
VieSLAF Framework: Enabling Adaptive

and Versatile SLA-Management

Ivona Brandic, Dejan Music, Philipp Leitner, and Schahram Dustdar

Distributed Systems Group, Institute of Information Systems
Vienna University of Technology, Vienna, Austria

{ivona,dejan,leitner,dustdar}@infosys.tuwien.ac.at

Abstract. Novel computing paradigms like Grid and Cloud computing
demand guarantees on non-functional requirements such as application
execution time or price. Such requirements are usually negotiated follow-
ing a specific Quality of Service (QoS) model and are expressed using Ser-
vice Level Agreements (SLAs). Currently available QoS models assume
either that service provider and consumer have matching SLA templates
and common understanding of the negotiated terms or provide public
templates, which can be downloaded and utilized by the end users. On
the one hand, matching SLA templates represent an unrealistic assump-
tion in systems where service consumer and provider meet dynamically
and on demand. On the other hand, handling of public templates seems
to be a rather challenging issue, especially if the templates do not re-
flect users’ needs. In this paper we present VieSLAF, a novel framework
for the specification and management of SLA mappings. Using VieSLAF
users may specify, manage, and apply SLA mapping bridging the gap be-
tween non-matching SLA templates. Moreover, based on the predefined
learning functions and considering accumulated SLA mappings, domain
specific public SLA templates can be derived reflecting users’ needs.

1 Introduction

Nowadays, well established and traditional resource sharing models are shifted
towards novel market-oriented models revolutionizing existing Grid and High
Performance Computing (HPC) concepts [8]. In market-oriented resource shar-
ing models users discover resources on demand and pay for the usage of the
specific resources. In turn they expect that besides requested functional require-
ments, non-functional requirements of the application execution are also fulfilled
[1,19,12]. Non-functional requirements comprise application execution time, re-
liability, availability, and similar issues. Non-functional requirements are termed
as Quality of Service (QoS) and are expressed and negotiated by means of Ser-
vice Level Agreements (SLAs). SLA templates represent empty SLA documents
i.e., SLA documents, with all required elements like parties, SLA parameters,
metrics, and objectives, but without QoS values [9].

A large body of work deals with SLA based QoS negotiation and integra-
tion of QoS concepts into Grid management tools [10,17]. However, most of the

J. Altmann, R. Buyya, and O.F. Rana (Eds.): GECON 2009, LNCS 5745, pp. 60–73, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

VieSLAF Framework: Enabling Adaptive and Versatile SLA-Management 61

existing work relies either on inflexible QoS models assuming that the communi-
cation partners have matching SLA templates or provide public SLA templates,
which can be downloaded and utilized on the users’ system. On the one hand,
matching SLA templates limit QoS negotiation only between partners where
QoS relationship is already established off-line, or to partners who belong to a
particular Grid portal [1]. On the other hand, publicly available SLA templates
usually do not reflect users’ needs. Thus, in order to increase QoS versatility,
flexible QoS models are necessary where negotiation is possible even between
services which do not have matching SLA templates. The problems with non-
matching templates can be exemplified on a very simple example with differing
terms of contract on both sides. The term price may be defined as usage price
or service price, etc., leading to inconsistencies during the negotiation process.
Another example of not matching templates are SLA templates which slightly
differ in their structure.

In this paper we approach the gap between existing QoS methods and novel
computing paradigms like Cloud Computing by proposing VieSLAF, a frame-
work for the management of SLA mappings. Thereby, mappings are defined by
XSLT1 documents where inconsistent parts of one document are mapped to an-
other document e.g, from the consumer’s template to the provider’s template.
Moreover, based on SLA mappings and deployed taxonomies we eliminate seman-
tic inconsistencies between consumer’s and provider’s templates. The purpose of
the submitted SLA mappings is twofold: (1) using VieSLAF users may discover
services on demand, define mappings to available templates, if necessary and
finally start the negotiation with selected services. Therefore, the negotiation is
not only limited to services belonging to a special portal or where a relation-
ship is already established off-line; (2) based on VieSLAF ’s predefined learning
functions and accumulated SLA mappings we facilitate user driven definition of
public SLA templates.

Based on a case study the presented SLA mapping architecture has been
successfully used to manage SLA mappings in context of a Grid workflow man-
agement tool [4] and adaptable Cloud services [6]. Additionally to [4,6] where we
presented the general approach for SLA mappings, in this paper we present (1)
the VieSLAF architecture in detail with modules for the measurement of SLA
parameters, (2) implementation details of the VieSLAF framework; and (3) first
experimental results.

The main contributions of this paper are: (1) description of the scenarios
for the definition of SLA mapping documents; (2) definition of the VieSLAF
architecture used for the semi-automatic management of SLA mappings (3)
demonstration of learning functions, which can be used to obtain realistic public
templates and (4) evaluation of the VieSLAF architecture using an experimental
testbed.

The rest of this paper is organized as follows: Section 2 presents the related
work. In Section 3 we present our SLA mapping approach. In particular we
discuss the management of SLA mappings, SLA transformations, and an example

1 XSL Transformations (XSLT) Version 1.0, http://www.w3.org/TR/xslt.html

62 I. Brandic et al.

SLA mapping document. Section 4 presents the VieSLAF architecture including
the used semantic model, methods for SLA mappings and transformations, used
registries and features for the SLA monitoring and adaptation of SLA templates.
In Section 5 we discuss our first experimental results. Section 6 concludes this
paper and describes the future work.

2 Related Work

Currently, a large body of work exists in the area of Grid service negotiation
and SLA-based QoS. Most of the related work can be classified into the follow-
ing three categories: (1) adaptive SLA mechanisms based on OWL, DAML-S
and other semantic technologies [17,10,23]; (2) SLA based QoS systems, which
consider varying service requirements but do not consider non matching SLA
templates [1,20]; and (3) systems relying on the principles of autonomic com-
puting [3,14,15].

Work presented in [18] discusses the incorporation of SLA-based resource
brokering into existing Grid systems. Oldham et al. describe a framework for
semantic matching of SLAs based on WSDL-S and OWL [17]. Dobson at al.
present a unified quality of service (QoS) ontology applicable to the main sce-
narios identified such as QoS-based Web services selection, QoS monitoring and
QoS adaptation [10]. Zhou et al. survey the current research on QoS and ser-
vice discovery, including ontologies such as OWL-S and DAML-S. Thereafter,
an ontology is proposed, DAML-QoS, which provides detailed QoS information
in a DAML format [23]. Hung et al. propose an independent declarative XML
language called WS-Negotiation for Web services providers and requestors. WS-
Negotiation contains three parts: negotiation message, which describes the for-
mat for messages exchanged among negotiation parties, negotiation protocol,
which describes the mechanism and rules that negotiation parties should fol-
low, and negotiation decision making, which is an internal and private decision
process based on a cost-benefit model or other strategies [13].

Work presented in [1] extends the service abstraction in the Open Grid Ser-
vices Architecture (OGSA) for QoS properties focusing on the application layer.
Thereby, a given service may indicate the QoS properties it can offer or it may
search for other services based on specified QoS properties.

Quan et al. discuss the process of mapping a light communication workflow
within an SLA context with different kinds of sub-jobs and resources [16]. Dan
et al. present a framework for providing customers of Web services differenti-
ated levels of service through the use of automated management and SLAs [9].
Ardagana et al. present an autonomic grid architectures with mechanisms to
dynamically re-configure service center infrastructures, which is basically ex-
ploited to fulfill varying QoS requirements [3]. Koller et al. discuss autonomous
QoS management using a proxy-like approach. The implementation is based on
WS-Agreement [21]. Thereby, SLAs can be exploited to define certain QoS pa-
rameters that a service has to maintain during its interaction with a specific
customer [14]. König at al. investigate the trust issue in electronic negotiations,

VieSLAF Framework: Enabling Adaptive and Versatile SLA-Management 63

dealing with how to trust a potential transaction partner and how to choose
such partners based on their past behavior [15].

However, to the best of our knowledge none of the discussed approaches deals
with user-driven and semi-automatic definition of SLA mappings enabling nego-
tiations between inconsistent SLA templates. Moreover, none of the presented
approaches facilitates user driven definition of publicly available SLA templates.

3 The SLA Mapping Approach

In the presented approach each SLA template has to be published into a registry
where negotiation partners i.e., provider and consumer, can find each other. The
management of SLA mappings and published services is presented in Section 3.1.
The transformations between remote and local SLA templates are discussed in Sec-
tion 3.2. Finally, an example SLA mapping document is presented in Section 3.3.

3.1 Management of SLA Mappings

Figure 1(a) depicts the architecture for the management of SLA mappings and
participating parties. The registry comprises different SLA templates whereby
each of them represents a specific application domain e.g., SLA templates for
the medical, telco or life science domain. Thus, each service provider may assign
his/her service to a particular template (see step 1 in Figure 1(a)) and afterwards
assign SLA mappings, if necessary (see step 2). Each template a may have n
services assigned. Available templates can be browsed using an appropriate GUI.

Service consumers may search for the services using meta-data and search
terms (step 3). After finding appropriate services each service consumer may
define mappings to the associated template (step 4). Thereafter, the negotiation
between service consumer and service provider may start as described in the next
section. SLA mappings should be defined in a dynamic way. Thus, SLA templates
can be updated frequently to reflect the actual SLAs used by service provides
and consumers based on predefined adaptation rules (step 5). The adaptability
functionality facilitates the generation of user driven public SLA templates.

- Service 1

- Service 2

- Service 3

- ...

- Service n

Service Registry

- Service 1

- Service 2

- Service 3

- ...

- Service n

Template a:

- Service 1

- Service 2

- Service 3

- ...

- Service n

Service
Consumer

Service
Provider

3.
 <

<
se

ar
ch

 s
er

vi
ce

s>
>

4.
 <

<
as

si
gn

 m
ap

pi
ng

s>
>

1.
 <

<
as

si
gn

 s
er

vi
ce

s
to

 c
at

eg
or

y>
>

2.
 <

<
as

si
gn

 m
ap

pi
ng

s>
>

5. <<template adaptation>>

(a)

local
WSLA
template

Rule
from
local to
remote

XSL-
Transfor-
mations

+
remote
WSLA
Template

XSL-
Transfor-
mations

Rule
from
remote
to local

+

(b)

Fig. 1. Management of SLA-Mappings (a) QoS basic scenario (b)

64 I. Brandic et al.

Currently, SLA mappings are defined on an XML level, where users define
XSL transformations. A UML based GUI for the management of SLA-mappings
is under development [4].

3.2 SLA-Mappings Transformations

Figure 1(b) depicts a scenario for defining XSL transformations. As the SLA
specification language we use Web Service Level Agreements (WSLA)s [22]. We
also developed first bootstrapping strategies for communication across different
SLA specification languages [5].

WSLA templates are publicly available and published in a searchable reg-
istry. Each participant may download already published WSLA templates and
compare it in a semi-automated or automated way with the local template. If
there are any inconsistencies discovered, the service consumer may write rules
(XSL transformation) from his/her local WSLA template to the remote tem-
plate. The rules can also be written by using appropriate visualization tools, for
example using a GUI as depicted in Figure 3. Thereafter, the rules are stored
in the database and can be applied during the runtime to the remote WSLA
template. Since during the negotiation process transformations are done in two
directions, the transformations from the remote WSLA template to the local
WSLA template are necessary as well.

As depicted in Figure 1(b), a service consumer is generating a WSLA. The lo-
cally generated WSLA plus the rules defining transformations from local WSLA
to remote WSLA deliver a WSLA which is compliant to the remote WSLA. In
the second case the remote WSLA template has to be translated into the lo-
cal one. In that case the remote WSLA plus the rules defining transformations
from the remote to local WSLA deliver a WSLA which is compliant to the local
WSLA. Thus, the negotiation may be done between non-matching WSLAs in
both directions: from service consumer to service provider and vice versa.

The service provider can define rules for XSL transformations in the same way
as depicted in Figure 1(b) from the publicly published WSLA templates to the
local WSLA templates. Thus, both parties, provider and consumer, may match
on a publicly available WSLA template.

3.3 SLA-Mappings Document (SMD)

Figure 2 shows a sample rule for XSL transformations where price defined in
Euros is transformed to an equivalent price in US Dollars. Please note that for
the case of simplicity we use a relatively simple example. Using XSLT more
complicated mappings can also be defined. Explanation of this is out of scope of
this paper.

As shown in Figure 2, the Euro metric is mapped to the Dollar metric. In this
example we define the mapping rule returning Dollars by using the Times function
of WSLA Specification (see line 5). The Times function multiplies two operands:
the first operand is the Dollar amount as selected in line 12, the second operand

VieSLAF Framework: Enabling Adaptive and Versatile SLA-Management 65

1. ...
2. <xsl:template ...>
3. <xsl:element name="Function" ...>
4. <xsl:attribute name="type">
5. <xsl:text>Times</xsl:text>
6. </xsl:attribute>
7. <xsl:attribute name="resultType">
8. <xsl:text>double</xsl:text>
9. </xsl:attribute>
10. <xsl:element name="Operand" ...>
11. <xsl:copy>
12. <xsl:copy-of select="@*|node()"/>
13. </xsl:copy>
14. </xsl:element>
15. <xsl:element name="Operand" ...>
16. <xsl:element name="FloatScalar" ...>
17. <xsl:text>1.27559</xsl:text>
18. </xsl:element>
19. </xsl:element>
20. </xsl:element>
21.</xsl:template>
22. ...

Fig. 2. Example XSL Transformation

is the Dollar/Euro quote (1.27559) as specified in line 17. The dollar/euro quote
can be retrieved by a Web service and is usually not hard coded.

With similar mapping rules users can map simple syntax values (values of
some attributes etc.), but they can even define complex semantic mappings with
considerable logic. Thus, even syntactically and semantically different SLA tem-
plates can be translated into each other.

4 VieSLAF Framework

In this section we present the architecture used for the semi-automated manage-
ment of SLA mappings and generation of public SLA templates. We discuss a
sample architectural case study exemplifying the usage of VieSLAF. Thereafter,
we describe each VieSLAF ’s core component in detail.

4.1 VieSLAF Architecture

The VieSLAF framework enables application developers to efficiently develop
adaptable service-oriented applications simplifying the handling with numerous
Web service specifications. The framework facilitates management of QoS models
as for example management of meta-negotiations and SLA mappings [7]. Based
on the VieSLAF framework service providers may easily manage QoS models
and SLA templates and frequently check whether selected services satisfy de-
veloper’s needs e.g., specified QoS-parameters in SLAs. Furthermore, we discuss
basic ideas about the adaptation of SLA templates needed for the generation of
realistic public SLA templates.

66 I. Brandic et al.

Adaptation
rules for SLA

templates

Remote

SLA

template

Meta Negotiaiton
Middleware (MNM)
Meta Negotiaiton

Middleware (MNM)
Meta Negotiaiton

Middleware (MNM)
 SLA Mapping

Middleware
SLA Mapping
Middleware

Sample Service
provider specific

middleware

Client,
consumer specific

middleware

WSDL

(2)

API...
...

Remote

SLA

template

Data Model

Local SLA

template

Local SLA

template

Remote

SLA

template

(4)

Trans-

formation

rules:

XSLT,

XPath

Trans-

formation

rules:

XSLT,

XPath

Trans-

formation

Rules:

XSLT,

XPath

Trans-

formation

Rules:

XSLT,

XPath

Sevice 1
Thread1_param1
Thread2_param2

Threadn_paramn
...

Sevice 2

Thread1_param1
Thread2_param2

Threadn_paramn
...

(8)

(1)

Cloud of measurement services

meta

negotiatio

n document

meta

negotiatio

n document

Remote

SLA

template

(1)

Knowledge Base

Adaptation

Monitoring

Sample Consumer

Sample Provider

Registry

DB

DB

(3)

(6)

(9)

(5)

(7)

Fig. 3. VieSLAF Architecture

We describe the VieSLAF components based on Figure 3. As shown in step
(1) in Figure 3 users may access the registry using a GUI, browse through exist-
ing templates using the SLA mapping middleware. In the next step (2) service
providers specify SLA mappings using the SLA mapping middleware and submit
them to the registry. Thereafter, in step (3) service consumers may define their
own SLA mappings to the remote templates and submit them to the registry.
SLA mapping middleware on both sides (provider’s and consumer’s) facilitates
the management of SLA mappings. Submitted SLA mappings are parsed and
mapped to a predefined data model (step 4). Thereafter, service negotiation may
start (step 5). During the negotiation SLA mappings and XSLT transformations
are applied (step 6). After the negotiation, the invocation of the service methods
may start (step 7). SLA parameters are monitored using the monitoring service
(step 8). Based on the submitted SLA mapping publicly available SLA templates
are adapted reflecting the majority of local SLA templates (step 9).

4.2 VieSLAF Components

As shown in Figure 3 the major VieSLAF components are the knowledge base,
components for monitoring and adaptation and the SLA middleware used by
service provider and consumer.

Knowledge Base. As shown in Figure 3 the knowledge base is responsible
for storing SLA templates and SLA mapping documents. For storing of SLA
template documents we implemented registries representing searchable repos-
itories. Currently we have implemented a MS-SQL 2008 database with a Web

VieSLAF Framework: Enabling Adaptive and Versatile SLA-Management 67

service front end that provides the interface for the management of SLA map-
pings. To handle scalability issues we intend to host the registries using a cloud
of databases hosted on a service provider such as Google App Engine [11] or
Amazon EC2 [2]. SLA templates are stored in a canonical form enabling com-
parison of XML documents. The registry methods are implemented as Windows
Communication Foundation (WCF) services and can be accessed only with ap-
propriate access rights. The database is manipulated based on the role-model.
We define three roles: service consumer, service provider and registry adminis-
trator. Service consumers are able to search suitable services for the selected
service categories e.g., by using the method findServices. Service consumers may
also create SLA-mappings using the method createAttributeMapping. Service
providers may publish their services and bind it to a specific template category
using the method createService.

Sample Provider and Sample Consumer. A sample provider and a sample
consumer are shown in the lower part of Figure 3. Basically, a service con-
sumer/provider consists of a client/service based middleware, SLA mapping
middleware facilitating the access to registries, and a GUI used for browsing
remote templates.

SLA Mapping Middleware. As already mentioned SLA mapping middleware is
based on different WCF services. For the sake of brevity, in the following we dis-
cuss just a few of them. The RegistryAdministrationService provides methods for
the manipulation of the database where administrator rights are required e.g.,
creation of template categories. Another example represents the WSLAMap-
pingService, which is used for the management of SLA mappings by service
consumer and service provider. WSLAQueryingService is used to query the SLA
mapping database. The database can be queried based on template categories,
SLA attributes and similar attributes. Other implemented WCF service are, for
example, services for SLA parsing, XSL transformations, and SLA validation.

Service consumers may search for appropriate services through WSLAQuery-
ingService and define appropriate SLA-mappings by using the method createAt-
tributeMapping. Each query request is checked at runtime, if the service consumer
has also specified any SLA-mappings for SLAElements and SLAAttributes spec-
ified in category’s SLA-Template. SLA transformations are applied before the
requests of the service consumers can be completely checked. The rules necessary
for the transformations of attributes and elements can be found in the database
and can be applied using the consumer’s WSLA-Template. Thereafter, the con-
sumer’s template is completely translated into a category’s WSLA-Template.
Transformations are done by WSLATransformator implemented with the .NET
3.5 technology and using LINQ2.

Monitoring Service. As depicted in Figure 3, we implemented a lightweight
concept for the monitoring of SLA parameters for all services published in a

2 Language Integrated Query.

68 I. Brandic et al.

specific template category. The aim of the monitoring service is to frequently
check the status of the SLA parameters of an SLA agreement and deliver the
information to the service consumer and/or provider. Furthermore, the monitor-
ing service monitors values of SLA parameters as specified in the SLA-Template
of the published services. Monitoring starts after publishing a service in a cate-
gory and is provided through the whole lifetime of the service. The monitoring
service is implemented as an internal registry service, similar to other services
for parsing, transformation, and validation, that we have already explained in
previous sections. In the following we describe how the monitoring process can
be started i.e., all the steps necessary to setup monitoring.

After the publishing of the service and SLA mappings, SLAs are parsed and
it is identified which SLA parameters have to be monitored and how. We distin-
guish between periodically measured SLA parameters and the parameters which
are measured on request. The values of the periodically measured parameters
are stored in the so-called parameter-pool. The monitoring service provides two
methods: a knock-in method for starting the monitoring and a method for re-
ceiving the measured SLA parameters from the measurement pool. Whenever a
user requests monitoring information of the particular SLA (i) SLAs parameters
are requested from the parameter-pool in case of periodically measured parame-
ters or (ii) SLA parameters are immediately measured as defined in the parsed
and validated SLAs in case of on-request parameters.

Adaptation Service. Remote SLA templates should not be defined in a static
way, they should reflect provider’s and consumer’s needs. Thus, we implemented
a first prototype of an internal registry’s adaptation service, which can be used by
consumers and providers as shown in Figure 3 in order to derive realistic public
SLA templates. Users can specify SLAParameters which should be added into
SLA-Template or choose some SLAParameters which they do not need and want
to delete.

Each ParameterWish (add/delete) is saved as an XML chunk that contains
all SLAParameters with metrics which should be added/deleted from a specific
SLA-Template. Registry administrators have to configure a learning capability
property for each template category. The property defines how many requests for
a specific ParameterWish have to be defined in order to add/delete Parameter-
Wish to/from an SLA-Template. Whenever a new ParameterWish is accepted
a new revision category of an SLA template is generated. All services and con-
sumers who voted for that specific wish are automatically re-published to the
new revision. Also all SLA mappings are automatically assigned to the new tem-
plate revision. Old SLA mappings of the consumers and services are deleted and
also all old background threads used for calculation for old SLA template are
aborted. The newly generated SLA template is thereafter parsed and new back-
ground monitoring threads are created and started for each service. Thus, based
on the presented adaptation approach public templates can be derived in a user
driven way reflecting the majority of local templates.

VieSLAF Framework: Enabling Adaptive and Versatile SLA-Management 69

5 Evaluation

In this section we evaluate the VieSLAF framework. In Section 5.1 we measure
the overhead produced by SLA mappings compared to Web service invocation
without mappings. We describe the experimental testbed and the setup used.
Thereafter, we discuss the experimental results. In Section 5.2 we discuss stress
tests with the varying number of concurrently invoked SLA mappings. In Section
5.3 we present results with the varying number of SLA mappings per single Web
service invocation.

Database

Windows Server 2008
SP 1

S1 S10...

SLA Mapping
Middelware

VieSLAF
Client

Registry

Administrator Role

Registry administration

Service invocation

Mapping, Parsing

VieSLAF

Fig. 4. VieSLAF Testbed

5.1 Overhead Test

In order to test the VieSLAF framework we developed a testbed as shown in
Figure 4. As a client machine we used an Acer Aspire Laptop, Intel Core 2 Duo
T5600 1.83 GHz, 2 MB L2 Cache 1GB RAM. For hosting of 10 sample services,
calculator services with 5 methods, we used a single core Xenon 3.2Ghz, 2MB
L1 cache, 4GB RAM Sun blade machine. We use the same machine to host
VieSLAF s WCF services. The aim of our evaluation is to measure the overhead
produced using VieSLAF ’s WSLAQueryingService for search and SLA mappings
of the appropriate services.

We created 10 services (S1,..., S10) and 10 accounts for service providers.
We also created the registry administrator’s role, which manages the creation of
template categories with the corresponding SLA templates. The SLA template
represents a remote calculator service with five methods: Add, Subtract, Multiply,
Divide and Max. Both, the provider and the consumers define five SLAMappings,
which have to be used during the runtime. We specify three simple, syntactic
mappings where we only change the name of an element or attribute. The other
two mappings consider also semantic mappings, where we map between struc-
turally different SLA templates.

Table 1 shows the experimental results. The measured values represent the
arithmetic mean of 20 service invocations. The overhead measured during the
experimental results includes the time needed for validation of WSLA documents
(column Validation in Table 1), the time necessary to perform SLA-mappings
from the local consumers to the remote SLA templates (column Consumer Map-
ping) and the time necessary to transform the remote SLA templates to the local

70 I. Brandic et al.

Table 1. SLA Mappings Overhead Compared to Simple Web Service Invocation (With-
out SLA Mappings)

Service Search Time Total

SLA-Mapping Remaining Time

Validation Consumer Mapping Provider Mapping

Time in sec 0.046 0.183 0.151 1.009 1.389

Time [%] 3.32 13.17 10.87 72.64 100.00

providers (column Provider Mapping). Furthermore, we measured the remain-
ing time necessary to perform a search. The remaining time includes the round
trip time for a search including data transfer between the client and the service
and vise versa. As shown in Table 1 the time necessary to handle SLA mappings
(V alidation+ConsumerMapping+ProviderMapping) represents 0.38 seconds
or 27, 36% of the overall search time.

Please note that the intention of the presented experimental results is the
proof of concept of the SLA mapping approach. We did not test the scalability
issues, since we intend to employ computing Clouds like Google App Engine [11]
or Amazon EC2 [2] in order to cope with the scalability issues.

5.2 Stress Tests

In this Section we describe tests on how the VieSLAF middleware copes with
the multiple SLA mappings executed concurrently with differing complexity.
Evaluation is done on an Acer Aspire Laptop, Intel Core 2 Duo T5600 1.83
GHz, 2 MB L2 Cache, 1GB RAM. For the evaluation we have used two different
SLA mappings:

– Simple: Invocation of the simple SLA mappings, an example is translation
of one attribute to another attribute e.g., usage price to price.

– Complex: Represents the invocation of the complex SLA mappings, as for
example semantic mappings considering two structurally different SLA tem-
plates.

We tested VieSLAF with different versions of XSLT transformers, namely with
XSLTCompiledTransform, .Net version 3.0 and with the obsolete XSLTTrans-
form Class from .Net 1.1. Figure 5(a) shows the measurements with the XSLT-
CompiledTransform Transformer and with the XSLTTransform Class. The x
axis depicts the number of SLA mappings performed concurrently i.e., number
of runs. The y axis depicts the measured time for the execution of SLA mappings
in seconds.

Considering the measurement results we can observe that the XSLTTransform
Class is faster than the XSLTCompiledTransform Transformer from the newer
.Net version. Complex mappings executed with the XSLTTransform Class al-
most overlap with the simple mappings executed with the XSLTCompiledTrans-
form. We can observe that in both cases, simple and complex mapping, the

VieSLAF Framework: Enabling Adaptive and Versatile SLA-Management 71

0.01

0.1

1

10

5x 10x 15x 20x 25x 50x 100x 500x 1000x

Simple XSLTCompiledTransform
ComplexXSLTCompiledTransform
Simple XSLTTransform
ComplexXSLTTransform

(a) (b)

Fig. 5. Stress Tests with XSLTCompiledTransform Transformer and XSLTTransform
Class (a) Measurements with varying number of SLA mappings per Web Service In-
vocation (b)

performance starts to significantly decrease with the number of SLA mappings
> 100. If the number of mappings < 100, the execution time is about or less
than 1 second.

5.3 Multiple SLA Mapping Tests

In this section we discuss performance results measured during a Web service call
with varying numbers of SLA mappings per service. We measured 5, 10, 15 and
20 SLA mappings per Web service call. In order to create a realistic testbed we
used SLA mappings which depend on each other: e.g., attribute A is transformed
to attribute B, B is transformed to C, C to D, and so on. Thus, we simulate
the worst case, where SLA mappings can not be performed concurrently, they
have to be performed sequentially.

Evaluation is done on an Acer Aspire Laptop, Intel Core 2 Duo T5600 1.83
GHz, 2 MB L2 Cache, 1GB RAM. Figure 5(b) shows measured results. The x
axis depicts the number of SLA mappings performed concurrently or sequentially
considering attribute dependencies. The y axis depicts the measured time for the
execution of SLA mappings in milliseconds. We executed SLA mappings between
the remote template and the provider’s template (i.e., provider mappings as
described in Table 1) before the runtime, because these mappings are known
before consumer requests. Thus, only mappings between the consumer’s template
and the remote template are done during the runtime as indicated with the SLA
Mapping line. The line SLA Mapping + Client invocation comprises the time
for the invocation of a Web service method including SLA mapping time. The
SLA Mapping + Client invocation line does not comprise round-trip time, it
comprises only the request time.

We can conclude that even with the increasing number of SLA mappings and
considering the worst case scenario with sequentially performed mappings the
SLA mapping time represents about 20% of the overall execution time.

72 I. Brandic et al.

6 Conclusion and Future Work

In this paper we presented the VieSLAF framework used for the management
of SLA mappings. SLA mappings are necessary in service oriented Grids and
computational Clouds where service consumer and provider usually do not have
matching SLA templates. Thus, based on SLA mappings even those partners
with slightly different templates may negotiate with each other and increase
the number of potential negotiation partners. We have demonstrated how Grid
service users (provider and consumer) may search for appropriate services, define
SLA mappings, if necessary, and finally start service negotiation and execution.
Using VieSLAF users can even monitor SLA parameters during the execution
of the service calls. Thereafter, we presented how the SLA mappings and the
predefined learning functions can be used to adapt SLA templates. Adaptability
functions facilitate generation of user driven public SLA templates. Finally, we
discussed our first proof of concept based on the experimental results.

In the future we plan to extend our work on adaptable Cloud services and
test our approach with real life applications.

Acknowledgments

The work described in this paper was partially supported by the European Com-
munity’s Seventh Framework Programme [FP7/2007-2013] under grant agree-
ment 215483 (S-Cube) and by the Vienna Science and Technology Fund (WWTF)
under grant agreement ICT08-018 Foundations of Self-governing ICT Infrastruc-
tures (FoSII).

References

1. Al-Ali, R.J., Rana, O.F., Walker, D.W., Jha, S., Sohail, S.: G-qosm: Grid service
discovery using qos properties. Computing and Informatics 21, 363–382 (2002)

2. Amazon Elastic Compute Cloud (Amazon EC2), http://aws.amazon.com/ec2/
3. Ardagna, D., Giunta, G., Ingraffia, N., Mirandola, R., Pernici, B.: QoS-driven web

services selection in autonomic grid environments. In: Meersman, R., Tari, Z. (eds.)
OTM 2006. LNCS, vol. 4276, pp. 1273–1289. Springer, Heidelberg (2006)

4. Brandic, I., Music, D., Dustdar, S., Venugopal, S., Buyya, R.: Advanced QoS Meth-
ods for Grid Workflows Based on Meta-Negotiations and SLA-Mappings. In: The
3rd Workshop on Workflows in Support of Large-Scale Science. In conjunction with
Supercomputing 2008, Austin, TX, USA, November 17 (2008)

5. Brandic, I., Music, D., Dustdar, S.: Service Mediation and Negotiation Boot-
strapping as First Achievements Towards Self-adaptable Grid and Cloud Services.
In: Grids meet Autonomic Computing Workshop 2009 - GMAC 2009. In conjunc-
tion with the 6th International Conference on Autonomic Computing and Com-
munications Barcelona, Spain, June 15-19 (2009)

6. Brandic, I.: Towards Self-manageable Cloud Services. In: The Second IEEE Inter-
national Workshop on Real-Time Service-Oriented Architecture and Applications
(RTSOAA 2009). In conjunction with the 33rd Annual IEEE International Com-
puter Software and Applications Conference, Seattle, Washington, USA, July 20-24
(2009)

http://aws.amazon.com/ec2/

VieSLAF Framework: Enabling Adaptive and Versatile SLA-Management 73

7. Brandic, I., Venugopal, S., Mattess, M., Buyya, R.: Towards a Meta-Negotiation
Architecture for SLA-Aware Grid Services. In: Workshop on Service-Oriented En-
gineering and Optimizations 2008. In conjunction with International Conference
on High Performance Computing 2008 (HiPC 2008), Bangalore, India, December
17 - 20 (2008)

8. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud Computing
and Emerging IT Platforms: Vision, Hype, and Reality for Delivering Computing
as the 5th Utility. Future Generation Computer Systems 25(6), 599–616 (2009)

9. Dan, A., Davis, D., Kearney, R., Keller, A., King, R., Kuebler, D., Ludwig,
H., Polan, M., Spreitzer, M., Youssef, A.: Web services on demand: WSLA-driven
automated management. IBM Systems Journal 43(1) (2004)

10. Dobson, G., Sanchez-Macian, A.: Towards Unified QoS/SLA Ontologies. In: Pro-
ceedings of the 2006 IEEE Services Computing Workshops (SCW 2006), Chicago,
Illinois, USA, September 18-22 (2006)

11. Google App Engine, http://code.google.com/appengine
12. Foundations of Self-Governing ICT Infrastructures (FoSII) Project,

http://www.wwtf.at/projects/research_projects/details/index.php?

PKEY=972_DE_O

13. Hung, P.C.K., Haifei, L., Jun-Jang, J.: WS-Negotiation: an overview of research
issues. In: Proceedings of the 37th Annual Hawaii International Conference on
System Sciences, Big Island, Hawaii, January 5-8 (2004)

14. Koller, B., Schubert, L.: Towards autonomous SLA management using a proxy-like
approach. Multiagent Grid Syst. 3(3) (2007)

15. König, S., Hudert, S., Eymann, T., Paolucci, M.: Towards reputation enhanced elec-
tronic negotiations for service oriented computing. In: Falcone, R., Barber, S.K.,
Sabater-Mir, J., Singh, M.P. (eds.) Trust 2008. LNCS, vol. 5396, pp. 273–291.
Springer, Heidelberg (2008)

16. Quan, D.M., Altmann, J.: Resource allocation algorithm for light communication
grid-based workflows within an SLA context. International Journal of Parallel,
Emergent and Distributed Systems (IJPEDS) 24(1), 31–48 (2009)

17. Oldham, N., Verma, K., Sheth, A.P., Hakimpour, F.: Semantic WS-agreement
partner selection. In: Proceedings of the 15th international conference on World
Wide Web, WWW 2006, Edinburgh, Scotland, UK, May 23-26 (2006)

18. Ouelhadj, D., Garibaldi, J.M., MacLaren, J., Sakellariou, R., Krishnakumar, K.T.:
A multi-agent infrastructure and a service level agreement negotiation protocol for
robust scheduling in grid computing. In: Sloot, P.M.A., Hoekstra, A.G., Priol, T.,
Reinefeld, A., Bubak, M. (eds.) EGC 2005. LNCS, vol. 3470, pp. 651–660. Springer,
Heidelberg (2005)

19. Venugopal, S., Buyya, R., Winton, L.: A Grid Service Broker for Scheduling
e-Science Applications on Global Data Grids. In: Concurrency and Computation:
Practice and Experience, vol. 18(6), pp. 685–699. Wiley Press, New York (2006)

20. Walker, D.W., Huang, L., Rana, O.F., Huang, Y.: Dynamic service selection in
workflows using performance data. Scientific Programming 15(4), 235–247 (2007)

21. Web Services Agreement Specification (WS-Agreement),
http://www.ogf.org/documents/GFD.107.pdf

22. Web Service Level Agreement (WSLA),
http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf

23. Zhou, C., Chia, L.T., Lee, B.S.: Semantics in service discovery and QoS measure-
ment. IT Professional 7(2), 29–34 (2005)

http://code.google.com/appengine
http://www.wwtf.at/projects/research_projects/details/index.php?PKEY=972_DE_O
http://www.wwtf.at/projects/research_projects/details/index.php?PKEY=972_DE_O
http://www.ogf.org/documents/GFD.107.pdf
http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf

	$VieSLA$F Framework: Enabling Adaptive and Versatile SLA-Management
	Introduction
	Related Work
	The SLA Mapping Approach
	Management of SLA Mappings
	SLA-Mappings Transformations
	SLA-Mappings Document (SMD)

	VieSLAF Framework
	VieSLAF Architecture
	VieSLAF Components

	Evaluation
	Overhead Test
	Stress Tests
	Multiple SLA Mapping Tests

	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

