
Interaction-driven Self-Adaptation of Service Ensembles

Christoph Dorn and Schahram Dustdar

Distributed Systems Group
Vienna University of Technology

1040 Vienna, Austria
lastname@infosys.tuwien.ac.at

Abstract. The emergence of large-scale online collaboration requires current in-
formation systems to be apprehended as service ensembles comprising human
and software service entities. The software services in such systems cannot adapt
to user needs based on autonomous principles alone. Instead system requirements
need to reflect global interaction characteristics that arise from the overall col-
laborative effort. Interaction monitoring and analysis, therefore, must become a
central aspect of system self-adaptation. We propose to dynamically evaluate and
update system requirements based on interaction characteristics. Subsequent re-
configuration and replacement of services enables the ensemble to mature in par-
allel with the evolution of its user community. We evaluate our approach in a case
study focusing on adaptive storage services.

1 Introduction

Over the past years we have observed a trend towards online collaboration. Web sites
for social networking (e.g., Facebook, LinkedIn), collaborative tagging (e.g., Digg,
Del.ici.us), content sharing (e.g., Youtube), or knowledge creation (e.g., Wikipedia)
have attracted millions of users. People increasingly utilize such tools to pursue joint
interests and shared goals.

The scientific community in particular comes to profit from a tight interweaving of
social networks and technological networks [1]. Barabasi [2] highlights the tendency
for research teams to grow in size. Guimera et al. [3] describe the impact of social
network dynamics on team performance. Scientific teams emerge in an ad-hoc fashion,
gather the persons with the required expertise, conduct research, and dissolve again.

The scientific community is one example where collaboration emerges in large-
scale, heterogeneous systems. Kleinberg [4] notices the opportunity to observe the dy-
namics and complexity of such systems that arise from the convergence of social and
technical networks in general. We refer to such systems as service ensembles.

The scale of online collaborations prevents a single ensemble entity from obtain-
ing a complete picture of the overall service ensemble. Simultaneously, services lack
adequate mechanisms that derive global-level interaction characteristics. Services will
exhibit poor performance and slow reaction to a changing environment: promising col-
laborations dissolve prematurely; helpful services remain unavailable as nobody be-
comes aware of the demand. As a result, enabling interaction-driven adaptivity is a
prime concern in evolving information systems.



Several challenges need to be addressed before a service system can adapt to global-
level ensemble interaction characteristics. Users apply both direct and indirect interac-
tion means as well as exchange services as they feel suitable. Any interaction metric
needs to abstract from these low-level interaction details and has to derive user prox-
imity across activities, services, and shared artifacts. Any distance measurement needs
to take into account also the focus and magnitude of interaction among humans, among
services, and between humans and services. Existing work on social network analysis
(e.g., [5, 6]) provides insight into the community structure. Deriving requirements from
this data, however, is non-trivial.

In this paper we provide models and mechanisms to align configuration and pro-
vided functionality of software services with the ensemble’s interaction structure. The
main goal is to establish the set of required service capabilities - i.e., what function-
ality and adaptability services need to support - but not how services achieve specific
adaptation. Our mechanisms, for example, discover that ensemble users tend to inter-
act in co-located groups, and derive requirements demanding location-aware services.
We do not, however, specify how these services exploit information about the ensemble
interaction structure.

Specifically, we extend the traditional autonomic feedback loop with a secondary
loop to monitor and analyze interactions across the complete service ensemble (Sec-
tion 2). Interaction analysis relies on our bipartite interaction graph that tracks relations
between humans and services across activities and artifacts. Distance measurements on
this graph consider the interaction focus and global significance of individual ensem-
ble entities (Section 3.2). Significant changes in the users’ interaction structure trigger
an update of the system’s configuration via requirements rules. These rules take the
interaction structure to derive necessary service capabilities (Section 3.3). Finally, we
validate our approach (Section 4) based on the case study presented in the following
section (Section 1.1).

1.1 Motivating Scenario

We observe a service ensemble comprising a group of 20 scientists working together
closely on a research proposal. They utilize various services to coordinate their work,
communicate on- and off-line, manage documents and figures, update and revise finan-
cial tables for example. In this scenario, we focus on the requirements and adaptation
particular to storage services.

In such a relatively small service ensemble already, individual users find it consid-
erably hard to gain an overview of the underlying interaction structure and the system
requirements emerging from that structure. During the proposal drafting phase (Fig. 1a)
users will collaborate on the various proposal sections in an ad-hoc manner, giving rise
to short-lived interactions between a subset of users that dissolve again. A storage ser-
vice will, therefore, need to provide maximum cooperation flexibility. A suitable service
enables simple file storage and exchange between participants without requiring exten-
sive configuration of file versioning or access control.

Let us assume, the proposal is accepted and the regular project phase commences
(Fig. 1b). As the number of project participants rises, we expect stable subgroups to



(a) Phase 1

(b) Phase 2
(c) Phase 3

Fig. 1. Scenario: (Colors online) - (a) Phase 1: single cluster, dense interactions. (b) Phase 2: intra
organizational interaction with ties to the coordinator. (c) Phase 3: task-centric interaction, feed-
back from T1 (upper left) to T2 (right) and T3 (bottom). Line thickness indicates the amount of
interactions. Red links denote cross-cluster interaction, blue links represent intra-cluster interac-
tions.

form that work on various project tasks. Subsequently, users require services that re-
flect this structure. A suitable service, for example, reduces information overload of
individual users by focusing the interactions to users within a subgroup. Other adap-
tation dimensions include services keeping content within user proximity, limiting re-
source access to users of the same organization, or providing notifications to users with
specific roles or skill.

Towards the end of the project (Fig. 1c), users have to collaborate across organi-
zational boundaries again to integrate their research results and prototypes. Commu-
nication remains mostly within the scope of the various tasks, with users involved in
demonstration activities giving feedback to users working on scientific dissemination
as well as to users planning industrial exploitation. Derived requirements demand a
shift from organization-centric to task-centric services.

Throughout the evolution of the ensemble, no single user obtains a complete overview
of interactions and respective system requirements. Continuous interaction monitoring
and analysis is therefore quintessential to enable software services to evolve in line with
the overall ensemble structure.

2 From Autonomous to Evolving Service Ensembles

A service ensemble consists of humans (i.e., the users), software services, and a service
infrastructure. The infrastructure typically provides a service registry and a graphical
user portal. The registry contains a comprehensive set of service descriptions. At any
time, however, only a subset of those services is actively deployed in the ensemble. We
refer to the complete set of software elements as the system. Whereas an autonomous
system aims to fulfill a static set of requirements, an evolving system replaces and
reconfigures its parts (i.e., services) to match the dynamically changing requirements
of the ensemble’s user base. Here, dynamic system requirements ultimately cause the
replacement, deployment, removal, or reconfiguration of services.



Most traditional autonomous systems follow a Monitor- Analyze- Plan- Execute+

Knowledge (MAPE-K) approach [7, 8] - although these phases are sometimes named
differently [9, 10]. The core cycle in Fig. 2 visualizes the basic MAPE-K steps 1a, 2a,
3a, and 4. In a service ensemble, System Monitoring observes changes in services ca-
pabilities and QoS parameters, service dependencies, and service load. System Analysis
compares the current requirements with the current system state. System Planning ini-
tiates changes when capabilities or QoS degrade, with System Execution enforcing the
replacement and reconfiguration of the actual service instances.

We introduce a parallel (incomplete) MAPE-K cycle to turn an autonomous system
into an evolving system (Fig. 2). Ensemble Monitoring (1b) observes the interactions
and properties of the user set. Ensemble Analysis (2b) extracts interaction patterns and
changes thereof. Given the structure of collaboration, user properties, shared artifacts,
and service usage, Ensemble Planning (3b) updates the system requirements to match
the dynamic user characteristics. Direct Ensemble Control of human behavior is not
possible, thus the outer MAPE-K cycle remains incomplete. Any desirable impact is
induced via system reconfiguration. Consequently, the system MAPE-K cycle reacts
not only to system events but also to updates of the system requirements.
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Fig. 2. Approach: from autonomous to evolving service ensembles.

Interactions play a most important part in our approach. Extraction of the ensemble
structure from interactions not only reveals relevant system requirements but also pro-
vides the additional information on the system level to analyze service dependencies in
more detail. In the following sections we will, therefore, focus on the interaction-centric



models and mechanisms for realizing steps 1b, 2b, 3b, and 3a. Specific adaptation and
reconfiguration mechanisms in step 4 or within individual services remain outside the
scope of this paper.

3 Interaction-based Continuous Adjustment

3.1 Interaction Monitoring

The key to extracting meaningful information from interaction data is monitoring the
context in which the various interactions take place (Fig. 2 Step 1b). Introduced in
previous work [11], the principle interaction event is an action that describes the co-
occurrence of users, services, and artifacts (e.g., documents) in a common activity at the
given time. In this manner, actions describe interaction among users, among services,
and between users and services.

Additional information sources from the environment such as user profiles avail-
able from online social platforms or enterprise directories (in corporate settings) com-
plement action events by putting them in perspective. The raw events are captured by
distributed logging [12], monitoring [13], or sensing [14] mechanisms. Within indi-
vidual services, autonomous toolkits (e.g., [15–17]) provide monitoring techniques to
provide an up-to-date view on capabilities and QoS values.

3.2 Interaction Structure

We propose to integrate multiple interaction types into a single distance measurement to
reflect more accurately the tight inter-dependency between humans and services (Fig. 2
Step 2b). Most existing approaches to interaction analysis observe one interaction type
only, for example, either emails, friendship links, or posting threads. Furthermore, little
attention is put on the focus and magnitude of links between entities, i.e. the distri-
bution of re-occurring interactions across established links, respectively the amount of
re-occurring interactions. The key aspect of our approach is weighting the entity’s local
interactions according to its global significance.

We map the captured actions into a bipartite interaction graph AG2(V, E). Our bi-
partite graph defines two vertex categories: actions (Va) and ensemble entities (Ve).
Edges are undirected and exist only between vertices of different category. Fig. 3a dis-
plays an example bipartite interaction graph comprising actions (a1, a2, a3, a4) and
ensemble entities of type user (u1, u2, u3, u4), activity (t1, t2), artifact (o1, o2), and
service (s1, s2, s3). An action’s weight w(a) corresponds to the number of times that
action has occurred. Two actions are considered identical when they exhibit the same
set of involved ensemble entities.

We measure the distance between two vertices of the same ensemble entity type by
aggregating their involvement in shared and related actions. The distance, for example,
between two users is based on actions involving joint activities, joint resources, and
joint artifacts. In the example graph (Fig. 3a) users u2 and u3 become linked to user u4
through the shared artifacts o1 and o2. The process of calculating the distance between
two entities requires determining the similarity between any two actions first.
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Fig. 3. Bipartite interaction graph (a) combining user, activities, artifacts, service, and actions;
action similarity graph (b); user distance graph (c).

Action similarity For each pair of actions (ai, a j), we consider the amount of shared
entities. The set of common entities, however, is insufficient to accurately establish
the distance between two actions. We also consider the global significance of a shared
entity in contributing to the overall distance measurement. For example, service s2 has
edges to all actions. It should not be considered as it does not add any information to
distinguish the similarity of two actions.

We apply Shannon’s entropy definition [18] H(w) = −∑
(w∗ log(w)) to describe the

information content of an entity’s edge set, thus deriving the global significance sig(v)
. The significance of entity v is defined as1:

sigv = 1 − log(deg(v))
log(|a|) ∀ v ∈ Ve and deg(v) > 1 (1)

where deg(v) is the degree of vertex v and |a| denotes the total number of actions. The
normalization yields a significance value in the interval [0, 1]. When a vertex v links to
all actions, it exhibits no focus (i.e., minimum entropy) and thus significance becomes
0. Vertices with one neighbor yield sig(v) = 1. Italic numbers in Fig. 3a provide the
global significance values for the example entities.

The Jaccard similarity metric determines the similarity of two actions based on
their common entities. We consider, however, only those entities which exceed a given
significance threshold γ. The Jaccard similarity is defined as 1 minus the difference
between set union and set intersection, divided by the set union:

Jδ = 1 − |A ∪ B| − |A ∩ B|
|A ∪ B| (2)

where sets A and B contain the references to users, services, activities, and artifacts
when comparing two actions ai and ai. Jδ becomes 1 when the two sets contain the
same entities and yields 0 when the two sets are completely disjoint. The complete
action similarity graph is denoted AGaction(Va, Ea) shown in Fig. 3b for the example
bipartite graph with γ = 0.3.

1 Reduced from sigv = 1 − −deg(v)∗( 1
deg(v) ∗log( 1

deg(v) ))

log(|a|)



Interaction distance The distance measurement between two ensemble entities of
same type takes two aspects into account:

– The distance between two entities decreases with increasing number of shared ac-
tions. A large amount of shared actions, however, does not necessarily imply low
distance.

– The distance between two entities decreases with increasing re-occurrence of in-
teractions. The more often two entities have interacted (i.e., high action weight)
the closer they become. Two entities having interacted only once in the scope of
three actions, yield higher distance than two entities having interacted 10 times via
a single action. Users u2 and u3, for example, yield lower proximity than u2 and
u1.

In the case of user distance, we take measurements across services, activities, and
artifacts to derive interaction distance for direct and indirect communication. One user,
for example, uploads a document, while another user downloads it. This process con-
sists of two actions, each involving a single user, and the same document. Total dis-
tance disttotal(ui, u j) between two users derives, thus, not only from shared actions
(dist1(ui, u j)), but also related actions (dist2(ui, u j)):

disttotal(ui, p j) = dist1(ui, u j) + dist2(ui, u j) (3)

We define two action sets. Set Ai contains all neighboring actions of ui. There exists
an analogous set A j. The shared action distance is defined as the sum of actions weights
w:

dist1(ui, u j) =

|N |∑

n

w(n) (4)

where N(ui, u j) is the interaction of Ai and A j.
The related actions distance dist2(ui, u j) defines the edge set Ea(ak, al) in the action

similarity graphAGaction such that ak ∈ Ai, al ∈ A j, and ak , al.

dist2(ui, u j) =

∑
E(we ∗ min[w(ak),w(al)])

|E| (5)

The set of pairwise distance measurements generates the entity interaction distance
graph AGuser(VP, EP) — here specific to users — required in the subsequent analy-
sis step (Section 3.3). The corresponding graph for the four users in the example is
displayed in Fig. 3c.

3.3 Interaction-driven Requirements Adjustment

System requirements need to reflect the significant changes in the ensemble’s interac-
tion structure (Fig. 2 Step 3b). One important structural property of service ensembles
is the number and the size of subgroups that emerge from the interaction distance graph
and what factors cause this structure. Graph analysis based on interaction affinities (e.g.,
[19]) or community detection algorithms (e.g., [20] or [21]) describes the underlying
structure from which we subsequently derive appropriate system requirements. Fig. 4



displays the UML representation of the interaction analysis data model. The model lists
the set of involved entities of type users, activities, artifacts, and services. It states for
each entity the centrality in the overall interaction graph and the global significance
value applied during distance calculation. Each ClusterAnalysis element describes the
observed entity type and the context property that most likely caused the clusters to form
(e.g., location, organization, task, or role). Each detected Cluster states the interaction-
centric metrics such as density, average cardinality, interaction direction (interaction
within the cluster [0 → 1] or external [0 → −1]), and cluster name (e.g., the organi-
zation’s name, particular location, or role identifier). The membership degree specifies
the degree to which an entity belongs to a particular cluster, and its centrality within
that cluster.

tMetrics
«attribute» EnsembleURI : anyURI

tEntity
Type : tEntityType
GlobalActionSignificance : decimal [0..1]
GlobalInteractionCentrality : decimal [0..1]
«attribute» EntityURI : anyURI

Entity
1..1

tClusterAnalysis
MemberType : tEntityType
«attribute» ImpactPropertyType : anyURI [0..1]

ClusterAnalysis
0..*

tCluster
«attribute» InteractionDensity : decimal [0..1]
«attribute» AverageInteractionCardinality : decimal [0..1]
«attribute» InteractionImpact : decimal [0..1]
«attribute» ClusterName : anyURI [0..1]

Cluster
1..*

tElement
URI : anyURI
«attribute» Membership : decimal [0..1] = 1
«attribute» IntraClusterInteractionCentrality : decimal [0..1]

Element
0..*

Fig. 4. Excerpt of the ensemble model specifying the in-
teraction analysis result.
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Fig. 5. Utility function: (a) generic
form, (b) fct. utilized in the example
rule, and (c) fct. used in the evaluation.

Our previous work [22] introduced a capability model for services. The capabil-
ity model specifies non-functional properties such as storage space per user, cost, or
a service’s adaptability of resource access to location or organization context. System
requirements are expressed in terms of necessary capabilities. Coupling these system
requirements with rules enables us to dynamically adjust the system configuration to
match the interaction structure of the service ensemble.

The example requirement rule in Listing 1.1 demands common storage space for
each tightly connected subgroup (i.e., a cluster with interaction impact between 0 and
1). A requirements rule consists of four parts:



1 rule "StorageClusterSupport"
2 dialect "java"
3 when
4 em : EnsembleMetrics ((UserCA.clusters.size() >= 2) &&
5 (UserCA.clusters.size() <
6 (0.25*em.getEntities().getUsers().size()))
7 then
8 int clusterCount = UserCA.clusters.size();
9 int maxClusterSize = 0;

10 for (int i = 0; i<clusterCount; i++)
11 {
12 int size = UserCA.cluster.get(i).elements.size()
13 if (size > maxClusterSize) maxClusterSize = size;
14 if (UserCA.cluster.get(i).getImpact() < 0) clusterCount --;
15 }
16 URI impactTypeURI = UserCA.getImpactPropertyType();
17 TCapabilitySelectionRequirement req1 = RequirementsFactory.getSelectConstraint(
18 "Require Adaptability to Interaction Cluster Impact",
19 URIs.SELECTCAP_ADAPTABILITY ,
20 new String[]{impactTypeURI},
21 ChoiceUtilityHigh.class.getSimpleName(), ChoiceUtilityHigh.UTILITY_TYPE
22 0.8d);
23 TSimpleDecimalConstraint req2 = RequirementsFactory.getConstraint(
24 "Support folders for all clusters",
25 URIs.CAP_ResStorage , URIs.PROP_MaxFoldersPerAccount_ResStorage ,
26 ValueUtility.UTILITY_TYPE , ValueUtility.class.getSimpleName()
27 new double[]{ clusterCount , 0.25*em.getEntities().getUsers().size(),
28 Double.MAX_VALUE , Double.MAX_VALUE},
29 0.5d);
30 TSimpleDecimalConstraint req3 = RequirementsFactory.getConstraint(
31 "Support sufficient concurrent users within folders",
32 URIs.CAP_ResStorage , URIs.PROP_MaxConcurrentUsersPerFolder_ResStorage ,
33 ValueUtility.UTILITY_TYPE , ValueUtility.class.getSimpleName()
34 new double[]{ maxClusterSize*0.9, maxClusterSize*2,
35 Double.MAX_VALUE , Double.MAX_VALUE},
36 0.4d);
37 knowledge.addRequirement( em.getEnsembleURI(), req1);
38 knowledge.addRequirement( em.getEnsembleURI(), req2);
39 knowledge.addRequirement( em.getEnsembleURI(), req3);
40 end

Listing 1.1. Example DROOLS requirement rule generating three storage capability
constraints when interaction clusters have emerged.

1. the interaction-based condition triggering the rule. In the example we wait for two
or more clusters of users. Simultaneously, we limit that number to a quarter of the
total number of users to mitigate potential errors during the clustering process.

2. the computation of utility function parameters (optional).
3. the generation of the desired capability constraints. A constraint specifies the de-

sired capability, the utility function type, utility function parameters, and the im-
portance of the constraint. Fig. 5 visualizes the general utility function (a), and
the instance (b) utilized in requirement req2. In this example, we require a storage
service to be aware of the source causing the clustering (e.g., clusters mapping to
organization, locations, or roles). We also demand that the service supports as many
folders as there are clusters, and that each folder can be accessed simultaneously
by at least as many users as contained in the largest cluster.

4. the update of the knowledge component of the system’s MAPE-K cycle.



3.4 System Planning and Execution

The new capability constraints need to be matched against the current system configura-
tion (Fig. 2 Step 3a). Along with the capability model, we have introduced a constraint
matching and selection algorithm in [22].

The ultimate execution of adaptation plan involves removal, replacement, or deploy-
ment of new services. Dynamic invocation frameworks such as VRESCO [23] provide
the appropriate mechanisms to exchange service endpoints during runtime. We rely on
VRESCO’s runtime SOAP message interceptors to perform necessary message trans-
formation operations. This addresses potential service interoperability problems and
allows interaction-based requirements analysis to work on a common capability model
without having to take heterogeneous service interfaces into account.

4 Case study Evaluation

We base our evaluation on the three phases of the motivating scenario in Section 1.1.
Throughout the evaluation we focus on a limited number of requirements and service
specific storage capabilities for sake of clarity. Table 1 (upper part) lists the monitored
capabilities and their support by ten example services (S1 ... S10). The underlying in-
teraction data (Fig. 1a-c) for the three phases are synthetic, but yield the same global
interaction characteristics we observed in our past research projects. Excerpts from the
corresponding bipartite action graphs are visualized in Fig. 6a-c. Table 7 provides the
results of the cluster analysis subsequently applied to the rules in Listing 1.1. We also
apply an additional cost constraint. The respective cost utility function yields maximum
utility at $0 , and minimum utility from $50 (Phase 1), respectively $100 (Phase 2 and
3), onwards. Table 1 (lower part) lists the final service ranking result, while the right
part supplies the parameters for the respective utility functions. The ranking process uti-
lizes the Logic Scoring of Preferences (LSP) algorithm [24] - a weighted sum of utility
scores.

Phase 1: During the project proposal drafting the 20 initial participants interact
closely without being affected by location, their role, or organizational boundaries (Fig. 1a).
The bipartite action graph excerpt for phase 1 (Fig. 6a) has most users involved in ev-
ery action using an email service (sig(S 0) = 0) . S0 is thus not considered for action
similarity measurements. The corresponding interaction cluster analysis for users does
not reveal emergence of distinct subgroups, thus the only task of preparing the proposal
becomes the best explanation for the dense interaction graph (Fig. 7). As outlined in
the motivation, services which are cheap and offer the minimum required amount of
support for users and folders rank highest. Here, we select service S2.

Phase 2: The participant number raises sharply shortly after the project kickoff. In
our scenario, ten organizations allocate between 6 and 18 members for a total number of
100 participants. Project coordinator is Organization 10, exhibiting a neutral impact due
to a balance of organization internal and external interaction. Most members keep inter-
action organizations internal, with exception to Organization 2, who’s members focus
purely on coordinating members in Organization 8 (Fig. 1b). The underlying bipartite
action graph (Fig. 6b) emphasizes the uptake of service S2 in Phase 1 as an indirect
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Fig. 6. Bipartite action graph excerpt - activities omitted and services s2 and s7 split for the sake
of clarity. Significance values are given only for a subset of entities and are based on the complete
bipartite graph.

Phase Property ClusterName Impact Size
1 Task Proposal 1 20
2 Org. Org. 1 1 9

Org. 2 -1 6
Org. 3 1 10
Org. 4 1 10
Org. 5 1 13
Org. 6 1 18
Org. 7 1 11
Org. 8 1 8
Org. 9 1 8
Org. 10 0 7

3 Task Dem. (T1) 0.83 22
Dissem. (T2) 1 12
Exploit. (T3) 1 16

Fig. 7. Interaction Cluster Analysis.
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Fig. 8. Interaction analysis performance mea-
surements (in milliseconds) for service ensem-
ble graphs exhibiting 100 to 20000 entities, fea-
turing 10, 50, and 100 properties.

interaction tool via shared artifacts. Simultaneously, users continue to utilize the email
service (S0), albeit, mostly for organization internal communication. Both services thus
provide useful (but low significance) information for the calculation of action similarity.
The subsequent cluster analysis reveals a strong impact of the organizational topology
on the interaction structure (Fig. 7). The same requirement rule of Phase 1 will now
request services exhibiting adaptability to the organizational structure, while support-
ing the required number of users within each cluster. In our scenario, we consequently
switch from service S2 to S7.



Phase 3: The number of project participants decreases to 50 towards the end of the
project (Fig. 1c). The bipartite action graph (Fig. 6c) draws attention to the task internal
direct communication, and cross-task indirect interaction via shared artifacts. We also
note the switch of storage services as recommended in the previous phase (S7 instead
of S2). Interaction analysis now identifies the task structure as the most likely factor to
give rise to clusters (Fig. 7). Derived requirements demand a change from organization-
centric to task-centric services. Subsequently, we replace service S7 with service S5.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Para 1 Para 2 Para 3 w
Org-adaptability - - x - - - x - x x - x - 0.8
Loc-adaptability - - - x - - x - - x - - - 0.8

Task-adaptability - - - - x - - x x x - - x 0.8
Role-adaptability - - - - - x - x x x - - - 0.8

FoldersPerAccount 5 5 20 50 50 100 50 250 100 250 1;5 9;25 3;12.5 0.5
UsersPerFolder 10 50 100 20 50 10 10 50 100 100 18;40 16.2;36 19.8;44 0.4

Costs $ 0 0 60 50 20 100 50 30 90 200 0;50 0;100 0;100 0.5
Rank Phase 1 56 100 44 3 78 0 0 36 44 44
Rank Phase 2 0 25 98 49 34 41 100 46 94 76
Rank Phase 3 0 19 42 44 100 10 18 98 89 71

Table 1. Storage service capabilities, utility function parameters, constraint weight, and ranking
results (top services in bold font).

Discussion During the scenario users switch between different communication types
(direct such as email, and indirect such as shared artifacts). They also exchange ser-
vices. Nevertheless, we are still able to track those interactions and thus derive accurate
user proximity as we map all actions onto our bipartite graph. The significance of par-
ticular entities changes throughout the scenario. Dynamically assessing their impact on
similarity guarantees accurate distance measurements during all scenario phases.

A global-level view on interactions is vital to establish the underlying interaction
structure such as emerging clusters. The interaction analysis detects the cause of clus-
tering, such as organizational, spatial, or task-related constraints. The respective re-
quirements demand exactly those services that are able to adapt to and support these
constraints. Observation of individual user or service properties alone can never reveal
such requirements.

The performance evaluation of the interaction analysis algorithm for various con-
figurations of service ensemble size and property count is displayed in Figure 8. The
algorithm exhibits exponential runtime behavior as expected for a growing interaction
network. However, even for the most complex scenario of 20000 entities each exhibiting
100 properties, the interaction impact is derived within 10 seconds which is sufficiently
fast.

5 Related Work

Interaction-based adjustment of service systems builds on concepts and techniques from
the autonomic computing domain and service adaptation community. Current general-



purpose autonomic techniques and toolkits (e.g., [15–17]) primarily apply context about
the software environment. These frameworks adhere to the basic MAPE-K feedback
loop, limiting the application of user context to properties such as location or device.

Jennings et al. [25] propose an architecture for autonomic management of commu-
nication networks that comes close to our approach of monitoring a large-scale system.
No human interaction characteristics, however, are considered.

Colman [26] proposes a hybrid approach to self-organization services through hier-
archical structuring of autonomic managers and services. An autonomic manager mon-
itors and controls all composed services, but lacks insight into the interaction charac-
teristic of the environment. In our work, adaptation to the environment is sensed and
analyzed in parallel to regular system monitoring. Any effect on the environment, how-
ever, can only be achieved through the system MAPE-K cycle.

The main shortcoming of the presented autonomic computing approaches is their
fixed set of requirements. These remain valid throughout the system’s lifetime or re-
quire manual configuration. In large-scale ensembles neither the services’ providers nor
individual users can grasp the system functionality required by the overall ensemble.

Specifically in service-oriented systems, extensive research efforts focus on service
selection based on Quality-of-Service (QoS) attributes (e.g., [27–29]), context informa-
tion (e.g.,[30, 31]), or trust (e.g., [32–34]). Recently, Skopik et al. [35] extended the
notion of trust to cover both humans and services in mixed service-oriented systems.

These approaches consider only a subset of an ensemble context during composi-
tion. Adaptation and selection criteria usually build upon QoS metrics or context about
the service execution environment. Involved user context comprises mostly location,
devices, and preferences. None of these efforts evaluates the complex user interaction
structure within the service ensemble.

Social network analysis investigates the interaction characteristics of online com-
munities. Information (e.g., [5, 6]) that potentially serves as context for adaptation is
usually not available in near-realtime, nor does it include aspects beyond human-to-
human communication. Our approach derives similarity from users’ involvement in
joint activities, use of common services, or modification of shared artifacts. Addition-
ally, we take into consideration the global significance of individual elements when
computing distance measurements.

6 Conclusion and Outlook

We have demonstrated the importance of monitoring global-level user interaction char-
acteristics to adapt system requirements. Based on captured user actions, our bipartite
interaction graph enables proximity measurements across users, activities, resources,
and artifacts. Subsequent interaction analysis identifies those properties that determine
the emergence of clusters. Clustering results and other interaction metrics provide mean-
ingful data for interaction-centric requirements rules. These rules generate service ca-
pability constraints which serve as system requirements. Final matching against service
capability profiles provides recommendations for system reconfiguration.

The current approach evaluates the strongest interaction impact for the complete
service ensemble. We plan to introduce context-dependent analysis that observes dif-



ferent parts of the ensemble independently to simultaneously adapt to multiple impact
factors. The second line of future research activities focuses on deriving and describing
reoccurring global-level interaction patterns. So far changes in the interaction structure
cannot be anticipated. We expect that prediction techniques combined with patterns
enable the early detection of structural changes and facilitate such transitions through
a-priori service reconfiguration.
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