
Distrib Parallel Databases (2006) 20:91–115
DOI 10.1007/s10619-006-9447-1

Integration of transient Web services into a virtual peer
to peer Web service registry

Schahram Dustdar · Martin Treiber

Published online: 28 July 2006
C© Springer Science + Business Media, LLC 2006

Abstract Transient Web service provisioning implies a variety of different requirements that
are hard to meet in traditional Web service environments. Currently, Web service brokerage
focuses on centralized or replicated architectures. We argue that such systems are not efficient
when it comes to dynamic, respectively ad hoc, Web service provisioning. We propose a
distributed peer to peer Web service registry solution based on lightweight Web service
profiles. We further introduce the notion of views that allow the specification of arbitrary
contexts of Web services and provide a working example to illustrate our approach. Finally,
we present a prototype that uses tuple spaces as global storage and communication means.

Keywords Web services . Pervasive computing . Tuple spaces . Web service registries

1. Introduction

Web services [27] are becoming a very important means to architect and integrate distributed
applications. The W3C defines a Web service as “a software system designed to support
interoperable machine-to-machine interaction over a network. It has an interface described
in a machine-processable format (specifically WSDL [16–18]). Other systems interact with
the Web service in a manner prescribed by its description using SOAP [14, 15] messages,
typically conveyed using HTTP with an XML serialization in conjunction with other Web-
related standards.”

Generally speaking, a Web service provides a public interface that is described in an
interface language, for example WSDL [16–18]. In order to find Web services, Web service

Recommended by: Ahmed Elmagarmid

S. Dustdar (�) · M. Treiber
Distributed Systems Group, Vita Lab, Institute of Information Systems,
Vienna University of Technology
e-mail: dustdar@infosys.tuwien.ac.at

M. Treiber
e-mail: m.treiber@infosys.tuwien.ac.at

Springer

92 Distrib Parallel Databases (2006) 20:91–115

registries are needed. Web service registries are databases where Web service descriptions
are stored. Current Web service architectures [10] provide registries that usually are based
on centralized systems. Examples include UDDI [1] and ebXML [2–5] which provide
centralized registries for Web service brokerage.

Because of the growing availability of public wireless networks it is possible to use
Web services from locations outside of office buildings and to virtually extend the working
environment to public places. The use of Web services in such dynamic environments is
well established. However, little attention is paid to Web service provisioning in such a
dynamic environment where network connections may exist only for a few minutes or hours.
We call this kind of Web service provisioning transient Web service provisioning and the
corresponding Web service provider transient Web service provider.

Consider for example a conference meeting and a feedback Web service. Conference
participants may be interested in immediate feedback about presentations, workshops, tuto-
rials, etc. During the conference the feedback Web service is available to other conference
participants. It can be the case that a Web service provider leaves the conference and returns
afterwards. During the absence of the conference, the Web service provider is not interested
in providing the feedback Web service.

With this type of Web service provisioning arises a set of requirements for transient Web
service providers, respectively, for transient Web service provisioning:

� Accuracy of Web service registries. Under some circumstances, like, for example, instable
network connections, notifications concerning the availability of Web services may not be
received by the Web service registry. This leads to Web service registry entries without
actual Web service provider. We believe that such a state of registry entry—with inaccurate
Web service registry entries—is not desirable.

� Tight coupling between Web service provider and Web service. We believe that there is
a tight coupling between Web service provider and Web service offering, because the
behavior of transient Web service providers is reflected by the availability of their Web
services.

� Distributed Web service registry. In environments that are defined by transient Web service
providers it is important that Web service registries offer a scaleable and flexible approach
for accessing Web service registry data.

� Loose coupling of messages. Due to disconnections from the network, transient Web
service providers need a messaging system that decouples the sender from the receiver.

� Context information. In order to be aware of transient Web service provisioning and Web
service communities Web service registries need context information.

Although current registries acknowledge some of the aforementioned requirements and
provide, for example, registry replication and structures for context information, they do
not support transient Web service provisioning. With our work, we aim to move Web
service registry technology towards transient Web service providers and to provide context
information for Web service registry entries. We developed VISR (View based Integration
of Web Service Registries)—a peer to peer architecture for distributed Web service registry,
that meets these requirements.

In particular, our research prototype addresses the following issues:

� Distributed Web service registry. To circumvent inaccurate registry information, we pro-
pose a distributed Web service registry solution that uses tuple spaces [19] as primary
communication and publication means. The tuple space concept allows for higher flexibil-
ity concerning transient Web service provider. Tuple spaces use simple primitives (in, out,

Springer

Distrib Parallel Databases (2006) 20:91–115 93

etc.) for the creation, removal and reading of information. We choose tuple spaces for the
creation of a virtual distributed registry due to its small administrative overhead.

� Arbitrary declarative context for Web service description. We propose an abstraction (VISR
view profiles) that acts as container for context-information. We consider Web service
communities as primary target for context information. VISR view profiles provide the
means for the creation of virtual communities and serve as means to structure global Web
service registry content.

� Common Web service description. We introduce VISR service profiles that serve as
lightweight description language for different Web services registries. We acknowledge
existing Web service registry data models (UDDI, ebXML) and provide transformations
of existing registry content to our data model. Our intension is to hide the heterogeneity
of different Web service registry data models and to provide a common lightweight Web
service description.

� Integration of transient Web service providers. Transient Web service providers are volatile
members of a Web service network. Our work considers the requirements of transient Web
service providers under the aspect of accuracy of Web service registries and administrative
overhead. VISR’s tuple space based registry implementation supports dynamic joining and
leaving of Web service networks without centralized registry mechanisms.

� Decoupling of messages. Related to transient Web service provision is the decoupling of
messaging in a dynamic environment. We use tuple space operations for the decoupling of
messages between Web service requestors and Web service providers.

� Structural matching of Web service description. We present a simple algorithm for matching
of structural similarities (SSMA) of Web service descriptions specified as VISR service
profiles.

The rest of the paper is organized as follows: Section 2 briefly summarizes the exist-
ing Web service registry approach and introduces the concept of the VISR peer to peer
registry. Section 3 presents the architecture of VISR. The implementation details are dis-
cussed in Section 4. Section 5 gives a description of the discovery algorithm that is used in
VISR. Section 6 illustrates a working example. Section 7 lists related work and Section 8
concludes the paper.

2. Distributed virtual peer to peer registry

This section discusses VISR’s distributed virtual Web service registry. We move the tradi-
tional Web service paradigm towards a distributed solution. In the traditional Web service
paradigm, a Web service broker manages the Web service registry entries (Fig. 1).

The concept of a dedicated Web service registry entity decouples Web service providers
from the storing the actual Web service description. We believe that this concept proves to
be inflexible in a dynamic environment with transient Web service provision.

Generally speaking, transient Web service providers offer their Web services for limited
time. This may be because of the membership to an ad-hoc community, which may be
specified for instance for a meeting, or because of temporal limited network connections
using Wireless LAN in public places. Therefore, transient peers depend on a Web service
registry concept that supports decoupled (Web service registry) operations. Centralized Web
service registries are not practical when they contain entries that point to unavailable services.
Therefore, we intend to transform the Web service brokerage model to a distributed model
with implicit Web service brokerage to provide accurate Web service registry entries. We

Springer

94 Distrib Parallel Databases (2006) 20:91–115

Service
Registry

Service
Broker

Service
Requestor

Service
Provider

Service Discovery

Service PublishingService Invocation

Fig. 1 Conceptual overview of Web services in the service oriented architecture

Service
Registry

Service
Broker/

Provider

Service
Broker/

Requestor/
Provider

Service Invocation

Service Discovery
Service
Registry Requestor/

Fig. 2 Conceptual overview of VISR’s Web service registry paradigm. The dotted lines mark parts of the
distributed virtual registry. Every Web service provider is at the same time Web service broker, requestor and
provider

propose a peer to peer based Web service registry solution where every transient peer is
implicitly a part of the virtual Web service registry. In this way, we move the traditional
Web service registry paradigm towards peer to peer systems. Figure 2 shows the concept of
VISR’s Web service registry.

VISR’s distributed registry model is based on the Blackboard architectural pattern [33]. It
allows VISR peers to operate on a common data structure and provides a common vocabulary.
This paradigm provides useful features for distributed and dynamic environments:

� It supports Web service publishing and discovery in a distributed space. This interaction
style is useful in dynamic environments where it is very important to reduce administrative
overhead to a minimum.

� Publishing and Web service invocation can be executed without prior knowledge of other
management entities. It allows flexible modeling of interactions among services in highly-
dynamic environments.

Example. Ad-hoc meetings are an example for the use of distributed virtual Web service
registries. Ad-hoc meetings define Web service communities that exist over a specific period
and provide a certain set of services. During the ad-hoc meeting it may be necessary to share
data (presentations, pictures, documents, etc.). To accomplish this, a file sharing Web service
is offered where peers are can share their files. The Web service is offered as long the peer is
a member of the community, i.e. participates in the meeting. After the peer leaves, the Web
service is not available any more, because the peer does not want to share documents outside
the meeting.

Centralized Web service registries are not useful in such scenarios, because in order to
provide a service each provider must register the service prior to the meeting. Upon leaving,
the Web service provider must notify the Web service registry that the service is not available
anymore. If the Web service provider rejoins the community, the Web service registry must

Springer

Distrib Parallel Databases (2006) 20:91–115 95

VISR Registry Tuple Space

VISR Peer profileVISR View profile VISR Service profile

Service tuple

Peer tuple

Service tuple

Service tuple

Service tuple Service tuple

Service tuple

Service tuple

Peer tuple

Peer tuple Peer tuple

Peer tuple

View tuple

View tuple

Service tuple

Fig. 3 Conceptual overview of VISR Web services registry model. Arrows mark membership with a VISR
view respectively with a community. Note, that not every service of a VISR peer is a member of view

be updated again in order to provide accurate Web service descriptions. The centralized
approach illustrates the typical bottleneck of single Web service registries.

In order to provide a flexible data model for distributed Web service registries VISR
models three different types of registry information. VISR distinguishes between

� Information about providers (VISR peer profiles) that includes data about the Web service
provider such as memory, CPU, maximum supported Web services, name, contact info,
etc. This kind of information is used to identify Web service providers.

� Context information (VISR view profiles) that provides context information about Web
services and serves as means to organize the global Web service registry content within
Web service communities.

� Web service descriptions (VISR service profiles) that provide a lightweight Web service
description.

Figure 3 shows a conceptual overview of the distributed Web service registry structure.
VISR uses a tuple space to provide a global common data structure. The global tuple space
holds tuples that contain VISR view, VISR service and VISR peer profiles.

VISR view profiles. VISR view profiles serve two purposes, they (i) provide the means to
structure the content of the global Web service registry tuple space and (ii) provide contextual
information about Web services.

A global Web service registry tuple space offers no means for structuring of content.
VISR views provide the means to organize Web services into Web service communities.
Web service communities can be regarded as cluster of Web service (provider) that share
common interests, like for example the membership in a project team, etc. The creation of
views consists of the publishing, i.e., writing, of VISR view profiles into the shared tuple
space. VISR peers that are interested in the view must implement the operations specified
by the view. These descriptions are part of the operational portion of views. VISR views do
not provide typing or binding information. This is left to the VISR peer that must implement

Springer

96 Distrib Parallel Databases (2006) 20:91–115

S
1

S
2

S
3

V1

V2

Service

View

View Service Wrapper

S1''

S1' S2' S3'

S3''

Si''

Fig. 4 VISR views. Concrete
service instances are depicted on
the x-axis. Views are depicted on
the y-axis. Every view provides a
different context for Web services
and defines different interfaces
for Web service. In the example,
services S1, S2 and S3 provide
different interfaces. Web service
provider use local
transformations—S1′, S2′ and
S3′ for View V1 respectively S1′ ′
and S3′ ′ for View V2 to provider
view compliant Web services

the actual transformation of the data when calling a Web service. VISR supports this process
with the help of Wizards that assist the user in the manual creation of mappings (see
Section 4).

In order to provide additional (context) data VISR views provide context information.
Context information includes for example membership in Web service communities, infor-
mation about requirements concerning Web service provider (Disk space, CPU, etc.), and
so on. This type of meta data provides interested peers with additional information. This
information is usually out of the scope of single Web service descriptions, since the con-
text of Web services is subject to change. For example, when joining a community, a Web
service context is implicitly created by local data transformations. VISR views encapsu-
late these local transformations with the help XSLT [12] expressions. The example below
shows a transformation of a “legacy” notification Web service that uses one input parameter
and one output parameter into a community notification service that provides no output
at all.

<Mapping>

<!-- the ‘‘legacy’’ method is called Notify ->

<Element type=’’method’’>

<Name>Notify</Name>

<!-- the actual transformation is an XSL expression ->

<Expression>

..

<xsl:for-each select="Method/Paramters/Parameter/">

<xsl:if test="@type=’Input’">

<Name><xsl:value-of select="Name"/></Name>

</xsl:if>

</xsl:for-each>

..

</Expression>

</Element>

</Mapping>

Figure 4 shows different contexts of Web services within different views. This approach
enables Web services to be part of several views at the same time without the need of any
change in the Web service description.

VISR service profiles. VISR service profiles provide a common generic lightweight and
extendable Web service description. VISR service profiles embrace standards such as UDDI

Springer

Distrib Parallel Databases (2006) 20:91–115 97

and WSDL. VISR service profiles extend existing Web service descriptions with abstract
operational descriptions that enables operational driven Web service discovery. Furthermore,
VISR service profiles provide usage scenarios that consist of sequences of method invoca-
tions. Usage scenarios illustrate how the Web service is invoked and what is returned by
a Web service. Note that VISR Service profiles do not contain actual bindings or typing
information. The actual binding is left to the VISR peer that provides the Web service.

VISR peer profiles. VISR peer profiles model information about VISR peers. They consist
of data about the nature of the peer (transient or static). Furthermore, information about
capabilities are modeled, for instance, the number of Web services supported and informa-
tion that includes technical data such as port numbers and information about the provider
including for example name, organization, etc.

3. VISR architecture

This section discusses the layered architecture of transient VISR. VISR’s architecture is
divided into three layers (registry, view and service) as shown in Fig. 5. The registry layer
provides the operations for the administration of VISR registry entries. Its main task is the
persistency-management of VISR profiles. On top of the registry layer operates the view
layer which provides operations needed for the view based transformation of VISR service
profiles. Using the view layer, the service layer provides interfaces for basic functionality of
the VISR peer that include for example inter peer communication. The following subsections
discuss these three layers in detail.

3.1. Registry layer

The registry layer consists of a tuple space based repository for VISR profiles. The registry
layer provides the abstractions that let the registry appear as single logical block. It provides
the basic functionality for the publishing, unpublishing and discovery of VISR service
profiles, VISR view profiles and VISR peer profiles. The publishing/unpublishing of VISR
service profiles consists of writing/deleting corresponding tuples into/from the shared tuple
space. The discovery of Web services involves the matching of corresponding tuples of the
tuple space. VISR supports two different methods for Web service discovery. VISR uses
either XPath expressions, or a simple structure matching algorithm (discussed in Section 6)
to select VISR profiles.

3.2. View layer

The view layer provides the means for the management of VISR views. The view layer
consists of a local repository that stores VISR view descriptions and corresponding matching
descriptions of VISR view filters to VISR service profiles. The view layer is responsible for

Registry Layer

View Layer

Service Layer

Tuple Space/P2P Environment

Web Service Context

Web Service Registry Operations
Fig. 5 VISR architecture

Springer

98 Distrib Parallel Databases (2006) 20:91–115

the actual invocation of Web services and transformation of requests according to VISR view
descriptions. VISR’s view layer parses the incoming requests and selects the corresponding
Web service for execution. The view layer also transforms the results of the Web service into
the expected format.

3.3. Service layer

The service layer provides the core functionality for the basic operations of the Web service
registry, i.e., the publishing and unpublishing of Web services and provides meta data
services. The latter include VISR view services that provide for example peer lists and
VISR view descriptions. The service layer consists of an access interface and also exposes
itself as a Web service with a corresponding VISR service profile. It receives and parses the
incoming requests and forwards the requests to the view layer. After the request is parsed the
corresponding operation is being executed. Therefore, the service layer contains a repository
of services that are available at the VISR peer.

4. VISR prototype implementation

The VISR prototype was developed using IBM’s tuple space implementation TSpaces [11]
and Java 1.5 [24]. VISR provides Java objects that encapsulate VISR service profiles, VISR
view profiles and VISR peer profiles (see Appendix A for the APIs). Tuples in the shared
tuple space either represent VISR peer profiles, VISR view profiles, or VISR service profiles.
These three types are instances of the abstract base class VISRProfile. Every instance of
the class VISRProfile provides a standard method to represent the information stored in the
profile as string. VISR extends TSpaces subclass able tuple definition and provides a generic
container for VISR view, VISR service, and VISR peer profiles called VISRProfile. This
abstract class extends the Boolean tuple matching function of TSpaces by implementing
the interface VISRMatchable. The matching function returns a value either 0 (indicating no
match) or 1 (indicating a potential match). This class hierarchy exposes similarities to the
class hierarchy discussed in [6] that provides different matching functions for tuples.

Our prototype provides two basic communication interfaces, one interface for the view
administration and one interface for the publishing/discovery of Web services. These two
interfaces are described by VISR service profiles that are implemented using either SOAP
messages for communication or tuples. VISR peers provide a default service port. This port
intercepts all communication and serves as service port for the VISR service invocation.

Figure 6 shows the User Interface of a VISR peer client. The main window provides lists
of available VISR Services at the client and shows basic information about services.

The creation of VISR Service profiles is guided by service creation Wizards, as depicted
in Fig. 7. The user creates a VISR service profile by defining the name and the operations
(methods, and corresponding parameters) of the Web service.

The creation of interface mappings (parameter, method names) for the use of Web services
within different views is usually the last step in the process of creating a VISR compliant Web
service. The user is also guided by Wizards that support the declaration of mappings for the
messages. Figure 8 shows the interface for the creation of mappings. After the completion
of method/parameter mappings the corresponding Web services can be used in different
contexts (views) by other peers of the VISR network.

Springer

Distrib Parallel Databases (2006) 20:91–115 99

Fig. 6 VISR peer main window

Fig. 7 VISR method creation Wizard

4.1. VISR peer initiation protocol

The initiation of a new VISR peer consists of writing a VISR peer profile into the global
tuple space. In order to obtain a handle to the global tuple space, a new peer must contact
a VISR peer that provides the new peer with a global tuple space handle. Afterwards, the
new peer writes its service profile into the global tuple space and makes its Web services
available. Figure 9 shows the initialization protocol of VISR peers.

Springer

100 Distrib Parallel Databases (2006) 20:91–115

Fig. 8 VISR Mapping Wizard. The example shows a basic mapping between a method parameter Activity
(defined by a view) and the corresponding parameter with the name CurrentActivity of a VISR service profile

new Peer VISR peer

Contact VISR peer

Confirm login

Tuple Space

Write VISR peer profile into global Tuple Space

Fig. 9 VISR peer initialization
protocol

If the peer wants to leave the network, it must remove its peer tuple from the tuple space.
Every peer tuple contains a timestamp that must be renewed by the VISR peer periodically.
The timestamp value depends on the actual application and can be defined by the VISR peer
itself. If the timestamp is renewed, other VISR peers can assume that the peer is going to be
available for another pre defined period of time. If the timestamp is not renewed within the
pre specified time period, the tuple is removed from the tuple space. In addition, all service
tuples of the peer are also removed from the virtual registry.

4.2. VISR peer alive signal

In order to provide information about the availability of VISR peers it is necessary for every
VISR peer to renew its peer profile periodically. The validity period is defined by the VISR
peer itself and depends on the context of the peer. If a VISR peer does not manage to renew
its profile in the global tuple space in time, it is automatically removed from the tuple space.

Springer

Distrib Parallel Databases (2006) 20:91–115 101

VISR Peer Tuple Space

Request View profile

Send View profile

View Originator

Contact View originator peer

Check profile

Confirm Membership

Fig. 10 VISR view initialization protocol

This may be for example the case if a VISR peer leaves the network abruptly, without
removing the VISR peer profile.

4.3. VISR view initialization protocol

The creation of dynamic communities follows the pattern as depicted in Fig. 10. First, a
VISR peer creates a view profile and writes it into the tuple space. In order to join a view,
a VISR peer requests the corresponding VISR view profile. After the peer has obtained the
VISR view profile, usually some service mappings have to be built in order to provide the
services specified by the view. After this task is completed the VISR peer contacts the View
originator and sends its profile. The view originator checks the profile and finally confirms
the membership by updating the peer-list of view profile.

In case of being a member of a VISR view, the peer does not need to provide an alive-signal
periodically. After registering for a view, VISR peers are automatically network members as
long as the view exists.

4.4. VISR communication interface

VISR peers provide two standard communication interfaces. A SOAP based interface and a
tuple space based interface. Both interfaces offer the same basic functionality, but a different
degree of coupling. While SOAP messages need a message receiver that is available at
the time a message is being sent, Tuple space based messages are completely decoupled
from time and space. Furthermore, VISR’s communication interface supports the view
based Web service invocation, which uses context information for the invocation of Web
services.

Decoupled operation. In this mode, the sender places a message tuple in the tuple space.
VISR differentiates between to different kinds of messages, i.e., messages that are sent in
the context of views and global messages without reference to views. The latter contain a
reference to the corresponding view and are only retrieved by members of the view. The
tuple also contains either a reference to the receiver of the message or a generic identifier for
broadcast messages. As soon as the recipient is online again, the VISR peer is notified that
a new message tuple awaits him and the VISR peer reads the message tuple from the tuple
space. A message tuple has a validity period and is removed by the sender as soon as the

Springer

102 Distrib Parallel Databases (2006) 20:91–115

M1

t0

Service Invocation

Time t

M3

t2t1 t3

Membership

View

Peer offline

Peer online

Validiy Period

∆t

2*∆t

M2

M3

M2

M3

M1 Message Tuple

Fig. 11 VISR Web service invocation in decoupled operation mode

validity period expires. The tuple space also contains messages from peers to absent peers.
This type of asynchronous messaging decouples the sender from the receiver completely.
Figure 11 shows three examples of broadcast messages in disconnected operation. At time
t0 a view is created and contains a list of active peers. At time t1 three different Web service
requests are executed, denoted as tuples M1, M2 and M3. The first request at t1 demands
immediate response, thus synchronizing the sender and the receiver. The requestor places
a message tuple (M1) into the tuple space and waits for the response of the Web service
providers. In the example below, four peers are online at t1 and their Web services are
invoked. The second request (M2) provides a validity period of � and invokes Web services
at t1 and t2 before the message tuple is being removed from the tuple space. The third request
(M3) provides a validity period of 2∗� and the Web services are invoked at t1, t2 and t3
before the message tuple is removed. Note, that in our example only the third Web service
request with the validity of 2∗� actually provides the results of all peers of the view.

Synchronous messaging. In this mode, VISR peers use the SOAP interface for Web service
invocation. In contrast to the decoupled operation mode, the consignee must be online to
receive a message and the Web service requestor must know the peer addresses of the Web
service provider. Furthermore, in contrast to the decoupled operation, VISR peers can select
the peer that executes the service directly.

View dependent Web service invocation. The view dependent Web service invocation puts
a Web service request into the context of a VISR view. Since VISR Views define interfaces
of the provisioned Web services, Web service requestors do not need to be aware of the
actual Web service binding and send Web service invocation messages with the parameters
to Web service provider. Every VISR Web service provider is responsible for the correct
transformation of the request to the actual Web service. Figure 12 illustrates the steps that
are necessary for a view based invocation of a Web service.

5. VISR Web service discovery

This section discusses VISR’s Web service discovery model. VISR provides two several types
of interfaces for the matching of VISR service profiles. While supporting keyword-based

Springer

Distrib Parallel Databases (2006) 20:91–115 103

VISR Peer VISR Peer Service 4. Execute
Service

2. Transform
Request

6. Transform
Result

1. Request
Service

3. Call
Service

5. Return
Result

7. Return
Result

Fig. 12 . VISR context based Web service invocation

match of Web service descriptions, VISR improves upon this by employing the structure of
VISR service profiles as potential matching criteria (see Section 5.1 for a detailed description
of the matching algorithm). Furthermore, VISR supports XPath [13] expressions (Section
5.2) for the selection of desired Web services. Table 1 gives an overview of the different
matching methods.

5.1. VISR structural matching algorithm

VISR’s structural matching algorithm is based on binary string representations of XML
documents. The algorithm operates tag name independent, i.e., tag names are not taken
into account. The result of the transformation is a binary value (SSMA value). This
value provides the means for the creation of a Web service metric by assigning a value
to a Web service description. In addition, this value can be used to limit the actual
search space, because structural compatible Web services provide at most an equal SSMA
value.

The structural matching algorithm guarantees to find similar documents that contain at
least one structural identical (sub) tree structure or a structure that can be transformed into
the search structure. We illustrate the algorithm using a VISR service profile that provides
a list of VISR peers that are members of a view. Below is the example of a VISR service
profile that returns the peer list of a VISR view. The corresponding tree structure is depicted
in Fig. 13.

The algorithm builds string representations of the trees that are to be compared. This is
done level by level using a breadth first algorithm. Every level, respectively every node of
the tree, is transformed into a string that contains the letter “1” for a parent node and the

Table 1 Matching types of VISR

Type Description

Keyword match Searches VISR profiles for the occurrence of
arbitrary keywords

XPath match Searches for VISR profiles by the specification of
XPath expressions

Structural match Selects VISR profiles using VISR’s structural
matching algorithm

Structural and keyword match Selects VISR profiles using a combination of
keywords and structural information

Springer

104 Distrib Parallel Databases (2006) 20:91–115

ParametersName

MethodDescriptionName

Service

1000111000

1000

100011100011100Description

Parameter Parameter

Name Name

1000111000111001010

100011100011100101011

Fig. 13 Transformation of VISR service profiles into String representation. On the right hand side the
transformation of the current level of the tree is depicted. The lowest level contains the actual SSMA value of
the Web service description

letter “0” for a child. In the example above, the resulting substrings are: [1000], [1], [1],
[1000], [1], [1], [100], [10], [10], [1] and [1]. The corresponding value of the Web service
description is 100011100011100101011.

The comparison starts with the first substring of the source tree (= tree structure we are
looking for) and searches the string representation of the target tree (= tree structure of the
searched tree) for the first occurrence of the substring. If a corresponding string is found then
the next substring of the source tree is taken as input and the search resumes at the following
substring of the target tree. If the end of the target string is reached, without a hit then the
target contains no corresponding tree structure. Otherwise, the target tree contains a similar
tree structure that can be matched on the target tree (see Fig. 14).

5.2. XPath based discovery of VISR service profiles

The XPath based discovery uses XPath expressions for the discovery of VISR service profiles.
An example of such an expression that selects VISR service profiles that offer two parameters
is given below.

//*[count(Parameters)=2]

6. Application scenario

We introduced an application scenario concerning a film production company in our previ-
ous work [26]. This section describes a concrete application scenario for our prototype.
We consider a film production company that produces a movie. The film production
company must coordinate the activities needed for the shooting of a movie. The coordi-
nation is distributed among several working teams, which in turn must coordinate their
activities.

Our working example consists of two different services. We consider a service that
provides the current activity of a film crew member and a service that notifies film crew
members about arbitrary events, for example about meetings, etc. Code snippets of the

Springer

Distrib Parallel Databases (2006) 20:91–115 105

Service

Name Method

Name Parameters

Parameter

Name

Service

Name Method

Name Parameters

Parameter

Name

Description

Description

Parameter

Name

1000 1 1 1000 1 1 100 1010 11100 100100 101 1 10 1

Step 1:
Levelwise
transformation
of service
profiles

Step 2:
Blockwise
comparison
of sub strings

Fig. 14 Overview of SSMA

services are illustrated below. For the sake of brevity, we omitted the usage part of the VISR
service profiles.

<Service>

<Name>Get current activity</Name>

<Description>Returns the current activity of the film crew member

</Description>

<Method>

<Name>getCurrentActivity</Name>

</Input>

<Output>

<Attribute>Activity</Attribute>

</Output>

</Method>

..

</Service>

<Service>

<Name>Notify</Name>

<Description>Notifies the film crew member about the occurrence of

an arbitrary event.

</Description>

<Method>

<Name>notify</Name>

<Input>

<Parameter>message</Parameter>

</Input>

</Output>

</Method>

..

</Service>

Springer

106 Distrib Parallel Databases (2006) 20:91–115

C

C

C

C

C

C

C

C

C

C

t0 Time tt2t1

Service Invocation

weiVpihsrebmeM evitcA

Peer offline

Peer online

M1 Message Tuple

M1

C

C

Peer notification/Message Tuple creation

D

D D

M3

M2

Fig. 15 Web service invocation of VISR using tuples for communication

We now assume that our film crews are not permanently online and that the service
provision is offered only temporarily. Hence the associated Web services registry entries do
not exist permanently. Figure 15 shows the different states of the distributed Web service
registry, concerning the available number of VISR peers. At time t0 every member of the film
crew (C) and the film director (D) are online and provide the specified services. At time t1,
only two out of six members of the film crew are online. We now assume, that the film crew
director invokes the Web service called “get current activity” by putting a message tuple M1
into the tuple space at time t1. At that time, two peers are online and are notified by the tuple
space infrastructure that a new message tuple is available. The peers invoke their services
and write the result info the tuple space (message tuples M2 and M3). The film director polls
the tuple space at time t2 and receives the results of the service invocations.

7. Related work

The project presented in [20] presents an extension to the Service Oriented Architecture and
introduces the notion of channels that can be compared to the VISR view concept. Channels
serve as means to structure a global tuple space for coordination purposes. Our approach
uses VISR views to structure a global tuple space but in contrast with the work in [20], VISR
views provide a common interface description for Web services.

EgoSpaces [22] provides an abstraction called view that exposes some similarity to
VISR views. Views in EgoSpaces provide scalable coordination in an ad hoc network. In
EgoSpaces, an agent sees the world through a set of personalized views. In contrast to
EgoSpaces, VISR does not provide an agent based solution but VISR views also allow
personalized information.

The work in [23] employs a federation of UDDI-enabled peer registries. These registries
operate in a decentralized fashion and provide federations of peers with related or similar
services. These federations, or peer group syndications, are administered by a super peer that
manages the publishing, joining/leaving and service subscriptions. This concept is similar to
VISR community concept, based on VISR views, but needs super peers to operate properly.

Springer

Distrib Parallel Databases (2006) 20:91–115 107

VISR also introduces the view originator that serves as administrator for views, but does not
provide additional meta data services like management of login/logout of other peers.

The WSDA [18] grid architecture provides a semitransparent umbrella for distributed data.
WSDA does not focus explicitly on Web service registry but provides discovery functions
for distributed information. WSDA uses a tuple space model to store information among
nodes of the network. In comparison with VISR, WSDA registry information can be of any
format, WSDA only provides data tuples that are capable to store Web service descriptions.
Tuples are used to represent VISR service profiles of transient clients. In comparison with
VISR, WSDA does not consider Web service communities or different Web service registry
implementations.

VISR encompasses contributions of the SELF-SERV [21] project. SELF-SERV exploits
the concept of communities. Communities offer a well defined class of services with common
capabilities. A community delegates the execution of a service to a member according to
a selection policy. VISR follows a similar idea, regarding the structuring of communities,
respectively views, but VISR does not provide dynamic provider selection as SELF-SERV
does.

VISR proposes a community concept similar to the WebBis [9] communities. WebBis
offers two types of communities (push and pull). These communities correspond roughly
to dynamic respective static views of VISR. In comparison, VISR focuses on the actual
data models of registries and their declarative integration. WebBis follows a more abstract
approach by using an ontological based approach to structure push respectively pull com-
munities. In addition, WebBis proposes service wrappers that are used to provide a common
service description. VISR also provides common Web service descriptions that are spec-
ified by VISR service profiles. VISR service profiles expose some similarities to WebBis
service wrappers but operate on a different level. VISR service profiles offer a common
declarative service description whereas WebBis offers an object oriented approach. WebBis
also handles Web service composition and provides an event handling system to moni-
tor changes. Web service and composition and change monitoring are not covered by our
work.

The community concept described in [35] is similar to the concept of VISR communities.
The authors introduce the generic operations for communities that are similar to the abstract
interface descriptions in VISR. In contrast to VISR, the community concept is based on
a meta data ontology for communities. Furthermore, the communities are published in
UDDI registries, whereas VISR offers a tuple space for the persistence of community
information.

The ebXML [2–5] standard introduces the concept of Web service registry federation.
Federated Web service registries form loosely coupled unions of related Web services.
These federations appear as a single logical registry to clients. This approach shares some
of the objectives of our work. VISR views are similar to federations whereby ebXML
federations focus on the lifecycle of registry objects and replication issues. Our work focuses
on the creation of long lasting static views and dynamic views. Dynamic views, i.e., ad hoc
federations are not covered by ebXML federations. ebXML federations also do not cover the
issue of transient registry entries provided by transient Web service providers. VISR offers
lightweight clients to present a fully distributed non replicated Web service registry without
the need of additional administrative overhead.

The UDDI [1] standard also acknowledges the need for a distributed registry structure.
It introduces replication among distributed registries but focuses mainly on the actual dis-
tribution of registry entries. In favor of a flexible integration of lightweight VISR peers
VISR does not include a replication model, because replication increases the administrative

Springer

108 Distrib Parallel Databases (2006) 20:91–115

overhead. UDDI allows the creation of private registries that are physically separated from
other registries. In comparison, VISR offers a more flexible approach. VISR uses views to
create logical separations of registry data and controls registry access with the help of a
membership service.

VISR utilizes the concept of tracker sites, similar to the Bittorrent [25] network. Trackers
coordinate activities between peers of the Bittorrent network. They can be regarded as
communication hubs that provide a distributed registry. VISR takes a step further, since
the creation of trackers is comparable with the creation of VISR views. In contrast, VISR
offers a global querying system, whereas the Bittorrent limits querying only to tracker
sites.

Related work concerning the evaluation of structural similarities between XML docu-
ments can be found in [29–31]. The basic idea of these algorithms is the calculation of
the (minimum) edit distance between string representations of different DOM trees that
reflect the hierarchical structure of XML documents. A different approach is taken by Flesca
et. al [32] who evaluated structural similarity between XML documents using a time se-
ries representation of XML documents. For the benefit of simplicity, our proposed simple
structure matching algorithm (SSMA) follows a more naı̈ve approach, because our algo-
rithm does not calculate the actual edit distance between XML documents. Furthermore,
our algorithm operates with documents that originate from the same schema definition and
therefore provide a very helpful limitation regarding potential differences between compared
XML documents.

In the Web service area, there are several research projects that focus on Web service
context. VISR encompasses contributions from several sources. Mostéfaoui and Mostefaoui
[28] present an agent-based architecture that provides service selection based on a rating
system for Web services. The work in [34] describes a framework that models user tasks as
coalitions of abstract services. Keidl and Kemper [37] use the UDDI data model to provide
context information about Web services. Doulkeridis et al. [7] provides a context model for
mobile services based on a graph representation of context.

8. Conclusion and future work

In this paper, we presented a framework for a distributed virtual Web service registry in a
dynamic environment based on tuple spaces. Tuple spaces serve as primary communication
means and as storage media. We think of tuple spaces as a cornerstone for dynamic Web
service provisioning because of their device independency and decoupled communication
capabilities.

Our approach also considers a peer to peer network as a feasible solution for the integration
of transient Web service providers. Transient Web service providers join and leave the VISR
peer to peer network dynamically. Usually, they are devices that offer limited processing
power and memory capacity. To facilitate the integration of transient Web service provider
we presented the VISR view concept. Views are abstract contexts in which Web services
are published and can be regarded as virtual registries. Views also allow the creation of
Web service communities that provide related Web services with equal service invocation
patterns. In our approach, views furthermore include context information that is out of the
scope of common Web service registry descriptions.

A significant part of the paper discusses the matching algorithm of VISR. We make use of
structural information of VISR service profiles to support the discovery of Web services. Our
next step is the extension of our algorithm with the help of vector space oriented methods [8].

Springer

Distrib Parallel Databases (2006) 20:91–115 109

Due to lack of availability of distributed tuple space implementations, our current proof
of concept prototype uses a centralized version of tuple spaces. We intend to move to fully
distributed tuple spaces in our future work. We think that with the advent of distributed tuple
spaces further enhancements in flexibility can be achieved. We currently investigate two
possible scenarios for the next implementation of the distributed tuple space. We examine a
distributed tuple space solution based on the P-Grid [36] infrastructure that allows a scaleable
distribution of tuples. We furthermore consider the possibility of moving to version 3 of IBM’s
tuple space implementation.

Appendix

This section provides the schema files and corresponding APIs of VISR views, VISR service
and VISR peer profiles.

VISR Service profile

<xs:schemaxmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:element name="Service">

<xs:complexType>

<xs:sequence>

<xs:element name="Description"/>

<xs:element name="Method" type="MethodType"

maxOccurs="unbounded"/>

<xs:element name="Usage">

<xs:complexType>

<xs:sequence>

<xs:element name="Description"/>

<xs:element name="Example" maxOccurs="unbounded">

<xs:complexType>

<xs:sequence>

<xs:element name="Invocation"

maxOccurs="unbounded">

<xs:complexType>

<xs:sequence>

<xs:element name="Method"

type="MethodType"/>

<xs:element name="Result">

<xs:complexType>

<xs:sequence maxOccurs="unbounded">

<xs:element name="Attribute"

type="AttributeType"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

Springer

110 Distrib Parallel Databases (2006) 20:91–115

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:complexType name="AttributeType">

<xs:sequence>

<xs:sequence>

<xs:element name="Name"/>

<xs:element name="Value"/>

</xs:sequence>

<xs:element name="Attribute" type="AttributeType" minOccurs="0"

maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="ParameterType">

<xs:sequence>

<xs:element name="Name"/>

<xs:element name="Value" minOccurs="0"/>

</xs:sequence>

<xs:attribute name="type" type="xs:string" use="optional"/>

</xs:complexType>

<xs:complexType name="MethodType">

<xs:sequence>

<xs:element name="Name"/>

<xs:element name="Description"/>

<xs:element name="Parameters">

<xs:complexType>

<xs:sequence minOccurs="0" maxOccurs="unbounded">

<xs:element name="Parameter" type="ParameterType"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:schema>

VISR Service profile API

public class VISRServiceProfile extends VISRProfile {
VISRServiceProfile();

public String getID();

public String getDescription(String description);

public void setDescription();

public void setName(Stirng name);

public String getName();

Springer

Distrib Parallel Databases (2006) 20:91–115 111

public void addAttribute(Attribute attribute);

public AttributeList getAttributeList();

public void removeAttribute(Attribute attribute);

public void addMethod(Method method);

public void removeMethod(Method method);

public MethodList getMethodList();

public void setUsage(Usage usage);

public Usage getUsage();

public VISRServiceList matchService(Query query);

public VISRServiceList matchService(VISRViewProfile view);

}

VISR View profile

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:element name="View">

<xs:complexType>

<xs:sequence>

<xs:element name="ID"/>

<xs:element name="Name"/>

<xs:element name="Description"/>

<xs:element name="Filter">

<xs:complexType>

<xs:sequence>

<xs:element name="Input">

<xs:complexType>

<xs:sequence maxOccurs="unbounded">

<xs:sequence minOccurs="0" maxOccurs="unbounded">

<xs:element name="Attribute" type="AttributeType"/>

</xs:sequence>

<xs:sequence minOccurs="0" maxOccurs="unbounded">

<xs:element name="Method" type="MethodType"/>

</xs:sequence>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="Output">

<xs:complexType>

<xs:sequence maxOccurs="unbounded">

<xs:sequence minOccurs="0" maxOccurs="unbounded">

<xs:element name="Attribute" type="AttributeType"/>

</xs:sequence>

<xs:sequence minOccurs="0" maxOccurs="unbounded">

<xs:element name="Method" type="MethodType"/>

</xs:sequence>

</xs:sequence>

</xs:complexType>

Springer

112 Distrib Parallel Databases (2006) 20:91–115

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:complexType name="AttributeType">

<xs:sequence>

<xs:sequence>

<xs:element name="Name"/>

<xs:element name="Value"/>

</xs:sequence>

<xs:element name="Attribute" type="AttributeType" minOccurs="0"

maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="ParameterType">

<xs:sequence>

<xs:element name="Name"/>

<xs:element name="Value" minOccurs="0"/>

</xs:sequence>

<xs:attribute name="type" type="xs:string" use="optional"/>

</xs:complexType>

<xs:complexType name="MethodType">

<xs:sequence>

<xs:element name="Name"/>

<xs:element name="Description"/>

<xs:element name="Parameters">

<xs:complexType>

<xs:sequence minOccurs="0" maxOccurs="unbounded">

<xs:element name="Parameter" type="ParameterType"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:schema>

VISR View API

public class VISRViewProfile extends VISRProfile {
VISRViewProfile();

public String getID();

public String getDescription(String description);

public void setDescription();

public void setName(Stirng name);

public String getName();

Springer

Distrib Parallel Databases (2006) 20:91–115 113

public int getServicePort(int servicePort);

public void setServicePort();

public void setInputFilter(InputFilter inputFilter);

public InputFilter getInputFilter();

public void setOutputFilter(OutputFilter outputFilter);

public OutputFilter getOutputFilter();

public VISRPeerList getVISRPeerList();

public void addVISRPeer(VISRPeerProfile VISRPeerProfile);

public void removeVISRPeer(VISRPeerProfile VISRPeerProfile);

}

VISR peer profile

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:element name="Peer">

<xs:complexType>

<xs:sequence>

<xs:element name="ID"/>

<xs:element name="Name"/>

<xs:element name="Description"/>

<xs:element name="Type"/>

<xs:element name="IP"/>

<xs:element name="ServicePort"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

VISR peer profile API

public class VISRPeerProfile extends VISRProfile {
VISRPeerProfile();

public String getID();

public String getDescription(String description);

public void setDescription();

public void setName(Stirng name);

public String getName();

public int getServicePort(int servicePort);

public void setServicePort();

public void setVISRPeerType(VISRPeerType VISRPeerType);

public VISRPeerType getVISRPeerType();

public ServiceList getServiceList();

public void publishService();

public Service findService();

public void unpublishService(Service service);

public void publishView(View view);

public void unpublishView(View view);

}

Springer

114 Distrib Parallel Databases (2006) 20:91–115

References

1. OASIS. Universal Description, Discovery and Integration: UDDI Technical White paper, 2000.
http://www.uddi.org/pubs/Iru UDDI Technical White Paper.pdf. .

2. OASIS. OASIS/ebXML registry services Specification v2.5, 2003. http://www.oasis-open.org/
committees/regrep/documents/2.5/specs/ebrs-2.5.pdf.

3. OASIS. OASIS/ebXML Technical Architecture Specification, 2001. http://www.ebxml.
org/specs/ebTA.pdf.

4. OASIS/ebXML registry Information Model v2.5, 2003. http://www.oasis-open.org/committees/
regrep/documents/2.5/specs/ebrim-2.5.pdf.

5. OASIS. Business Process Specification Schema, 2001. http://www.ebxml.org/specs/ebBPSS.pdf.
6. R. Tolksdorf, and D. Glaubitz, “Coordinating web-based systems with documents in XMLSpaces,”

CoopIS 2001, LNCS 2172, Springer-Verlag, Berlin Heidelberg, 2001, pp. 356–370.
7. C. Doulkeridis, E. Valavanis, and M. Vazirgiannis, “Towards a context-aware service directory,” in B.

Benatallah and M.-C. Shan (Eds.), TES 2003, LNCS 2819, Springer-Verlag, Berlin Heidelberg, 2003,
pp. 54–65.

8. S. Dustdar and C. Platzer, “A vector space search engine for Web services,” in IEEE European Conference
on Web services (ECOWS), IEEE Computer Society Press, 14–16 November 2005.

9. B. Medjahed, B. Benatallah, A. Bouguettaya, and A. Elmagarmid, “WebBIS: An infrastructure for agile
integration of web services,” International Journal of Cooperative Information Systems, vol. 13, no. 2,
pp. 121–158, 2004.

10. W3C. Web Services Architecture W3C Working Group Note 11 February 2004. http://www.w3.org/TR/
ws-arch/wsa.pdf.

11. IBM. TSpaces, 2003. http://www.alphaworks.ibm.com/tech/tspaces.
12. W3C. XSL Transformations (XSLT) Version 1.0 W3C Recommendation 16 November 1999.

http://www.w3.org/TR/1999/REC-xslt-19991116.
13. W3C. XML Path Language (XPath) Version 1.0 W3C Recommendation 16 November 1999.

http://w3c.org/TR/xpath.
14. W3C. SOAP Version 1.2 Part 1: Messaging Framework W3C Recommendation 24 June 2003.

http://www.w3.org/TR/2003/REC-soap12-part1-20030624/.
15. W3C. SOAP Version 1.2 Part 2: Adjuncts W3C Recommendation 24 June 2003. http://www.w3.org/

TR/2003/REC-soap12-part2-20030624/.
16. W3C. Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language W3C Working

Draft 3 August 2004. http://www.w3.org/TR/2004/WD-wsdl20-20040803.
17. W3C. Web Services Description Language (WSDL) Version 2.0 Part 2: Predefined Extensions W3C

Working Draft 3 August 2004. http://www.w3.org/TR/2004/WD-wsdl20-extensions-20040803.
18. W3C. Web Services Description Language (WSDL) Version 2.0 Part 3: Bindings W3C Working Draft

3 August 2004. http://www.w3.org/TR/2004/WD-wsdl20-bindings-20040803.
19. D. Gelernter, “Generative communication in Linda, ACM Transactions on Programming Languages and

Systems,” vol. 7, no. 1, pp. 80–112, 1985.
20. P. Alvarez, J.A. Banares, and P.R. Muro-Medrano, “An architectural pattern to extend the interac-

tion model between web-services: The location-based service context,” ICSOC 2003, LNCS 2910,
Springer-Verlag Berlin Heidelberg, 2003, pp. 271–286.

21. B. Benatallah, M. Dumas, and Q.Z. Sheng, “Faciliating the rapid development and scalable or-
chestration of composite web services,” Distributed and Parallel Databases, vol. 17, pp. 5–37,
2005.

22. C. Julien, G.C. Roman, and J. Payton, “Bringing context-awareness to applications in Ad hoc mobile
networks,” Technical Report WUCSE-04-18, Washington University, Department of Computer Science
and Engineering, St. Louis, 2004.

23. M.P. Papazoglou, B.J. Krämer, and J. Yang, “Leveraging Web-services and Peer-to-Peer networks,”
CAiSE 2003, LNCS 2681, 2003, pp. 485–501.

24. SUN, 2004. Java 1.5. java.sun.com.
25. B. Cohen, 2003. “Incentives build robustness in BitTorrent,” www.bittorrent.com.
26. S. Dustdar, M. Treiber, “A view based analysis on Web service registries,” Distributed and Parallel

Databases, forthcoming.
27. A. Tsalgatidou and T. Pilioura, “An overview of standards and related technology in Web services,”

Distributed and Parallel Databases, vol. 12, pp. 135–162, 2002. Kluwer Academic Publishers.
28. K. Mostéfaoui and G.K. Mostefaoui, “Towards a contextualisation of service discovery and composition

for pervasive environments,” in Proc. of the Workshop on Web-services and Agent-based Engineering
(WSABE), 2003.

Springer

Distrib Parallel Databases (2006) 20:91–115 115

29. E. Bertinoa, G. Guerrini, and M. Mesitia, “A matching algorithm for measuring the structural similarity
between an XML document and a DTD and its applications,” Information Systems, vol. 29, no. 1, 2004.

30. Y. Wang, D.J. DeWitt, and J.Y. Cai, “X-Diff: An effective change detection algorithm for XML
documents,” Proc. Int’l Conf. Data Eng. (ICDE ‘03), 2003, pp. 519–530.

31. A. Nierman and H.V. Jagadish, “Evaluating structural similarity in XML documents,” in Proc. Int’l
Workshop Web and Databases (WebDB ‘02), 2002.

32. S. Flesca, G. Manco, E. Masciari, L. Pontieri, and A. Pugliese, “Fast detection of XML structural
similarity,” IEEE Transactions on Knowledge and Data Engineering, vol. 17, no. 2, 2005.

33. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, A System of Patterns, Wiley, 1996.
34. J.P. Sousa and D. Garlan, “Aura: an Architectural Framework for user mobility in ubiquitous computing

environments,” in Proc. of the Working IEEE/IFIP Conf. on Software Architecture (WICSA), 2002, pp.
29–43.

35. B. Medjahed and A. Bouguettaya, “A dynamic foundational architecture for semantic Web services,”
Distributed and Parallel Databases, vol. 17, pp. 179–206, 2005. Springer-Verlag, Berlin Heidelberg.

36. K. Aberer, A. Datta, and M. Hauswirth, “P-Grid: Dynamics of self-organization processes in structured
P2P systems,” Peer-to-Peer Systems and Applications, Lecture Notes in Computer Science, LNCS 3845,
Springer-Verlag Berlin Heidelberg, 2005.

37. M. Keidl and A. Kemper, “Towards context-aware adaptable Web services,” EDBT 2004, LNCS 2992,
Springer-Verlag Berlin Heidelberg, 2004, pp. 826–829.

Springer

