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Abstract—Mashup tools are becoming increasingly important
enabling users to compose services and processes on the Web.
Most existing tools focus on Web-based interfaces, usability,
and visual languages for creating mashups. A major challenge
that has received limited attention is context-awareness and
adaptivity of service mashups. In this paper we focus on two
main aspects: First, a service capability model describing service
characteristics that can be tracked and matched against the
requirements associated with service mashups and second an
algorithm to recommend refinements such as replacing services
within mashups. We implemented a set of adaptation algorithms
to validate our approach in real service-oriented systems.

1. INTRODUCTION

Mashup tools have become increasingly popular supporting
the end-user in composing services and aggregating data from
various sources. Major industry players including Yahoo!',
or Microsoft’> have developed a set of Web-centric tools for
designing and executing mashups. The focus of these tools is
to reduce the amount of programming effort and time needed
to create compositions. We believe that context-awareness
and adaptivity play an important role in the widespread
proliferation of service mashups. Such compositions are often
executed in highly dynamic environments such as the Web.
Service availability changes dynamically and may render a
mashup unusable. We propose semiautomatic reconfiguration
and replaceability strategies to support the service mashup
developer in the redesign of compositions. Our approach is
based on a service capability model enabling a matching of
suitable services satisfying requirements such as minimum
reputation of a service or maximum cost. In the next step
we detail the problem of replaceability in a concrete use case
example.

Motivating Scenario

Consider a mashup comprising of services from multiple
organizations. User Dave (the Mashup Developer) creates a
service mashup to support collaboration and interactions in
a software development team. Along with the services that
are part of the composition, Dave selects the number of users
to be involved in the development team. Based on the team
members’ skills, location, and roles he selects the suitable
services such as: code versioning storage, central document
repository, email list management, bug tracking, etc. As the
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initial development effort is expected to be low, Dave selects
services supporting only a limited set of users, which is
cheaper.

After the first release of the software product, the great suc-
cess encourages the managers to further develop the software
with support from external programmers. Team participants
may thus be scattered around the globe. Changing conditions
by transforming the team has consequently impact on the
requirements such as the number of users that need to be sup-
ported. Also, additional aspects, for example, whether existing
services can be used in an organizational structure make it
very difficult for Dave to track the changing requirements and
redesign the service mashup.

Dave needs to receive automatic recommendations which
services to apply in the changed environment. This recom-
mendations need to be based on service capabilities satisfying
the demanded set of requirements in a given context.

Contributions and Outline

The main contributions of this paper are described in
following sections. In Section II we present our methodology
for context-aware adaptation. The service capability model
is presented in Section III followed by Section IV on re-
quirement rules and the gracefully degrading requirements
filtering algorithm. The clustering algorithm in Section V
applies service utility values to identify optimal constraint
groups. Experiments are shown in Section VI, a discussion
on related work in Section VII, and finally we conclude the
paper in Section VIIL.

II. ADAPTATION METHODOLOGY

Mashup adaptation relies on two complementary building
blocks: capabilities and requirements. Capabilities describe
non-functional service properties to determine a service’s ap-
plicability in a specific mashup context. Requirements specify
the necessary capabilities for a particular mashup.

The upper part of Figure 1 visualizes the dependencies
between the various data models. The Service Capability Meta
Model (a) introduces the fundamental capability concepts.
The Capability Descriptions (b) detail common capability
templates. These templates define a portfolio of common capa-
bility structures and properties independent of actual services.
The Service Metadata (c) map particular capability templates
to service operations.



Mashup Context and Metrics (d) describe properties of
the runtime environment. Metrics measure interaction and
dependency aspects in-between users as well as services.
Requirement Rules (e) are similar to context-dependent goals.
They describe which capabilities—respectively constraints on
capabilities—apply for a particular set of context conditions.
Ultimately, the Mashup Configuration (f) lists the set of
involved services and outlines which service capabilities fulfill
the given set of requirement rules.

The adaptation process exhibits two main phases (Figure 1
lower part). Mashup Monitoring observes context changes
and determines which mashup configurations are affected. A
configuration needs reevaluation when associated requirement
rules involve the observed context change. Requirements rules
then generate updated capability constraints. We trigger adap-
tation when these constraints no longer sufficiently match the
current service configuration.

Adaptive Management takes the set of requirements and
determines the set of services with the best fitting capabil-
ities. First, we compare each service that matches at least
one requirement against all requirements. Each requirement
specifies the utility function and evaluation parameters to
calculate a service’s score. Traditional selection approaches
usually assume that one service has to fulfill all requirements.
However, with increasingly specialized constraints, it is un-
likely that a single service exhibits all required capabilities to
sufficient degree. Splitting the services into multiple groups,
and ranking them separately, will provide more useful service
recommendations. The clustering process applies the obtained
utility scores to determine the optimal assignment of require-
ments to these groups. Candidate comparison ranks the service
within each of these groups and returns the sets of top rated
services. The mashup developer selects amongst these services
and reconfigures the mashup accordingly.

A. Mashup Context

We discuss a set of aspects influencing the adaptation
of service mashups. A service mashup potentially needs to
be reconfigured based on the changing properties (i.e., the
context) of the environment. Let us consider the following
examples:

Reputation of a service is the opinion expressed by con-
sumers of the service. Opinion can be collected based on
feedback ratings of users (e.g., see [1] for trust and reputation
mechanisms in service-oriented systems) or by monitoring in-
teractions (invocations technically speaking) between services,
i.e., whether a service was part of a composition in a particular
context.

Organization: Mashup users and services from multiple
organizations are confronted with trust, hidden information,
and control challenges. Measuring and tracking organizational
properties is key to adapt, for example, access to resources
and monitoring of work progress.

Location: The physical location — a well known metric for
context-aware adaptation — can be used to select a service
based on the physical proximity to the service consumer.
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Fig. 1. Mashup Adaptation: the top icons represent data models (a-f), with
arrows depicting dependencies. Throughout the adaptation process each step
references the involved data.

Proximity to the service may reduce the response time which
is important for highly reactive Web applications.

We also include specific metrics that describe the interac-
tions and structural properties of collaborative e-professionals
from our previous work [2].

III. Service CAPABILITY MODEL

Service capabilities describe behavior properties which can-
not be directly derived from the service’s WSDL interface. Ex-
ample properties include limitations on simultaneous service
use, supported resource access strategies, or reconfigurability.
Capabilities usually change when a service undergoes major
modification. Adding a new operation or extending service
back-end resources provides new or better functionality. Ser-
vices might also choose to reduce capabilities to remain
available in spite of high load. This graceful degradation
allows service clients to balance limited functionality and the
cost of finding and invoking an alternative fully functional
service.

Our Service Capability Meta Model (Fig. 2) shares some
similarities with the Composite Capability/Preference Profiles
(CC/PP) specification [3]. The original purpose of CC/PP
foresees clients to transmit their capabilities in order to enable
service providers to adapt delivered content accordingly. In
contrast, our approach allow services to describe their capa-
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Fig. 2. Capability meta model UML class diagram

bilities to enable service clients to select the most suitable
service.

The service capability model applies the concepts of compo-
nent and property but goes beyond describing simple service
characteristics. Selectable capabilities and supported capabil-
ity reconfigurations are the main distinct differences to the
CC/PP model. These properties are key to reconfiguration and
adaptation. The capability meta model defines the following
elements:

Profile: contains all capabilities of a single service. The
WSDLlocation identifies the corresponding service instance.
The ServiceCategory tags a service with (potentially domain-
specific) categories. A profile consists of one or more Com-
ponents.

Component: describes a certain functional or non-
functional aspect of a service. A notification service, for exam-
ple, will distinguish amongst publication related capabilities
and subscription related capabilities. A component specifies
regular capabilities, selectable capabilities, and supported con-
figurations on the selectable capabilities.

Capability: comprises properties and optionally sub capa-
bilities. Properties state the actual capability details while sub
capabilities enable further structuring.

Property: identifies and provides details such as maximum
number of requests per minute. The meta model defines
five basic properties for integer, decimal, boolean, timestamp,
and string values. FileSize is an example complex property
comprising size unit (e.g., kB, mB) and size value.

SelectableCapability: describes capabilities that need se-
lection and (optionally) configuration before they become
available to the client. The list of alternative capabilities
consists of regular capabilities or again selectable capabilities.

Combination: defines valid combinations of selectable ca-

pabilities. Note, the SelectableCapability element only defines
the set of available choices. Selection identifies a Selectable-
Capability (i.e., representing a set of capabilities) or a single
Capability.

Transition: describes valid reconfiguration paths. Specifi-
cally, a transition contains a minimum of one start configu-
ration (i.e., a Combination) and a minimum of one reachable
end configuration. A set of positive transitions explicitly lists
allowed reconfigurations, and vice versa.

The Combination element exhibits some similarity with
WS-Policy 3. However, WS-Policy neither supports description
of a service’s utility, nor dynamic reconfiguration during
runtime.

IV. REQUIREMENTS RULES

Mashup requirements depend on the current context and
define a desirable mashup configuration. To this end, we
apply event-driven rules. A requirement rule describes metric
conditions and subsequent constraints applied to a particular
capability. Changes in mashup metrics trigger corresponding
rules which then define optimum service capabilities (i.e.,
constraints). In the proceeding sections, we then compare
deployed services with calculated constraints and compose the
best reconfiguration plan given the available capabilities.

When designing rules, we have to consider a number
of challenges. First, different mashups will exhibit different
metrics. Thus, rules cannot rely on having all metrics available.
Second, mashups have heterogeneous goals which reflect in
customized additional rules and removal of nonessential rules.
Rules must not rely on other rules being active or available.
Given the complexity and heterogeneity of requirements, tight
coupling of rules is not an option. Third, we need to provide
the most fitting services regardless of the requirement fulfill-
ment level available services exhibit. When services lack the
required optimum capabilities, we need to find services that
support the next most important requirements. Consequently,
rules need to enable smooth degradation of provided capabil-
ities.

To this end, we design loosely coupled, weighted rules.
Rules depend only on metrics, they do not reference any
other rule. Fine-grained rules do not override coarse-grained
rules. Instead, they generate constraints of higher importance
(i.e., constraints exhibiting a higher weight). When two re-
quirements (not necessarily from the same rule) constrain the
same capability, the more important one takes precedence.
This mechanism is vital to smooth degradation. When the
most significant constraint cannot be satisfied, the next most
important constraint becomes active. An example requirements
rule is available online (SOM [4]).

A requirement rule specifies the following elements:

Rule Identifier: enables requirement tracing. All constraints
generated by the same rule carry the same rule identifier.

Metric Conditions: trigger the generation of constraints.
Rules can aggregate any number of metrics, but must refrain
from applying results generated by other rules.

3http ://www.w3.org/TR/ws-policy-primer/



Capability Identifier & Property Identifier: determines
the property within a capability.

Utility Function Identifier: defines the candidate compar-
ison function. Supported functions include various set overlap
and threshold-based calculations.

Utility Function Parameters: for linear functions, the
parameters provide the limits. For set functions, the parameters
list the required capability elements.

Weight: describes the importance of constraints. More spe-
cific constraints yield higher weights than general constraints.

We aggregate constraints on identical capabilities and then
sort constraints in descending order of weight. Figure 3
visualizes the relations between metrics, rules, constraints, and
constraint aggregation.

A. Requirements Filtering

Loose coupling of requirements rules renders the rule engine
unaware of multiple requirements constraining the same capa-
bility. Matching capabilities requires, therefore, prior filtering
of multiple—potentially conflicting—constraints on the same
capability.
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Fig. 3.  Metrics triggering rules which in turn generate constraints on
capabilities (cap) with weight w.

The Gracefully Degrading Matching Algorithm determines
which constraint comes into operation. For sake of simplicity,
suppose that each service profile consists of a single compo-
nent. Further, let us define the set of candidate components
s € S that we collect from all available service profiles. We
capture the constraints aggregated for identical capabilities
in RL = {R;...R,} such that all constraints ¢ € R; concern
capability i. Each constraint ¢ provides the details as outlined
in the previous section.

We evaluate requirements in descending order of weight
within each requirement list R. We store the utility values
for each constraint and component in the utility matrix U.
If no capability fulfills the top requirement in R, we remove
that requirement and evaluate the next highest. Once we have
identified a requirement that can be fulfilled by at least one
service, we drop all other less important constraints (i.e., those
with lower weight) on the same capability. Ultimately, each
requirement list R € RL contains only a single requirement for

each capability. The top requirements in RL become the set of
constraints in the subsequent requirements cluster analysis.

V. CaAPABILITY CONSTRAINTS CLUSTERING

We extend the service matching and ranking approach to
provide the optimum set of services matching the required
constraints. When services exhibit complementary capabili-
ties, two or more services compensate for their individual
shortcomings. The challenge is to determine the optimum
number and member of groups that best represent capability
complementarity.

The goal of clustering algorithms is distributing data el-
ements into a set of meaningful partitions. They fall into
two main categories: assigning each data element to exactly
one particular cluster (hard clustering), or assigning data
elements to multiple clusters (soft clustering). We focus on
the latter category of fuzzy clustering algorithms for grouping
constraints according to implicit service groups.

Fuzzy C-Means (FCM) [5] associates each data element x;
to every cluster k;-;... The data element x; contains all service
utility values for constraint i. We determine the best cluster
count as suggested in [6], similarly giving equal weight to
cluster compactness and cluster separation.

The membership matrix M;; is the result of the clustering
process. It describes the degree of data element x; (i.e.,
constraint ¢;) belonging to a particular cluster k;, such that
2j=1.zMij = 1. We establish the importance weight v; for
each cluster by aggregating the individual constraints weights
w; according to their membership degree y;;. Thus clusters
comprising of predominantly significant constraints yield in
turn high importance.

We need to rank each service in each cluster to determine
the top candidates. The scores reflect the clusters importance.
Thus services performing well in important clusters yield
higher scores than service fairing well in less significant
clusters. To this end, we update the constraint weights w
according to their membership degree u and corresponding
cluster importance v such that biasedW; = w; * . * vi,. We
thereby avoid having to defuzzify the clustering result. A
constraint belonging equally to two clusters will thus influence
the ranking result in both clusters to the same degree. We
subsequently apply the basic logic scoring of preferences
(LSP) ranking algorithm [7] to aggregate the utility values
for each service according to the biased constraint weights.
The resulting service scores establish the final ranking order
within each cluster.

VI. EvaLuaTION

A. System Design

We briefly outline the recommendation system’s design
before presenting the evaluating case study. The framework
presented in [2] serves as basic context sensing component
(Fig. 1d). Previous work in the inContext project* provides
service registry and user interface components.

4http ://www.in-context.eu/
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Our work in this paper adds (i) a capability management
service for defining and providing the capability metadata on
all registered services (Fig. 1b+c), (i) a requirement man-
agement service for specifying context-dependent constraints
(Fig. le), and (iii) a mashup configuration service for storing
the applied services and constraint for a particular mashup
instance (Fig. If).

B. Case Study

Our evaluation builds on the core adaptation step in our
motivating scenario. We focus on a few context changes,
corresponding requirements, and ultimate clustering result.

In the beginning, few constraints affect the selection of
suitable services. The users share the same goal, exhibit high
trust, and reside in close proximity. The mashup developer
assembles services that yield little configuration overhead.
Amongst the required capabilities, we find:

« Asynchronous communication capability (cy).

« File versioning capability (c;).

« Resource conflict resolution capability (c3).

« Storage accounts for all users (cy).

« Storage space for each user (cs).

The mashup context considerably changes once the devel-
opment effort includes users from multiple organizations that
are physically distributed. Additional capabilities are required
to handle the complexity that comes with the rising number
of mashup users. This gives rise to additional constraints.

In distributed environments, storage services improve per-
formance when they provide their content in proximity to
the individual users (cg). In addition, these users require
synchronous communication capabilities (c7). Team leaders
have difficulty assigning and monitoring work tasks without
dedicated delegation support (cg). Involvement of multiple
organizations demands services which can virtually separate
storage places (cy). (SOM [4] provides the corresponding
requirement rule, respectively capability description). To this
end, access to resources should be organization-centric (cyp).

Table I (left part) contains the utility values of services
S1...810 partially matching the constraints c; ... cjo. For this
experiment, we assume equal constraints weights w = 0.1.
Services S ...S3 exhibit predominantly communication ca-
pabilities. Services S4...S¢ specialize in organization-aware

access control, while services S7...S ¢ provide mainly re-
source management capabilities.

The central part of Table I provides the constraint clustering
result (applying fuzzy factor m = 2). We obtained three
clusters of roughly the same importance (v). Communication
and coordination capability constraints (cy, c7, cg) yield crisp
membership results. Similar, resource versioning, conflict res-
olution, and distributed storage (c», ¢3,c¢) populate a distinct
cluster, as do constraints c¢9 and cj9. The real benefit of
soft (as opposed to hard) clustering becomes apparent when
we observe the cluster membership values for constraint c4
and c¢s. Every service exhibits to some degree capabilities
that describe the number of supported users, and respective
storage size. Consequently, these constraints lack a crisp
cluster membership and subsequently have a similar effect on
the final ranking process within all three clusters.

C. Discussion

We provide the final ranking results within the three clusters
in the right part of Table I. Column R,,, contains the non-
clustered ranking scores. Clustering yields two main advan-
tages:

First, the combination of top services from each cluster
greatly outperforms the single top non-clustered service. The
set of §7, §4, and §; yield an average utility score of 65.8
compared to 41.5 when selecting only S; from R,,,.

Second, services that rank rather low in R,,,—such as S3
at position 10—potentially advance to the top candidates in a
clustered ranking set (e.g., S3 winds up at position 3 in Rk3).
Thus, specialized services are more likely to become part of
a mashup.

In our example, the three top services from R,,, are the top
clustered services. Confronted with no clustering information,
however, the mashup developer would have to consult the ser-
vice capabilities in detail to understand the differences of the
top services. Furthermore, the mashup developer would remain
unaware of the number of clusters and it’s not guaranteed that
the top elements always yield complementary capabilities.

Besides comparing ranking scores, we qualitatively evaluate
the clustering result with Pearson’s correlation coefficient p.
p describes the correlation of the elements’ sequence in two
ranking sets. Sets with p = 1 yield identical order, while sets



with p = —1 exhibit inverse order. Table I provides the pairwise
calculated coefficients between R,,, and Rk k3. Cluster K,
exhibits some, cluster K, little, and cluster K3 no correlation.
We can thus conclude that constraint clustering revealed a
distinct structure in the service utility values that is beneficial
for mashup adaptation.

VII. RELATEDWORK

The majority of mashup research efforts focuses on integra-
tion support [8]. Rosenberg et al. [9] introduce a lightweight
composition language to integrate RESTful services into
mashups. Maximilien et al. [10] describe a domain-specific
language to create mashups that can be easily reused by
other developers. Such collaborative design is also central
to expressFlow by Vasko and Dustdar [11]. Their frame-
work provides abstract composition models, which are then
automatically transformed into various executable mashup
languages. SOAlive [12] applies some of these ideas to service
description, discovery, and composition.

To the best of our knowledge, dedicated recommendation
support for mashup development has gained little attention yet.
Blake and Nowlan [13] investigate service similarity measures
based on syntactical message analysis to recommend suitable
services. Their algorithm is, however, incapable of distinguish-
ing between services that apply similar data structures but
provide completely different capabilities. Ranabahu et al.[14]
take this idea a step further and propose a faceted classification
based approach.

More advanced adaptation techniques exist in the broader
domain of service composition. Work focusing on QoS-centric
service selection, recommendation, and composition is orthog-
onal to our approach. QoS metrics describe parameters such
as throughput and latency [15], or trust and reputation [16],
[17] that equally apply to any service. Our capability model
focuses rather on the gap between QoS and service interface
descriptions.

Our combination of capabilities and requirement rules has
similarities with goal-oriented service adaptation. Services
get replaced when goals are no longer met. Examples such
as [18], [19], [20], however, analyze context changes merely
to determine when to reconfigure the composition. In contrast,
we apply context to update the relevant set of goals.

VIII. CoNcLUSION

Service mashups designers need context-aware adaptation
recommendation in dynamic environments. Our approach
matches service capabilities against dynamically updated ca-
pability requirements. The resulting utility values enable fuzzy
constraint clustering to identify groups of complementary
capability constraints. We have demonstrated that selecting the
top elements from multiple clusters offers a benefit when two
conditions hold: First, the clusters yield a distinctly different
ranking sequence than the non-clustered ranking result; and
second the average utility of the top clustered elements is
significantly larger than the utility of the top non-clustered
element. The presented clustering algorithm yields promising

results, however, it does not consider aggregation costs yet.
This will be subject to future work. In addition, we plan to
automatically derive applicable requirements from the service
operations that are invoked during mashup execution.
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