, πi the param-
eter goal, and comp the appropriate comparison operator. Additionally, action
guarantees that state the amount of penalty that has to be paid in case of a
violation can be added to SLOs, which is out of scope in this book chapter.
Furthermore, a case c is defined as

c = (id,m1, p1,m2, p2, . . . ,mnid
, pnid

), (1.2)

where id represents the SLA id, and mi and pi the measured (m) and pro-
vided (p) value of the SLA parameter xi, respectively. The measured value
(m) indicates the current amount of this specific Cloud resource used by the
running application and the provided value (p) shows the amount of this
specific Cloud resource allocated to this application. These two parameters
are paramount for efficient Cloud resource management in proposing reactive
actions to prevent or correct SLA violation situation.

A typical use case for the evaluation might be: SLA id = 1 with
SLO1(“Storage”, ≥, 1000, ag1) and SLO1 (“Bandwidth”, ≥, 50.0, ag1),
where ag1 stands for the appropriate preventive action to execute after an
SLO violation. A simple case that can be notified by the measurement com-
ponent would therefore look like c = (1, 500, 700, 20.0, 30.0). A result case
rc = (c−, ac, c+, utility) includes the initial case c−, the executed action ac,
the resulting case c+ measured after some time interval later and the calcu-
lated utility as described in Section 1.5.3.

16 Cloud Computing: Methodology, System, and Applications

1.5.2 Inferring Similarity of two Cases

To retrieve similar cases already stored in the database in order to propose
an action for a new case, the similarity of the two cases has to be calculated.
However, there are many metrics that can be considered in this process.

We approach this problem using a strategy similar to Euclidean distance.
However, the problem with Euclidean distance, for instance, is due to its
symmetric nature and therefore cannot correctly fetch whether a case is in
a state of over- or under-provisioning. Additionally, the metric has to treat
parameters in a normalized way so that parameters that have a larger distance
range are not over-proportionally taken into account than parameters with a
smaller difference range. For example, if the difference between measured and
provided values of parameter A always lie between 0 and 100 and of parameter
B between 0 and 1000, the difference between an old and a new case can only
be within the same ranges, respectively. Thus, just adding the differences of
the parameters would yield an unproportional impact on parameter B.

This leads to the following equation whose summation part follows the
principle of semantic similarity [21]:

d(c−, c+) = min(wid,
∣∣id− − id+∣∣)+∑

x∈P
wx

∣∣∣∣ (p−x −m−x)− (p+x −m+
x)

maxx −minx

∣∣∣∣ , (1.3)

where w = (wid, wx1
, . . . , wxn

) is the weight vector; wid is the weight for non-
identical SLAs; wx is the weight, and maxx and minx the maximum and
minimum values of the provided and measured resource differences px −mx

for parameter x. As it can be easily checked, this indeed is a metric also in
the mathematical sense.

Furthermore, the match percentage mp of two cases c− and c+ is then
calculated as

mp(c−, c+) =

(
1− d(c−, c+)

wid +
∑
x wx

)
· 100. (1.4)

This is done because the algorithm does not only consider the case with
the highest match, but also cases in a certain percentage neighborhood (ini-
tially set to 3%) of the case with the highest match. From these cases the
algorithm then chooses the one with the highest utility. By calculating the
match percentage, the cases are distributed on a fixed line between 0 and 100,
where 100 is an identical match, whereas 0 is the complete opposite.

1.5.3 Utility Function and Resource Utilization

To calculate the utility of an action, we have to compare the initial case c−

vs. the resulting final case c+. The utility function presented in Equation 1.5
is composed by a SLA violation and a resource utilization term weighed by
the factor 0 ≤ α ≤ 1:

SOA and QoS Management for Cloud Computing 17

utility =
∑
x∈P

violation(x) + α · utilization(x) (1.5)

Higher values for α indicate desire to achieve high resource utilization,
whereas lower values implies the wish of non-violation of SLA parameters.
Thus, to achieve a balance, a trade-off must be found. We further note that
c(x) describes a case only with respect to parameter x. E.g., we say that a
violation has occurred in c(x), when in case c the parameter x was violated.

The function violation for every parameter x is defined as follows:

violation(x) =

1, No violation occurred in c+(x), but in c−(x)

1/2, No violation occurred in c+(x) and c−(x)

−1/2 Violation occurred in c+(x) and c−(x)

−1 Violation occurred in c+(x), but not in c−(x)

.(1.6)

For the utilization function we calculate the utility from the used resources
in comparison to the provided ones. We define the distance δ(x, y) = |x− y|,
and utilization for every parameter as

utilization(x) =

1, δ(p−x ,m

−
x) > δ(p+x , u

+
x)

−1, δ(p−x ,m
−
x) < δ(p+x , u

+
x)

0, otherwise.

(1.7)

We get a utilization utility of 1 if we experience less over-provisioning of
resources in the final case than in the initial one, and a utilization utility of
−1 if we experience more over-provisioning of resources in the final case than
in the initial one.

We map utilization, u, and the number of SLA violations, v, into a scalar
called Resource Allocation Efficiency (RAE) using the following equaltion

RAE =

{
u
v , v 6= 0

u, v = 0,
(1.8)

which represents an important goals for the knowledge management. High
utilization leads to high RAE, whereas a high number of SLA violations leads
to a low RAE, even if utilization is in normal range. This can be explained
by the fact that having utilization at a maximum - thus being very resource
efficient in the first place - does not pay if the SLA is not fulfilled at all.

18 Cloud Computing: Methodology, System, and Applications

1.6 Evaluations

In this section we present an image rendering use-case scenario to evaluate
our approach in this book chapter. The knowledge management technique is
developed as an independent work and has not yet been integrated with the
LoM2HiS framework. Thus our evaluations here covers only the monitoring
framework.

The goal of our evaluations is to determine the optimal measurement in-
terval for monitoring agreed SLA objectives for applications at runtime. We
first present our real Cloud experimental environment after which we discuss
in details the use-case scenario.

1.6.1 Experimental Environment

The resource capacities of our Cloud experimental testbed is shown in Table
1.2. The table shows the resource compositions of the physical - and the virtual
machines being used in our experimental setups. We use Xen virtualization
technology in our testbed, precisely we run Xen 3.4.0 on top of Oracle Virtual
Machine (OVM) server.

TABLE 1.2
Cloud Environment Resource Setup Composed of 10 Virtual Machines.

Machine Type = Physical Machine

OS CPU Cores Memory Storage
OVM Server Pentium 4 2.8 GHz 2 2.5 GB 100 GB

Machine Type = Virtual Machine

OS CPU Cores Memory Storage

Linux/Ubuntu Pentium 4 2.8 GHz 1 1 GB 5 GB

We have in total five physical machines and, based on their resource ca-
pacities as presented in Table 1.2, we host two VMs on each physical machine.
We use an Automated Emulation Framework (AEF) [9] to deploy the VMs
onto the physical hosts, thus creating a virtualized Cloud environment with
up to ten computing nodes capable of provisioning resources to applications
and one front-end node responsible for management activities.

The front-end node serves as the control entity. It runs the automated
emulation framework, the application deployer [14] responsible for moving
the application data to the virtual machines, and the LoM2HiS framework to
monitor and detect SLA violation situations. We use this Cloud environment
to evaluate the use case scenario presented in the next section.

SOA and QoS Management for Cloud Computing 19

1.6.2 Image Rendering Application Use-Case Scenario

We developed an image rendering application based on the Persistence of
Vision Raytracer (POV-Ray)1, which is a ray tracing program available for
several computing platforms [19]. In order to achieve heterogeneous load in
this use-case scenario, we experiment with three POV-Ray workloads, each
one with a different characteristic of time for rendering frames, as described
below and illustrated in Figures 1.6 and 1.7:

• Fish: rotation of a fish on water. Time for rendering frames is variable.

• Box: approximation of a camera to an open box with objects inside. Time
for rendering frames increases during execution.

• Vase: rotation of a vase with mirrors around. Time for processing different
frames is constant.

(a) Fish. (b) Box. (c) Vase.

FIGURE 1.6
Example of images for each of the three animations.

Three SLA documents are negotiated for the three POV-Ray applications.
The SLA documents specify the level of Quality of Service (QoS) that should
be guaranteed for each application during its execution. Table 1.3 presents the
SLA objectives for each of the applications. These SLA objective thresholds
are defined based on test runs and experiences with these applications in
terms of resource consumption. With the test runs, the Cloud provider can
determine the amount and type of resources the application requires. Thus,
the provider can make better resource provisioning plan for the applications.

Based on these SLA objectives, the applications are monitored to detect
SLA violations. These violations may happen because SLAs are negotiated
per application and not per allocated VM considering the fact that the service
provider may provision different application requests on the same VM.

Figure 1.8 presents the evaluation configurations for the POV-Ray appli-
cations. We instantiate 10 virtual machines that execute POV-Ray frames

1www.povray.org

20 Cloud Computing: Methodology, System, and Applications

0 50 100 150 200
Frame ID

0

10

20

30

40

50

60

70

80

E
x
e
cu

ti
o
n
 T

im
e
 (

s)

(a) Fish.

0 50 100 150 200
Frame ID

0

10

20

30

40

50

60

70

80

E
x
e
cu

ti
o
n
 T

im
e
 (

s)

(b) Box.

0 50 100 150 200
Frame ID

0

10

20

30

40

50

60

70

80

E
x
e
cu

ti
o
n
 T

im
e
 (

s)

(c) Vase.

FIGURE 1.7
Behavior of execution time for each POV-Ray application.

submitted via Application Deployer. The virtual machines are continuously
monitored by Gmond. Thus, LoM2HiS has access to resource utilization dur-
ing execution of the applications. Similarly, information about the time taken
to render each frame in each virtual machine is also available to LoM2HiS.
This information is generated by the application itself and is sent to a location
where LoM2HiS can read it. As described in Figure 1.8, users supply the QoS
requirements in terms of SLOs (step 1 in Figure 1.8). At the same time the im-
ages with the POV-Ray applications and input data (frames) can be uploaded
to the front-end node. Based on the current system status, SLA negotiator
establishes an SLA with the user. Description of the negotiation process and
components is out of scope of this book chapter and is discussed by Brandic
et al. [5]. Thereafter, VM deployer starts configuration and allocation of the
required VMs whereas application deployer maps the tasks to the appropriate
VMs (step 3). In step 4 the application execution is triggered.

SOA and QoS Management for Cloud Computing 21

TABLE 1.3
POV-Ray Applications SLA Objective Thresholds

SLA Parameter Fish Box Vase

CPU 20% 15% 10%
Memory 297MB 297MB 297MB
Storage 2.7GB 2.6GB 2.5GB

USERS

CLOUD PROVIDER

...

upload frame
descriptions

+
QoS requirements

1
2

3 process
frames

download
video 4

XEN Hypervisor

VM VM VM...

User Application
(e.g. POVRAY)

Resource Monitor
(gmond)frames

establish SLA
+

allocate resources
and map tasks

monitor
resources

+

COMPUTING NODE

Application
Deployer

SLA Manager
LoM2HiS

FRONT-END NODE

VM
Deployer and
Configurator

FIGURE 1.8
Pov-Ray Evaluation Configuration.

1.6.3 Achieved Results and Analysis

We defined and used six measurement intervals to monitor the POV-Ray ap-
plications during their executions. Table 1.4 shows the measurement intervals
and the number of measurements made in each interval. The applications run
for about 20 minutes for each measurement interval.

TABLE 1.4
Measurement Intervals.

Intervals 5s 10s 20s 30s 60s 120s

Nr. of Measurements 240 120 60 40 20 10

The 5 seconds measurement interval is a reference interval meaning the
current interval used by the provider to monitor application executions on the
Cloud resources. Its results show the present situation of the Cloud provider.

Figure 1.9 presents the achieved results of the three POV-Ray applications
with varying characteristics in terms of frame rendering as explained in Section
1.6.2. We use the 10 virtual machines in our testbed to simultaneously execute
the POV-Ray frames. There is a load-balancer integrated in the application
deployer, which ensures that the frame executions are balanced among the
virtual machines.

22 Cloud Computing: Methodology, System, and Applications

The LoM2HiS framework monitors the resource usage of each virtual ma-
chine to determine if the SLA objectives are ensured and reports violations
otherwise. Since the load-balancer balances the execution of frames among
the virtual machines, we plot in Figure 1.9 the average numbers of violations
encountered in the testbed for each application with each measurement inter-
val.

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120N
um

be
r o

f S
LA

 V
io

la
tio

ns

Measurements Intervals (sec)

Fish Pov-Ray Result
CPU

Memory
Storage

(a) Fish.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120N
um

be
r o

f S
LA

 V
io

la
tio

ns
Measurements Intervals (sec)

Box Pov-Ray Result
CPU

Memory
Storage

(b) Box.

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100 120N
um

be
r o

f S
LA

 V
io

la
tio

ns

Measurements Intervals (sec)

Vase Pov-Ray Result
CPU

Memory
Storage

(c) Vase.

FIGURE 1.9
POV-Ray experimental results

To find the optimal measurement interval for detecting applications‘ SLA
objectives violations at runtime, we discuss the following two determining
factors i) cost of making measurements; and ii) the cost of missing SLA viola-
tions. The acceptable trade-off between these two factors defines the optimal
measurement interval.

Using these two factors and other parameters we define a cost function (C)
based on which we can derive an optimal measurement interval. The ideas of

SOA and QoS Management for Cloud Computing 23

defining this cost functions are derived from utility functions discussed by Lee
et al. [26]. Equation 1.9 presents the cost function.

C = µ ∗ Cm +
∑

ψε{cpu,memory,storage}

α (ψ) ∗ Cv (1.9)

where µ is the number of measurements, Cm is the cost of measurement, α (ψ)
is the number of undetected SLA violations, and Cv is the cost of missing
an SLA violation. The number of undetected SLA violations are determined
based on the results of the 5 seconds reference measurement interval, which
is assumed to be an interval capturing all the violations of applications’ SLA
objectives. This cost function now forms the basis for analyzing the achieved
results of our use-case scenario.

The cost of making measurement in our testbed is defined by considering
the intrusiveness of the measurements on the overall performance of the sys-
tem. Based on our testbed architecture and intrusiveness test performed, we
observed that measurements have minimal effects on the computing nodes.
This is because measurements and their processing take place in the front-
end node while the services are hosted in the computing node. The moni-
toring agents running on computing nodes have minimal impact on resource
consumption. This means a low cost of making measurements in the Cloud
environment.

The cost of missing SLA violation detection is an economic factor, which
depends on the SLA penalty cost agreed for the specific application and the
effects the violation will have to the provider for example in terms of reputation
or trust issues.

Applying the cost function on the achieved results of Figure 1.9, with a
measurement cost of 0.5 dollar and an aggregated missing violation cost of
1.5 dollar, we achieve the monitoring costs presented in Table 1.5. These cost
values are example values for our experimental setup. It neither represents
nor suggests any standard values. The approach used here is derived from the
cost function approaches presented in literature [25,33].

The monitoring cost presented in Table 1.5 represents the cost of measure-
ment for each interval and for missing to detect SLA violation situation for
each application. The reference measurement captures all SLA violations for
each application, thus it only incurs measurement cost. Taking a closer look
at Table 1.5, it is clear that the values of the shorter measurement interval
are closer to the reference measurement than those of the longer measurement
interval. This is attributed to our novel architecture design, which separates
management activities from computing activities in the Cloud testbed.

The relations of the measurement cost and the cost of missing SLA viola-
tion detection is graphically depicted in Figure 1.10 for the three POV-Ray
applications. From the figures, it can be noticed in terms of measurement cost
that the longer the measurement interval, the smaller the measurement cost
and in terms of detection cost, the higher the number of missed SLA violation

24 Cloud Computing: Methodology, System, and Applications

TABLE 1.5
Monitoring Cost.

Fish POV-Ray Application
Intervals / Reference 10s 20s 30s 1min 2min
SLA Parameter
CPU 0 22.5 94.5 115.5 133.5 145.5
Memory 0 13.5 85.5 106.5 126 136.5
Storage 0 9 81 102 120 132
Cost of Measurements 120 60 30 20 15 5
Total Cost 120 105 291 344 394.5 419

Box POV-Ray Application
CPU 0 19.5 42 49.9 58.5 64.5
Memory 0 10.5 33 40.5 49.5 55.5
Storage 0 9 81 102 120 132
Cost of Measurements 120 60 30 20 15 5
Total Cost 120 97.5 135 147.5 169.5 177.5

Vase POV-Ray Application
CPU 0 10.5 18 22.5 25.5 30
Memory 0 6 13.5 18 21 25.5
Storage 0 7.5 15 19.5 22.5 27
Cost of Measurements 120 60 30 20 15 5
Total Cost 120 84 76.5 80 84 87.5

detected, the higher the detection cost rises. This implies that to keep the
detection cost low, the number of missed SLA violation must be low.

Considering the total cost of monitoring the fish POV-Ray application in
Table 1.5 and Figure 1.10(a), it can be seen that the reference measurement is
not the cheapest although it does not incur any cost of missing SLA violation
detection. In this case the 10-second interval is the cheapest and in our opinion
the most suited measurement interval for this application. In the case of box
POV-Ray application the total cost of monitoring, as shown in Table 1.5
and depicted graphically in Figure 1.10(b), indicates that the lowest cost is
incurred with the 10-second measurement interval. Thus we conclude that
this interval is best suited for this application. Also from Table 1.5 and Figure
1.10(c), it is clear that the reference measurement by far does not represent
the optimal measurement interval for the vase POV-Ray application. Based
on the application behavior, longer measurement intervals are better fitted
than shorter ones. Therefore, in this case the 20-second measurement interval
is best suited for the considered scenario.

Based on our experiments, it is observed that there is no best suited mea-
surement interval for all applications. Depending on how steady the resource
consumption is, the monitoring infrastructure requires different measurement
intervals. Note that the architecture can be configured to work with different
intervals. In this case, specification of the measurement frequencies depends
on policies agreed by users and providers.

SOA and QoS Management for Cloud Computing 25

0	
50	
100	
150	
200	
250	
300	
350	
400	
450	

5s	 10s	 20s	 30s	 1min	 2min	

Ti
m
e	
[s
ec
on

ds
]	

Measurement	 Interval	

Measurement	 cost	 Missing	 Detec6on	 cost	

(a) Fish.

0	
20	
40	
60	
80	

100	
120	
140	
160	
180	
200	

5s	 10s	 20s	 30s	 1min	 2min	

Ti
m
e	
[s
ec
on

ds
]	

Measurement	 Interval	

Measurement	 cost	 Missing	 Detec8on	 cost	

(b) Box.

0	

20	

40	

60	

80	

100	

120	

140	

5s	 10s	 20s	 30s	 1min	 2min	

Ti
m
e	
[s
ec
on

ds
]	

Measurement	 Interval	

Measurement	 cost	 Missing	 Detec8on	 Cost	

(c) Vase.

FIGURE 1.10
POV-Ray application cost relations.

1.7 Conclusion and Future Work

Flexible and reliable management of SLA agreements represents an open re-
search issue in Cloud computing infrastructures. Advantages of flexible and
reliable Cloud infrastructures are manifold. For example, preventions of SLA
violations avoids unnecessary penalties provider has to pay in case of violations
thereby maximizing the profit of the provider. Moreover, based on flexible and
timely reactions to possible SLA violations, interactions with users can be
minimized. In this book chapter we presented LoM2HiS framework— a novel
framework for monitoring low-level Cloud resource metrics, mapping them to
high-level SLA parameters, using the mapped values and predefined thresh-
olds to monitor the SLA objectives at runtime, detecting and reporting SLA
violation threats or real violations situations. We also presented the knowl-

26 Cloud Computing: Methodology, System, and Applications

edge management technique based on Case-Based Reasoning for managing
the SLA violation situation and proposing preventive or corrective actions.

We evaluated our system using a use-case scenario consisting of image ren-
dering applications based on POV-Ray with heterogeneous workloads. The
evaluation is focused on the goal of finding an optimal measurement interval
for monitoring application SLA objectives at runtime. From our experiments
we observed that there is no particular suited measurement interval for all ap-
plications. It is easier to identify optimal intervals for applications with steady
resource consumption, such as the ‘vase’ POV-Ray animation. However, ap-
plications with variable resource consumption require dynamic measurement
intervals. Our framework can be extended to tackle such applications but this
will be in the scope of our future work.

Currently on FoSII project, we are working toward integrating the knowl-
edge management with the LoM2HiS framework in order to achieve a complete
solution pack for the SLA management. Furthermore, we will design and im-
plement an actuator component for applying the proposed actions from the
knowledge database on the Cloud resources.

Thus, in the future besides our investigation on dynamic measurement in-
tervals, we will evaluate the influence of such intervals on the quality of the
reactive actions proposed by the knowledge database. If the effects of measure-
ment intervals are known, best reactive actions may be taken, contributing to
our vision of flexible and reliable on-demand computing via fully autonomic
Cloud infrastructures.

Acknowledgments

This work is supported by the Vienna Science and Technology Fund (WWTF)
under grant agreement ICT08-018 Foundations of Self-governing ICT Infras-
tructures (FoSII). We would like to thank Marco A. S. Netto for his support
in carrying out the evaluations. The experiments were performed in the High
Performance Computing Lab at Catholic University of Rio Grande do Sul
(LAD-PUCRS)Brazil.

Bibliography

[1] FreeCBR, http://freecbr.sourceforge.net/.

[2] Agnar Aamodt and Enric Plaza. Case-based reasoning: Foundational
issues, methodological variations, and system approaches. AI Communi-
cations, 7:39–59, 1994.

[3] ActiveMQ. Messaging and integration pattern provider.
http://activemq.apache.org/.

[4] M. Boniface, S. C. Phillips, A. Sanchez-Macian, and M. Surridge. Dy-
namic service provisioning using GRIA SLAs. In International Workshops
on Service-Oriented Computing (ICSOC’07), 2007.

[5] Ivona. Brandic. Towards self-manageable cloud services. In 33rd An-
nual IEEE International Computer Software and Applications Confer-
ence (COMPSAC’09), 2009.

[6] Ivona Brandic, Dejan Music, Philipp Leitner, and Schahram Dustdar.
Vieslaf framework: Enabling adaptive and versatile sla-management. In
Proceedings of the 6th International Workshop on Grid Economics and
Business Models, GECON ’09, pages 60–73, 2009.

[7] Brein. Business objective driven reliable and intelligent grids for real
business. http://www.eu-brein.com/.

[8] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic. Cloud
computing and emerging IT platforms: Vision, hype, and reality for deliv-
ering computing as the 5th utility. Future Generation Computer Systems,
25(6):599–616, 2009.

[9] R. N. Calheiros, R. Buyya, and C. A. F. De Rose. Building an automated
and self-configurable emulation testbed for grid applications. Software:
Practice and Experience, 40(5):405–429, 2010.

[10] M. Comuzzi, C. Kotsokalis, G. Spanoudkis, and R. Yahyapour. Estab-
lishing and monitoring SLAs in complex service based systems. In IEEE
International Conference on Web Services 2009, 1009.

[11] A. D’Ambrogio and P. Bocciarelli. A model-driven approach to describe
and predict the performance of composite services. In 6th International
Workshop on Software and Performance (WOSP’07), 2007.

27

28 Cloud Computing: Methodology, System, and Applications

[12] G. Dobson and A. Sanchez-Macian. Towards unified QoS/SLA ontologies.
In IEEE Services Computing Workshops (SCW’06), 2006.

[13] Vincent. C. Emeakaroha, I. Brandic, M. Maurer, and S. Dustdar. Low
level metrics to high level SLAs - LoM2HiS framework: Bridging the gap
between monitored metrics and SLA parameters in cloud environments.
In High Performance Computing and Simulation Conference (HPCS’10),
2010.

[14] Vincent C. Emeakaroha, Rodrigo N. Calheiros, Marco A. S. Netto, Ivona
Brandic, and César A. F. De Rose. DeSVi: An architecture for detect-
ing SLA violations in cloud computing infrastructures. In Proceedings
of the 2nd International ICST Conference on Cloud Computing (Cloud-
Comp’10), 2010.

[15] ESPER. Event stream processing. http://esper.codehaus.org/.

[16] FoSII. Foundations of self-governing infrastructures.
http://www.infosys.tuwien.ac.at/linksites/FOSII/index.html.

[17] H. M. Frutos and I. Kotsiopoulos. BREIN: Business objective driven
reliable and intelligent grids for real business. International Journal of
Interoperability in Business Information Systems, 3(1):39–42, 2009.

[18] W. Fu and Q. Huang. GridEye: A service-oriented grid monitoring system
with improved forecasting algorithm. In International Conference on
Grid and Cooperative Computing Workshops, 2006.

[19] A. S. Glassner et al. An introduction to ray tracing. Academic Press
London, 1989.

[20] D. Gunter, B. Tierney, B. Crowley, M. Holding, and J. Lee. Netlogger:
A toolkit for distributed system performance analysis. In 8th Interna-
tional Symposium on Modeling, Analysis and Simulation of Computer
and Telecommunication Systems (MASCOTS’00), 2000.

[21] Mark Hefke. A framework for the successful introduction of KM using
CBR and semantic web technologies. Journal of Universal Computer
Science, 10(6), 2004.

[22] JMS. Java messaging service. http://java.sun.com/products/jms/.

[23] J. O. Kephart and D. M. Chess. The vision of autonomic computing.
IEEE Computer, 36(1):41–50, 2003.

[24] B. Koller and L. Schubert. Towards autonomous sla management using
a proxy-like approach. Multiagent Grid Systems, 3(3):313–325, 2007.

[25] Cynthia Bailey Lee and Allan Snavely. On the user-scheduler dialogue:
Studies of user-provided runtime estimates and utility functions. Int. J.
High Perform. Comput. Appl., 20(4):495–506, 2006.

SOA and QoS Management for Cloud Computing 29

[26] Kevin Lee, Norman W. Paton, Rizos Sakellariou, and A. A. Fernandes
Alvaro. Utility driven adaptive worklow execution. In CCGRID ’09: Pro-
ceedings of the 2009 9th IEEE/ACM International Symposium on Cluster
Computing and the Grid, pages 220–227, Washington, DC, USA, 2009.
IEEE Computer Society.

[27] M. L. Massie, B. N. Chun, and D. E. Culler. The Ganglia distributed mon-
itoring system: Design, implementation and experience. Parallel Comput-
ing, 30(7):817–840, 2004.

[28] M. Maurer, I. Brandic, V. C. Emeakaroha, and S. Dustdar. Towards
knowledge management in self-adaptable clouds. In 4th International
Workshop of Software Engineering for Adaptive Service-Oriented Systems
(SEASS’10), 2010.

[29] F. Rosenberg, C. Platzer, and S. Dustdar. Bootstrapping performance
and dependability attributes of web services. In IEEE International Con-
ference on Web Services (ICWS’06), 2006.

[30] SAX. Simple API for XML. http://sax.sourceforge.net/.

[31] Wolfgang Theilmann, Ramin Yahyapour, and Joe Butler. Multi-level sla
management for service-oriented infrastructures. In Proceedings of the 1st
European Conference on Towards a Service-Based Internet, ServiceWave
’08, pages 324–335, 2008.

[32] T. Wood, P. J. Shenoy, A. Venkataramani, and M. S. Yousif. Sandpiper:
Black-box and gray-box resource management for virtual machines. Com-
puter Networks, 53(17):2923–2938, 2009.

[33] Chee Shin Yeo and Rajkumar Buyya. Pricing for utility-driven resource
management and allocation in clusters. Int. J. High Perform. Comput.
Appl., 21(4):405–418, 2007.

