
Service Mediation and Negotiation Bootstrapping as First
Achievements Towards Self-adaptable Grid and Cloud

Services

Ivona Brandic, Dejan Music, Schahram Dustdar
Institute of Information Systems, Vienna University of Technology

Argentinierstraße 8, 1040 Vienna, Austria
{ivona,dejan,dustdar}@infosys.tuwien.ac.at

ABSTRACT
Nowadays, novel computing paradigms as for example Grid
or Cloud Computing are gaining more and more on impor-
tance. In case of Cloud Computing users pay for the usage
of the computing power provided as a service. Beforehand
they can negotiate specific functional and non-functional re-
quirements relevant for the application execution. However,
providing computing power as a service bears different re-
search challenges. On the one hand dynamic, versatile, and
adaptable services are required, which can cope with system
failures and environmental changes. On the other hand, hu-
man interaction with the system should be minimized. In
this paper we present the first results in establishing adapt-
able, versatile, and dynamic services considering negotia-
tion bootstrapping and service mediation achieved in con-
text of the Foundations of Self-Governing ICT Infrastruc-
tures (FoSII) project. We discuss novel meta-negotiation
and SLA mapping solutions for Grid/Cloud services bridging
the gap between current QoS models and Grid/Cloud mid-
dleware and representing important prerequisites for the es-
tablishment of autonomic Grid/Cloud services. We present
document models for the specification of meta-negotiations
and SLA mappings. Thereafter, we discuss the sample archi-
tecture for the management of meta-negotiations and SLA
mappings.

Categories and Subject Descriptors
H.0 [Information Systems]: General; C.2.4 [Computer
Systems Organization]: Computer-Communication Net-
works—Distributed Systems; D.0 [Software]: General

General Terms
Management, Reliability, Performance

Keywords
Grid services, Cloud Computing, Autonomic Computing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GMAC’09, June 15, 2009, Barcelona, Spain.
Copyright 2009 ACM 978-1-60558-578-9/09/06 ...$5.00.

1. INTRODUCTION
Service-oriented Architectures (SOA) represent a novel

and promising approach for implementing ICT systems [4].
Thereby, software is packaged to services and can be ac-
cessed independently of the used programming languages,
protocols, and platforms. Despite remarkable adoption of
SOA as the key concept for the implementation of ICT sys-
tems, the full potential of SOA (e.g., dynamism, adaptivity)
is still not exploited [20]. SOA approach and Web service
technologies represent large scale abstractions and a candi-
date concept for the implementation of following novel com-
puting paradigms (a) Grid Computing, where sophisticated
scientific applications can be accessed as services over Inter-
net [1, 5], (b) Cloud Computing, where massively scalable
computing is made available to end users as a service [10].
In all those approaches the access to computing power is
provided as a service.

The key benefits of providing computing power as a service
are (a) avoidance of expensive computer systems configured
to cope with peak performance, (b) pay-per-use solutions
for computing cycles requested on-demand, and (c) avoid-
ance of idle computing resources. The development of novel
concepts for dynamic, versatile, and adaptive services rep-
resents an open and challenging research issue [16]. In this
paper we discuss the first prerequisites in achieving adap-
tive Grid/Cloud services based on principles of autonomic
computing [19].

Major goal of this paper is to facilitate service negoti-
ation in heterogeneous Grids. In order to enable service
users to find services which best fit to their needs (consid-
ering costs, execution time and other functional and non-
functional properties), service users should negotiate and
communicate with numerous publicly available services. In
this paper we address following research problems: negotia-
tion bootstrapping and service mediation as described next.

Non-functional requirements of a service execution are
termed as Quality of Service (QoS), and are expressed and
negotiated by means of Service Level Agreements (SLAs).
SLA templates represent empty SLA documents with all re-
quired elements like parties, SLA parameters, metrics and
objectives, but without QoS values [12]. However, most ex-
isting Grid/Cloud frameworks assume that the communica-
tion partner knows about the negotiation protocols before
entering the negotiation and that they have matching SLA
templates. In commercially used Grids and especially in case
of computational clouds, this is an unrealistic assumption
since services are discovered dynamically and on demand.

1

Thus, so-called meta-negotiations are required to allow two
parties to reach an agreement on what specific negotiation
protocols, security standards, and documents to use before
starting the actual negotiation. The necessity for SLA map-
pings can be motivated by differences in terminology for a
common attribute such as price, which may be defined as us-
age price on one side and service price on the other, leading
to inconsistencies during the negotiation process.

In this paper, we approach the gap between existing QoS
methods and Grid/Cloud services by proposing an architec-
ture for Grid/Cloud service management with components
for meta-negotiations and SLA mappings [9, 8, 7]. Meta-
negotiations are defined by means of a meta-negotiation doc-
ument where participating parties may express: the pre-
requisites to be satisfied for a negotiation, for example, re-
quirement for a specific authentication method; the sup-
ported negotiation protocols and document languages for
the specification of SLAs; and conditions for the establish-
ment of an agreement, for example, a required third-party
arbitrator. SLA mappings are defined by XSLT1 documents
where inconsistent parts of one document are mapped to an-
other document e.g., from consumer’s template to provider’s
template. Moreover, based on SLA mappings and deployed
taxonomies, we eliminate semantic inconsistencies between
consumer’s and providers SLA template.

The rest of this paper is organized as follows: Section
2 presents the related work. Section 3 gives an overview
about the goals of the adaptable, versatile, and dynamic
services, in particular goals considering negotiation boot-
strapping and service mediation. In Section 4 we discuss the
meta-negotiation approach, whereas in Section 5 we present
the SLA mapping approach. Section 6 presents the sam-
ple architecture named VieSLAF. Section 7 concludes this
paper and describes the future work.

2. RELATED WORK
Currently, a large body of work exists in the area of Grid

service negotiation and SLA-based QoS [21, 11]. Work pre-
sented in [24] discusses incorporation of SLA-based resource
brokering into existing Grid systems. Glatard et al. dis-
cuss a probabilistic model of workflow execution time eval-
uated in context of EGEE grid infrastructure [13]. Work
described in [25] presents an approach for dynamic work-
flow management and optimisation using near-realtime per-
formance with strategies for choosing an optimal service,
based on user-specified criteria, from several semantically
equivalent Web services. Oldham et al. describe a frame-
work for semantic matching of SLAs based on WSDL-S and
OWL [23].

Ardagana et al. [3] present an autonomic grid architec-
tures with mechanisms to dynamically re-configure service
center infrastructures, which is basically exploited to fullfill
varying QoS requirements. Work presented in [1] extends
the service abstraction in the Open Grid Services Architec-
ture (OGSA) for QoS properties focusing on the applica-
tion layer. Thereby, a given service may indicate the QoS
properties it can offer or it may search for other services
based on specified QoS properties. Work presented in [11]
proposes generalized resource management model where re-
source interactions are mapped onto a well defined set of

1XSL Transformations (XSLT) Version 1.0,
http://www.w3.org/TR/xslt.html

Autonomic Manager

Analysis Planning

Monitoring Execution

Knowledge

QoS Metrics
Protocol
Evaluation
...

QoS Metrics
Protocol
Evaluation
... Sensor Actuator

Service
Compositions
Mapping Strategies
...

Negotiation
using VieSLAF
framework
...

QoS
example

Figure 1: General Architecture of an Autonomic
System Explained on a QoS Example

platform-independent SLAs. The model is based on Service
Negotiation and Acquisition Protocol (SNAP) providing the
lifetime management SLAs.

Hill et al. discuss an architecture that allows changes to
the Grid configuration to be automated in response to op-
erator input or sensors placed throughout the Grid based
on principles of autonomic computing [17]. Similarly to Hill
et al. work discussed in Vambenepe et al. address global
service management based on principles of autonomic com-
puting [22].

Dan et al. [12] present a framework for providing cus-
tomers of Web services differentiated levels of service through
the use of automated management and SLAs. Work de-
scribed in [15] discusses how semantic technologies may be
used by mobile devices which need to locate and select ap-
propriate Grid services in an automatic and flexible way.
Jurca et al. propose a new form of SLAs where the price is
determined by the QoS which is actually delivered by ser-
vice provider. For the monitoring of QoS a novel approach
is introduced based on reputation mechanism [18].

However, to the best of our knowledge none of the dis-
cussed approaches deals with user-driven and semi-automatic
definition of SLA mappings enabling negotiations between
inconsistent SLA templates. Moreover, none of the pre-
sented approaches deals with meta negotiations supporting
matching of negotiation requirements.

3. ADAPTABLE, VERSATILE, AND DYNAMIC
SERVICES

In this Section we discuss how adaptable, versatile, and
dynamic services can be realized.

3.1 Overview
To facilitate dynamic, versatile, and adaptive IT infras-

tructures, SOA systems should react to environmental
changes, software failures, and other events which may influ-
ence the systems’ behavior. Therefore, adaptive systems ex-
ploiting self-* properties (self-healing, self-controlling, self-
managing, etc.) are needed, where human intervention with
the system is minimized. We propose models and concepts
for adaptive services building on the approach defined by
means of autonomic computing [19, 3].

We identified the following objectives:

Negotiation bootstrapping and service mediation.
The first objective is to facilitate communication be-
tween publicly available services. Usually, before ser-
vice usage, service consumer and service provider have

2

to establish an electronic contract defining terms of
use [6, 11]. Thus, they have to negotiate the exact
terms of contract (e.g., exact execution time of the ser-
vice). However, each service provides a unique negotia-
tion protocol often expressed using different languages,
representing an obstacle within the SOA architecture.
We propose novel concepts for automatic bootstrap-
ping between different protocols and contract formats
increasing the number of services a consumer may ne-
gotiate with. Consequently, the full potential of public
services could be exploited.

Service Enforcement. Services may fail, established con-
tracts between services may be violated. The second
objective is to develop methods for service enforce-
ment, where failures and malfunctions are repaired on
demand and where services are adapted to changing
environmental and system conditions. We propose de-
velopment of knowledge bases where the directives,
policies, and rules for failure adjustment and repair
may be specified and stored. Furthermore, adequate
methods for the condition specification and condition
evaluation are emerging research issues.

Service adaptivity. Service failures or violations of elec-
tronic agreements must be detected in an efficient man-
ner. Moreover, the reaction to failures should be done
in an adequate way. Thus, the third objective is the de-
velopment of novel methods for modeling of intelligent
logging capabilities at the level of a single service as
well as composite services. Sophisticated concepts for
the measurement of service execution parameters and
Quality of Service (QoS) are needed as well as generic
monitoring capabilities which can be customized on-
demand for different services.

Service Governance. Policies and rules for service enforce-
ment should not be defined in a static way. Moreover,
the rules should evolve over time. The fourth objec-
tive is the development of the governing guidelines for
rule definition and rule-evolution. This includes the
development of adequate languages for rule specifica-
tion and rule evolution as well as novel reasoning tech-
niques.

In order to achieve aforementioned goals we utilize the
principles of autonomic computing. Autonomic computing
research methodology can be exemplified using Quality of
Service (QoS) as shown in Figure 1. The management is
done through the following steps: (i) Monitoring : QoS man-
aged element is monitored using adequate software sensors;
(ii) Analysis: The monitored and measured metrics (e.g.,
execution time, reliability, availability, etc.) are analyzed
using knowledge base (condition definition, condition eval-
uation, etc.); (iii) Planning : Based on the evaluated rules
and the results of the analysis, the planning component de-
livers necessary changes on the current setup e.g., renego-
tiation of services which do not satisfy the established QoS
guarantees. (iv) Execution: Finally, the planned changes
are executed using software actuators and other tools (e.g.,
VieSLAF framework [9]), which query for new services.

3.2 Negotiation Bootstrapping and Service
Mediation

Autonomic computing can be applied for other managed
elements e.g., service negotiation. In the following we ex-
plain the first steps in achieving aforementioned architec-
ture: meta-negotiations and SLA mappings.

Analysis

Planning

Monitoring

Execution

Knowledge

Execution of a Meta-
negotiation

Evaluation of
existing
bootstrapping
strategies

Sensor

Actuator

Application of
existing and
definition of new
bootstrapping
strategies

Bootstrapping

Detections of
SLA
inconsistencies

Evaluation of
existing SLA
mappings

Application of
existing and
definition of new
SLA mappings

Applicaiton of
SLA mappings to
fulfill successful
SLA contracting

Negotiation
Bootstrapping Service Mediation

Definition and
publication of
Meta-negotiation
documents

Prerequisites

Figure 2: Negotiation Bootstrapping and Service
Mediation as Part of the Autonomic Process

Figure 2 depicts how the principles of autonomic com-
puting can be applied to negotiation bootstrapping and ser-
vice mediation. As a prerequisite of the negotiation boot-
strapping users have to specify meta-negotiation document
describing the requirements of a negotiation, as for exam-
ple required negotiation protocols, required security infras-
tructure, provided document specification languages, etc.
During the monitorig phase all candidate services are se-
lected where negotiation bootstrapping is required. Dur-
ing the analysis phase existing knowledge base is queried
and potential bootstrapping strategies are found. In case
of missing bootstrapping strategies users can define in a
semi-automatic way new strategies (planning phase). Fi-
nally, during the execution phase the negotiation is started
by utilizing appropriate bootstrapping strategies.

The same procedure can be applied to service mediation.
During the service negotiation inconsistencies in SLA tem-
plates may be discovered (monitoring phase). During the
analysis phase existing SLA mappings are analyzed. Dur-
ing the planning phase new SLA mappings can be defined,
if existing mappings cannot be applied. Finally, during the
execution phase the newly defined SLA mappings can be
applied.

As indicated with bold borders in Figure 2, in this paper
we present solutions for the definition and accomplishment
of meta-negotiations (Section 4) and for the specification
and applications of SLA mappings (Section 5). In the follow-
ing section we explain the principles of meta-negotiations.

4. GRID META-NEGOTIATIONS
In this section, we present an example scenario for the

meta-negotiation architecture, and describe the document
structure for publishing negotiation details into the meta-
negotiation registry.

3

1. <meta-negotiation ...>
2. ...
3. <pre-requisite>
4. <role name="consumer"/>
5. <security>
6. <authentication value="GSI" location="uri"/>
7. </security>
8. <negotiation-terms>
9. <negotiation-term name="beginTime"/>
10. <negotiation-term name="endTime"/>
11. ...
12. </negotiation-terms>
13. </pre-requisite>
14. <negotiation>
15. <document name="WSLA" value="uri"
16. version="1.0"/>
17. <protocol name="alternateOffers"
18. schema="uri" version="1.0" location="uri"/>
19. </negotiation>
20. <agreement>
21. <confirmation
22. name="arbitrationService" value="uri"/>
23. </agreement>
24.</meta-negotiation>

Figure 3: Example Meta-negotiation Document

4.1 Meta-Negotiation Scenario
The meta-negotiation infrastructure can be employed in

the following manner: (i) Publishing : A service provider
publishes descriptions and conditions of supported negoti-
ation protocols into the registry; (ii) Lookup: Service con-
sumers perform lookup on the registry database by submit-
ting their own documents describing the negotiations that
they are looking for. (iii) Matching : The registry discovers
service providers who support the negotiation processes that
a consumer is interested in and returns the documents pub-
lished by the service providers; (iv) Negotiation: Finally, af-
ter an appropriate service provider and a negotiation proto-
col is selected by a consumer using his/her private selection
strategy, negotiations between them may start according to
the conditions specified in the provider’s document.

4.2 Meta-Negotiation Document (MND)
The participants publishing into the registry follow a com-

mon document structure that makes it easy to discover
matching documents. This document structure is presented
in Figure 3 and consists of the following main sections.

Each document is enclosed within the
<meta-negotiation> ... </meta-negotiation> tags. Each
meta-negotiation (MN) comprises three distinguishing parts,
namely pre-requisites, negotiation and agreement as described
in the following paragraphs.
Pre-requisites.

The conditions to be satisfied before a negotiation are de-
fined within the <pre-requisite> element (see Figure 3,
lines 3–13). Pre-requisites define the role a participating
party takes in a negotiation, the security credentials and
the negotiation terms. The <security> element specifies
the authentication and authorization mechanisms that the
party wants to apply before starting the negotiation process.
The negotiation terms specify QoS attributes that a party is
willing to negotiate and are specified in the <negotiation-

- Service 1
- Service 2
- Service 3
- ...
- Service n

Service Registry

- Service 1
- Service 2
- Service 3
- ...
- Service n

Template a:
- Service 1
- Service 2
- Service 3
- ...
- Service n

Service
Consumer

Service
Provider

3.
 <

<s
ea

rc
h

se
rv

ice
s>

>

4.
 <

<a
ss

ig
n

m
ap

pi
ng

s>
>

1.
 <

<a
ss

ig
n

se
rv

ice
s

to
 c

at
eg

or
y>

>

2.
 <

<a
ss

ig
n

m
ap

pi
ng

s>
>

5. <<template adaptation>>

Figure 4: Management of SLA mappings

term> element. For example, in Figure 3, the negotiation
terms of the consumer are beginTime and endTime, and
price (lines 9–10).
Negotiation.

Details about the negotiation process are defined within
the <negotiation> element. Each document language is
specified within the <document> element. In Figure 3, WSLA
is specified as the supported document language. Additional
attributes specify the URI to the API or WSDL for the doc-
uments and their versions supported by the consumer. In
Figure 3, AlternateOffers is specified as the supported ne-
gotiation protocol. In addition to the name, version, and
schema attributes, the URI to the WSDL or API of the
negotiation protocols is specified by the location attribute
(lines 17–18).
Agreement.

Once the negotiation has concluded and if both parties
agree to the terms, then they have to sign an agreement.
This agreement may be verified by a third party organiza-
tion or may be lodged with another institution who will also
arbitrate in case of a dispute. These modalities are speci-
fied within the <agreement> clause of the meta-negotiation
document as shown in lines 21–22. The meta-negotiation ar-
chitecture described here was experimentally evaluated and
the results were presented in a previous publication [8].

5. SLA MAPPINGS
In the presented approach each SLA template has to be

published into a registry where negotiation partners i.e.,
provider and consumer, can find each other.

5.1 Management of SLA mappings
Figure 4 depicts the architecture for the management of

SLA mappings and participating parties. The registry com-
prises different SLA templates whereby each of them repre-
sent a specific application domain, e.g., SLA templates for
medical, telco or life science domain. Thus, each service
provider may assign his/her service to a particular template
(see step 1 in Figure 4) and afterwards assign SLA map-
pings if necessary (see step 2). Each template a may have n
services assigned.

Service consumer may search for the services using meta-
data and search terms (step 3). After finding appropriate
services each service consumer may define mappings to the
appropriate template the selected service is assigned to (step
4). Thereafter, the negotiation between service consumer

4

local
WSLA
template

Rule
from
local to
remote

XSL-
Transfor-
mations

+
remote
WSLA
Template

XSL-
Transfor-
mations

Rule
from
remote
to local

+

Figure 5: Scenario for XSL Transformations

and service provider may start as described in the next sec-
tion. As already mentioned templates are not defined in a
static way. Based on the assigned SLA mappings and the
predefined rules for the adaptation, SLAs are updated fre-
quently trying to reflect the actual SLAs used by service
provides and consumers (step 5).

Currently, SLA mappings are defined on an XML level,
where users define XSL transformations. However, a UML
based GUI for the management of SLA mappings is subject
of ongoing work [7].

5.2 Scenario for SLA mappings
Figure 5 depicts a scenario for defining XSL transforma-

tions. For the definition of SLA agreements we use Web
Service Level Agreement (WSLA) [26]. WSLA templates
are publicly available and published in a searchable registry.
Each participant may download previously published WSLA
templates and compare it with the local template. This can
be done in an automatic way by using appropriate tools. We
are currently developing a GUI that can help consumers to
find suitable service categories. If there are any inconsis-
tencies discovered, service consumer may write rules (XSL
transformation) from his/her local WSLA template to the
remote template. The rules can also be written by using
appropriate visualization tools. Thereafter, the rules are
stored in the database and can be applied during the run-
time to the remote WSLA template. During the negotiation
process, the transformations are performed from the remote
WSLA template to the local WSLA template and vice versa.

Figure 5 depicts a service consumer generating a WSLA.
The locally generated WSLA plus the rules defining transfor-
mation from local WSLA to remote WSLA, deliver a WSLA
which is compliant to the remote WSLA. In the second case,
the remote WSLA template has to be translated into the lo-
cal one. In that case, the remote WSLA plus the rules defin-
ing transformations from the remote to local WSLA deliver a
WSLA which is complaint to the local WSLA. Thus, in this
manner, the negotiation may be done using non-matching
WSLAs.

Even the service provider can define rules for XSL trans-
formations from the publicly published WSLA templates to
the local WSLA templates. Thus, both parties, provider
and consumer, may match on a publicly available WSLA
template.

5.3 SLA mappings Document (SMD)
In this section, we present and discuss a sample SLA map-

ping document. Generally, SLA mappings can be defined
using XSLT and XPath expressions.

Figure 6 shows a sample rule for XSL transformations
where price defined in Euro is transformed to an equivalent

1. ...
2. <xsl:template ...>
3. <xsl:element name="Function" ...>
4. <xsl:attribute name="type">
5. <xsl:text>Times</xsl:text>
6. </xsl:attribute>
7. <xsl:attribute name="resultType">
8. <xsl:text>double</xsl:text>
9. </xsl:attribute>
10. <xsl:element name="Operand" ...>
11. <xsl:copy>
12. <xsl:copy-of select="@*|node()"/>
13. </xsl:copy>
14. </xsl:element>
15. <xsl:element name="Operand" ...>
16. <xsl:element name="FloatScalar" ...>
17. <xsl:text>1.27559</xsl:text>
18. </xsl:element>
19. </xsl:element>
20. </xsl:element>
21.</xsl:template>
22. ...

Figure 6: Example XSL Transformation

price in US Dollars. Please note that for the case of simplic-
ity we use a relatively simple example. Using XSLT even
more complicated mappings can be defined, which explana-
tion is out of scope of this paper.

As shown in Figure 6, the Euro metrics is mapped to the
Dollar metric. In this example we define the mapping rule
returning Dollars by using the Times function of WSLA
Specification (see line 5). The Times function multiplies
two operands: the first operand is the Dollar amount as
selected in line 12, the second operand is the Dollar/Euro
quote (1.27559) as specified in line 17. The dollar/euro quote
can be retrieved by a Web service and is usually not hard
coded.

With similar mapping rules users can map simple syntax
values (values of some attributes etc.), but they can even
define complex semantic mappings with considerable logic
behind. Thus, even slightly different SLA templates can be
translated into each other.

6. VIESLAF FRAMEWORK
In this section we present the architecture used for the

semi-automatic management of meta-negotiations and SLA
mappings. We discuss a sample architectural case study
exemplifying the usage of Vienna Service Level Agreement
Framework - VieSLAF. Thereafter, we describe each VieS-
LAF ’s core component in detail.

6.1 VieSLAF architecture
As discussed in Section 3 VieSLAF framework represents

the first prototype for the management of self-governing ICT
Infrastructures. The VieSLAF framework enables appli-
cation developers to efficiently develop adaptable service-
oriented applications simplifying the handling with numer-
ous Web service specifications. The framework facilitates
management of QoS models as for example management of
meta-negotiations [8] and SLA mappings [9]. Based on VieS-
LAF framework service provider may easily manage QoS
models and SLA templates and frequently check whether se-
lected services satisfy developer’s needs e.g., specified QoS-

5

Adaptation
rules for SLA

templates

Remote
SLA
template

Meta Negotiaiton
Middleware (MNM)
Meta Negotiaiton

Middleware (MNM)
Meta Negotiaiton

Middleware (MNM)
 MN and SLA MiddlewareMN and SLA Mapping

Middleware

Sample Service
provider specific

middleware

Client,
consumer specific

middleware

WSDL

(2)

API... ...

Remote
SLA
template

Data Model

Local SLA
template

Local SLA
template

Remote
SLA
template

(4)

Trans-
formation
rules:
XSLT,
XPath

Trans-
formation
rules:
XSLT,
XPath

Trans-
formation
Rules:
XSLT,
XPath

Trans-
formation
Rules:
XSLT,
XPath

Sevice 1
Thread1_param1
Thread2_param2

Threadn_paramn
...

Sevice 2
Thread1_param1
Thread2_param2

Threadn_paramn
...

(8)

(1)

Cloud of measurement services

meta
negotiation
document

meta
negotiation
document

Meta
negotiation
document

(1)

Knowledge Base

Adaptation

Monitoring

Sample Consumer

Sample Provider

Registry

DB

DB

(3)

(6)

(9)

(5)

(7)

Figure 7: Extended VieSLAF Architecture with Monitoring and Taxonomies

parameters in SLAs. Furthermore, we discuss basic ideas
about the adaptation of SLA templates.

We describe the VieSLAF components based on Figure
7. As shown in step (1) in Figure 7 users may access the
registry using a GUI, browse through existing templates
and meta-negotiation documents using the MN and SLA
mapping middleware. In the next step (2) service provider
specify MN documents and SLA mappings using the MN
and SLA mapping middleware and submit it to the reg-
istry. Thereafter, in step (3) service consumer may query
existing meta-negotiation documents, define own SLA map-
pings to remote templates and submit it to the registry. MN
and SLA mapping middleware on both sides (provider’s and
consumer’s) facilitates management of MNs and SLA map-
pings. Submitted MN documents and SLA mappings are
parsed and mapped to a predefined data model (step 4).
After meta-negotiation and preselection of services, service
negotiation may start using the negotiation protocols, doc-
ument languages, and security standards as specified in the
MN document (step 5). During the negotiation SLA map-
pings and XSLT transformations are applied (step 6). After
the negotiation, invocation of the service methods may start
(step 7). SLA parameters are monitored using the monitor-
ing service (step 8). Based on the submitted SLA mapping
publicly available SLA templates are adapted reflecting the
majority of local SLA templates (step 9).

In the next section we discuss the architectural compo-
nents and a sample case study, whereas first experimental
results on VieSLAF are presented in [8, 9, 7].

6.2 VieSLAF components
As shown in Figure 7 the major VieSLAF components are

knowledge base, components for monitoring and adaptation
as well as MN and SLA middleware used by service provider
and consumer. 5components are explained in more detail.

6.2.1 Knowledge Base
As shown in Figure 7 knowledge base is responsible for

storing SLA templates, SLA mappings and meta-negotiation
documents. For storing of SLA templates and MN doc-
uments we implemented registries, representing searchable
repositories. Currently, we implemented a MS-SQL 2008
database with a Web service front end that provides the
interface for the management of SLA mappings and a Post-
greSQL for the management of meta-negotiations. Thus, for
scalability issues we rather intent to host the registries us-
ing a cloud of databases hosted on a service provider such as
Google App Engine [14] or Amazon S3 [2]. The database is
manipulated based on the role-model. The registry methods
are implemented as Windows Communication Foundation
(WCF) services and can be accessed only with appropriate
access rights. We define three roles: service consumer, ser-
vice provider and registry administrator. Service consumers
are able to search suitable services for the selected service
categories e.g., by using the method findServices. Service
consumer may also create SLA-mappings using the method
createAttributeMapping. Service providers may publish their
services and bind it to a specific template category using the
method createService. Furthermore, both service consumer
and provider may submit and query MN documents.

6.2.2 Sample Provider and Sample Consumer
In the lower part of Figure 7 a sample provider and a

sample consumer are shown. Basically, a service consumer /
provider consists of a client/service based middleware, MN
and SLA mappings middleware facilitating the access to reg-
istries, and a GUI used for browsing remote templates.

Meta-negotiation Middleware.
The meta-negotiation middleware facilitates the publish-

ing of the meta-negotiation documents into the registry and

6

the integration of the meta-negotiation framework into the
existing clients (e.g. workflow tools) and/or service infras-
tructure, including, for example, negotiation or security
clients. After querying the registry and applying a client-
based strategy for the selection of the appropriate service,
the information from the service’s meta-negotiation docu-
ment is parsed. Thereafter, meta-negotiation information
is incorporated into the existing client software using a de-
pendency injection framework such as Spring2. This de-
pendency injection follows an Inversion of Control approach
wherein the software is configured at runtime to invoke ser-
vices that are discovered dynamically rather than known
and referenced beforehand. This is suitable in the context
of meta-negotiation wherein a participant discovers others at
runtime through the registry and has to dynamically adapt
based on the interfaces provided by his counterpart (usu-
ally through a WSDL document). On the consumer side,
the middleware queries the registry and obtains matching
meta-negotiation documents. The middleware parses the
meta-negotiation document of the selected provider and dy-
namically injects the interfaces discovered from the WSDLs
into the document for security, negotiation and arbitration
services into the existing abstract clients. Currently, we
support semi-automatic integration of existing clients into
meta-negotiation middleware wherein the existing clients are
extended with the XML-based configuration files which are
then automatically populated with the discovered interfaces.
The middleware can be easily plugged into existing middle-
ware as we demonstrated in [7] with Aneka and Gridbus
broker and Amadeus workflow framework.

SLA Mapping Middleware.
As already mentioned in Section 6.2.1 SLA mapping mid-

dleware is based on different WCF services. For the sake of
brevity, in the following we discuss just a few of them. The
RegistryAdministrationService provides methods for the ma-
nipulation of the database where administrator rights are
required e.g., creation of template categories. Another ex-
ample represents WSLAMappingService, which is used for
the management of SLA mappings by service consumer and
service provider. WSLAQueryingService is used to query
the SLA mapping database. The database can be queried
based on template categories, SLA attributes and similar
attributes. Other implemented WCF service are for exam-
ple services for SLA parsing, XSL transformations, and SLA
validation.

Service consumers may search for appropriate services
through WSLAQueryingService and define appropriate
SLA-mappings by using the method createAttributeMapping.
Each query request is checked during the runtime, if the
service consumer has also specified any SLA-mappings for
SLAElements and SLAAttributes specified in category’s SLA-
Template. Before the requests of service consumers can
be completely checked, SLA transformations are applied.
The rules necessary for the transformations of attributes
and elements can be found in the database and can be ap-
plied using the consumer’s WSLA-Template. Thereafter,
we have the consumer’s template completely translated into
category’s WSLA-Template. Transformations are done by
WSLATransformator implemented with the .NET 3.5 tech-
nology and using LINQ3.

2http://www.springframework.org
3Language Integrated Query

6.2.3 Monitoring Service
As depicted in Figure 7, we implemented a light-way con-

cept for monitoring of SLA parameters for all services pub-
lished in a category. The aim of the monitoring service is
to frequently check the status of the SLA parameters of an
SLA agreement and deliver the information to the service
consumer and/or provider. Furthermore, monitoring ser-
vice monitors values of SLA parameters as specified in SLA-
Template of the published services. Monitoring starts after
publishing of a service in a category and is provided through
the whole lifetime of the service. Monitoring service is im-
plemented as an internal registry service, similar to other
services for parsing, transformation, and validation, that we
have already explained in previous sections. In the following
we describe how the monitoring process can be started i.e.,
all the steps necessary to setup monitoring.

After the publishing of the service and SLA mappings,
SLAs are parsed and it is identified which SLA parame-
ters have to be monitored and how. We distinguish be-
tween periodically measured SLA parameters and the pa-
rameters which are measured on request. The values of the
periodically measured parameters are stored in the so-called
parameter-pool. Monitoring service provides two methods: a
knock-in method for starting the monitoring and a method
for receiving the measured SLA parameters from the mea-
surement pool. Whenever a user requests monitoring in-
formation of the particular SLA (i) in case of periodically
measured parameters SLAs parameters are requested from
the parameter-pool or (ii) in case of on-request parameters
SLA parameters are immediately measured as defined in the
parsed and validated SLAs.

6.2.4 Adaptation
Remote SLA templates should not be defined in a static

style, they should reflect the provider’s and consumer’s needs.
To make this possible, we implemented a first prototype of
an internal registry’s adaptation service, which can be used
by consumers and providers as shown in Figure 7. They can
specify SLAParameters which should be added into SLA-
Template or choose some SLAParameters which they do not
need in templates and want to delete.

Each ParameterWish (add/delete) is saved as an XML
chunk that contains all SLAParameters with metrics which
should be added/deleted from a specific SLA-Template. Reg-
istry administrators have to configure learning capability
property for each template category. The property defines
how many requests for a specific ParameterWish has to be
defined in order to add/delete ParameterWish to/from a
SLA-Template. Whenever a new ParameterWish is accepted
a new revision category of a SLA template is generated. All
services and consumers are automatically re-published to
this new revision. Also all SLA mappings will be automati-
cally assigned to the new template revision. Old SLA map-
pings of the consumers and services will be deleted and also
all old background threads used for calculation for old SLA
template are aborted. The newly generated SLA template
is thereafter parsed and for each service new background
monitoring threads are created and started.

7. CONCLUSION AND FUTURE WORK
In this paper we have presented the goals of the Founda-

tions of Self-Governing ICT Infrastructures (FoSII) project
and how these goals can be achieved using the principles of

7

autonomic computing. We discussed novel meta-negotiation
and SLA mapping solutions for Grid/Cloud services bridg-
ing the gap between current QoS models and Grid/Cloud
middleware and representing important prerequisites for the
establishment of autonomic Grid/Cloud services. We dis-
cussed the approaches for meta-negotiation and SLA map-
ping representing partial implementation of negotiation boot-
strapping and service mediation approaches. Furthermore,
we presented the VieSLAF framework used for the man-
agement of meta-negotiations and SLA mappings. Using
VieSLAF Grid service users can even monitor SLA param-
eters during the execution of the service calls. Finally, we
discussed how SLA templates can be adapted based on the
submitted SLA mappings.

As the next step of the FoSII project we plan to implement
bootstrapping strategies where even consumer and provider,
which understand different negotiation protocols and docu-
ment languages can communicate with each other.

Acknowledgment
The work described in this paper was partially supported by
the Vienna Science and Technology Fund (WWTF) under
grant agreement ICT08-018 Foundations of Self-governing
ICT Infrastructures (FoSII).

8. REFERENCES
[1] R. J. Al-Ali, O. F. Rana, D. W. Walker, S. Jha, and S.

Sohail. G-qosm: Grid service discovery using qos
properties. Computing and Informatics, 21:363–382, 2002.

[2] Amazon Simple Storage Services (S3),
http://aws.amazon.com/s3/

[3] D. Ardagna, G. Giunta, N. Ingraffia, R. Mirandola and B.
Pernici. QoS-Driven Web Services Selection in Autonomic
Grid Environments. Grid Computing, High Performance
and Distributed Applications (GADA) 2006 International
Conference, Montpellier, France, Oct 29 - Nov 3, 2006.

[4] A. P. Barros, M. Dumas. The Rise of Web Service
Ecosystems. IT Professional 8(5): 31 – 37 , Sept.-Oct.
2006.

[5] J. Blythe, E. Deelman, Y. Gil. Automatically Composed
Workflows for Grid Environments. IEEE Intelligent
Systems 19(4): 16–23 2004.

[6] I. Brandic, S. Pllana, S. Benkner. Specification, Planning,
and Execution of QoS-aware Grid Workflows within the
Amadeus Environment. Concurrency and Computation:
Practice and Experience, 20(4): 331–345 John Wiley &
Sons, Inc., New Jersey, March 2008.

[7] I. Brandic, D. Music, S. Dustdar, S. Venugopal, and R.
Buyya. Advanced QoS Methods for Grid Workflows Based
on Meta-Negotiations and SLA-Mappings. The 3rd
Workshop on Workflows in Support of Large-Scale
Science. In conjunction with Supercomputing 2008,
Austin, TX, USA, November 17, 2008.

[8] I. Brandic, S. Venugopal, Michael Mattess, and Rajkumar
Buyya, Towards a Meta-Negotiation Architecture for
SLA-Aware Grid Services. Technical Report,
GRIDS-TR-2008-9, Grid Computing and Distributed
Systems Laboratory, The University of Melbourne,
Australia, Aug. 8, 2008.

[9] I. Brandic, D. Music, P. Leitner, S. Dustdar.VieSLAF
Framework: Increasing the Versatility of Grid QoS
Models by Applying Semi-automatic SLA-Mappings.
Vienna University of Technology, Technical Report,
TUV-184-2009-02.pdf, 2008.

[10] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and Ivona
Brandic. Cloud Computing and Emerging IT Platforms:
Vision, Hype, and Reality for Delivering Computing as
the 5th Utility, Future Generation Computer Systems,

ISSN: 0167-739X, Elsevier Science, Amsterdam, The
Netherlands, 2009, in press, accepted on Dec. 3, 2008.

[11] K. Czajkowski, I. Foster, C. Kesselman, V. Sander and S.
Tuecke, SNAP: A Protocol for Negotiating Service Level
Agreements and Coordinating Resource Management in
Distributed Systems. 8th Workshop on Job Scheduling
Strategies for Parallel Processing, Edinburgh Scotland,
July 2002.

[12] A. Dan, D. Davis, R. Kearney, A. Keller, R. King, D.
Kuebler, H. Ludwig, M. Polan, M. Spreitzer, and A.
Youssef. Web services on demand: WSLA-driven
automated management. IBM Systems Journal, 43(1),
2004.

[13] T. Glatard, J. Montagnat, X. Pennec. A Probabilistic
Model to Analyse Workflow Performance on Production
Grids. 8th IEEE International Symposium on Cluster
Computing and the Grid (CCGrid 2008), pp.510-517,
Lyon, France, 19-22 May 2008.

[14] Google App Engine, http://code.google.com/appengine
[15] T. Guan, E. Zaluska, D. De Roure. A Semantic Service

Matching Middleware for Mobile Devices Discovering
Grid Services. Advances in Grid and Pervasive
Computing, Third International Conference, GPC 2008,
pp. 422-433 Kunming, China, May 25-28, 2008.

[16] Foundations of Self-Governing ICT Infrastructures (FoSII)
Project, http://www.wwtf.at/projects/research projects/
details/index.php?PKEY=972 DE O

[17] Z. Hill, J. C. Rowanhill, A. Nguyen-Tuong, G. S. Wasson,
J. C. Knight, J. Basney, M. Humphrey. Meeting virtual
organization performance goals through adaptive grid
reconfiguration. 8th IEEE/ACM International Conference
on Grid Computing (Grid 2007), Austin, Texas, USA,
September 19-21, 2007.

[18] R. Jurca, B. Faltings. Reputation-based Service Level
Agreements for Web Services. In Proceedings of 3rd
International Conference on Service Oriented Computing,
pp. 396-409, Amsterdam, The Netherlands, December
12-15, 2005.

[19] J.O. Kephart, D.M. Chess, The vision of autonomic
computing. Computer, 36:(1) pp. 41-50, Jan 2003.

[20] M.P. Papazoglou, P. Traverso, S. Dustdar, F. Leymann.
Service-Oriented Computing: State of the Art and
Research Challenges, IEEE Computer, 40(11): 64-71,
November 2007

[21] A. Paschke, J. Dietrich, K. Kuhla: A Logic Based SLA
Management Framework, Semantic Web and Policy
Workshop (SWPW), 4th Semantic Web Conference
(ISWC 2005), Galway, Ireland, 2005.

[22] W. Vambenepe, C. Thompson, V. Talwar, S. Rafaeli, B.
Murray, D. S. Milojicic, S. Iyer, K. I. Farkas, M. F. Arlitt.
Dealing with Scale and Adaptation of Global Web
Services Management. International Journal of Web
Services Research, 4(3): 65-84, 2007.

[23] N. Oldham, K. Verma, A. P. Sheth, F. Hakimpour.
Semantic WS-agreement partner selection. Proceedings of
the 15th international conference on World Wide Web,
WWW 2006, Edinburgh, Scotland, UK, May 23-26, 2006.

[24] D. Ouelhadj, J. Garibaldi, J. MacLaren, R. Sakellariou,
and K. Krishnakumar. A multi-agent infrastructure and a
service level agreement negotiation protocol for robust
scheduling in grid computing. in Proceedings of the 2005
European Grid Computing Conference (EGC 2005),
Amsterdam, The Netherlands, February, 2005.

[25] D. W. Walker, L. Huang, O. F. Rana, Y. Huang. Dynamic
service selection in workflows using performance data.
Scientific Programming 15(4): 235-247 (2007)

[26] Web Service Level Agreement (WSLA),
http://www.research.ibm.com/wsla/
WSLASpecV1-20030128.pdf

8

