
Modeling Context-aware and Socially-enriched Mashups

Martin Treiber1, Kyriakos Kritikos2, Daniel Schall1, Dimitris Plexousakis3, Schahram Dustdar1

1Vienna University of Technology,2Politecnico di Milano,3University of Crete

{m.treiber, schall, dustdar}@infosys.tuwien.ac.at, kritikos@elet.polimi.it, dp@csd.uoc.gr

Abstract
Mashup platforms and end-user centric composition tools
have become increasingly popular. Most tools provide Web
interfaces and visual programming languages to create com-
positions. Much of the previous work has not considered
compositions comprising human provided services (HPS)
and software-based services (SBS). We introduce a novel
HPS aware service mashup model which we call socially
oriented mashups (SOM). The inclusion of HPS in service
mashups raises many challenges such as a QoS model that
must account for human aspects and the need for flexible ex-
ecution of mashups. We propose human quality attributes,
for example delegation, and a context model capturing var-
ious information including location and time. The QoS and
context model is used at design-time and for runtime adap-
tation of mashups. In this paper, we show how to model
context-aware SOMs that include HPS and SBS and demon-
strate the first results of our working prototype.

Categories and Subject Descriptors D.2.2 [Software Engi-
neering]: Design Tools and Techniques; H.3.5 [Online In-
formation Services]: Web-based Services

General Terms Mashups, Composition, Context, QoS

1. Introduction
The role of humans in service compositions and workflows
has gained tremendous attention. With the proliferation of
Web service mashups [21], human aspects became important
for designers and the end-users as well. The ability of non
experts to create mashup applications for their personal use
is considered to increase the productivity of employees.

Currently there is little support for the exploitation of
these dynamic aspects in workflows, where humans are in-
tegrated into service mashups. In order to tap resources for
the creation of flexible and human oriented service compo-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© ACM [to be supplied]. . . $10.00

sitions, a framework is required that offers the required flex-
ibility and simplicity for the end-user. In particular, we pro-
pose the seamless integration of HPS into service mashups.
In this context, we refer to these human augmented service
mashups associally oriented mashups(SOM) because of
phenomena like (sub-)task delegation to other humans dur-
ing the execution of the mashup. Furthermore, if we con-
sider humans as part of service mashups, we add automat-
ically reasoning capabilities to the mashup. Thus, we make
a service mashup flexible and adaptive to unpredictable sit-
uations, where human expertise is needed to adapt to new
situations.

service mashup

user

context

model

hps

hps

service

defines

creates

uses

service with wsdl interface

references

activitiy

activity

activity

context channel

consists of

hps... human provided service

service... software service

links to

links to

links to

QoS

QoS

QoS

context

context

context

uses

QoS

model

defines

defines

1:n relation

context QoS

context instance QoS instance

Figure 1. Conceptual Architecture of SOM

However, with the additional flexibility we also face a set
of challenges which we address in our work. In particular,
we address these challenges with a service mashup model
which includes hooks forcontext informationand human re-
lated QoS attributes that can be exploited during the execu-
tion of the mashup (see Figure 1).

In the first step, we create amashup modelconsisting of
HPS and traditional SBS using a lightweight composition
language. The focus of this step lies on the functional part of
the composition. Since HPS offer the same interface as tradi-

Person

Agent

Capability

Requirement

Activity

Object Action Value

Time

Label

Connection

*
*

Service

Role

1*

History

Location

1
*

context change history (how)

where

what

when

who

context

dimensions

(a) Different Dimensions of Context

Person

AgentCapability

Connection

*
*

Service

query: find HPS that can replace SBS

Person

Agent

Requirement

Activity

Connection

*
*

Service

History

query: find only services in $Loc1 but not $Loc2

context usage
example

(b) Using the Context Model

Figure 2. Context Model for Social based Mashup Applications

tional SBS, we do not require additional considerations con-
cerning interface compatibility of HPS and SBS. Consider-
ing plain SBS, their description follows the WSDL de-facto
standard. By following the HPS concept proposed by [26]
we do not require special considerations for the creation of
HPS service descriptions. We use WSDL based descriptions
that serve as interface to HPSs. This abstraction gives us the
benefit of having standardized interfaces to humans which
make themcomposabletogether with SBS in a well defined
manner without having to cope with the inherent complexity
of human interfaces.

In the second step, we attachcontextrelated information
to the service composition. We refer to this context as design
time context in which the creator of the mashup makes
assumptions about the expected mashup execution context.
The context of the mashup provides information about the
environment and introduces global constrains that must be
met during the execution of the mashup. For instance, a
mashup might not use external services but only internal
ones.

Fine tuning of the service mashup takes place in the third
step. Within the mashup, the designer is required to define
parts which allow a certaindegree of flexibility, like delega-
tion or splitting. This activity attaches detailed contextin-
formation to parts of the service mashup which are expected
to change during the execution and the given context. For
instance, in a mashup, there might be a critical HPS which
must not be delegated to others or some services are not al-
lowed to be split among several services.

The rest of the paper is organized as follows. In Section 2
we define our context model for social-based mashup appli-
cations. Section 3 introduces our proposed QoS model with
emphasis on humans. In the following section we show how

to create social service compositions with a lightweight ser-
vice composition language. The initial results of our proto-
type are demonstrated in Section 4. We conclude the paper
with related work in Section 5 and an outlook for future work
in Section 6.

2. Context Model for SOM
We propose a context model that enables the weaving of
context related information into social service compositions
that are described in a flexible composition language. Our
proposed context model aims at satisfying the following
properties:

1. The model should be lightweight pertaining information
regarding the most relevant entities in SOM. We do not
attempt to provide a general purpose context model, but
rather focus on SOM applications.

2. Context information comes from various sources induc-
ing physical, e.g., physical location context, and logical
sources, for example, a calender containing information
regarding the user’s location in a given time interval.

Figure 2(a) depicts our context model and some examples
of its usage in SOM (see Figure 2(b)). Our model captures
the well know dimensions of context (e.g., see [2])whatde-
noting the activity of an agent,whencapturing time aspects,
who denoting a person or service, andhowa set of actions
that were executed in the course of an activity. On the other
hand (Figure 2(b)) we show examples how to use the context
model in SOM (context queries).

The context model contains aspects related to the design
of mashups and to their execution (i.e., runtime). At design
time, concepts that need to be supported by the mashup tool
areActivity, Agent, Role, andRequirement.

• Activity : Mashup applications comprise a set of activi-
ties required to model basic flows (processes). However,
the context model does not contain details regarding the
process model. Instead, context is related to information
such asAgentand theirRolesin Activities; roles may in-
clude creator of an activity or contributor.

• Agent: Both HPS and SBS can contribute to an activity
[26].

• Requirement: A requirement may restrict the set of ac-
tors, which can be invoked in an activity, the roles, and
most importantly the values of QoS attributes.

The other model entities address the dynamic nature of
context. AnActivity as well asAgent is associated with a
context change history. Context change, or more precisely,
context change events are depicted asObject, Action, and
Valuetriples.

• Events areactions taken by agentsa) in an activity that
is part of a mashup (composition) or b) independent of
an activity (person A moves to a new location X). In the
first case, an object (person or service) triggers an action
(the activity acts as the container for actions) while in
the second case, objects change their state independent
of any activity.

• Events areactions acting upon agents. Such an event
may capture invocations of SBS or HPS. In other words,
actions capturefunctionalcapabilities (e.g., interface ca-
pabilities) that could change over time. However, actions
are typically driven by the context to enable flexible exe-
cutions of SOM. Changing actions are important for the
context-based evolution of mashup-based compositions.

Label and Time provide additional metadata to context
change events. Labels provide additional information about
the action. The value gives the result of an action, whereas
labels can be regarded as ”tags” to further quantify actions.

Let us discuss two example context queries as depicted
by Figure 2(b) to explain the role of context in SOM:

• Replaceability (find HPS that can replace SBS): Attempts
to discover a set of HPS that can replace SBS that might
be, for example, unavailable due to faults or other techni-
cal problems. The HPS must satisfy functional interface
characteristics and capabilities in terms of QoS proper-
ties. For example, slower response time of a human is
acceptable in a given SOM.

• Restriction and filtering (Find only services in$Loc1 but
not $Loc4): This query selects and filters services based
on location information (e.g., exclusive combination of
input variables $Loc1 and $Loc4 expressed asRequire-
ment). TheHistory is used to determine whether an agent,
for example, a person has moved to a certain location
(changes in location context).

3. QoS Model for Service Compositions
In contrast to interface issues, quality aspects of HPS require
special considerations with regard to service compositions.
Context has strong impact on QoS properties due to chang-
ing availability of services. HPS exhibit fundamentally dif-
ferent quality than SBS. For example, SBS can handle sev-
eral hundreds requests at once while humans are limited to
a small number of parallel requests. On the other hand, hu-
mans are able to make complex decisions and to handle data
outside the original task specification while SBS can han-
dle these situations only to a very limited extent. Generally
speaking, humans maintain a more complex notion of con-
text and are able to maintain multiple contexts at a time.
They also have the ability to resolve context when required.
Thus, when combining human and software-based services,
these differences must be considered in the design of com-
positions. We propose the extension of existing QoS models
with regard to human attributes that reflect human behavior
[15].

3.1 QoS Attributes

Table 1 shows a set of quality attributes, along with their
definition, that can be applied to both human and machine-
based services or to only one of these two types of services.
The latter fact (i.e., application) is exhibited with the use of
the third and fourth columns of the table. Finally, the last col-
umn shows if it is meaningful to aggregate the same quality
attribute of both human and software-based services for the
composition. If the answer is no, then we can have only lo-
cal quality constraints on specific tasks of the composition,
depending on whether the quality attribute is meaningful to
model the quality of the human or machine-based service
that is mapped to this task.

We are going to analyze the differences between the same
quality attribute for the human and software-based services
and we are going to argue why we did not model this at-
tribute for one or the other service type in the corresponding
cases that can be drawn from the last column of Table 1.

Throughput : Defines the maximum number of requests
that can be completed in a given time interval. Again, there
is no conceptual difference between humans and software-
based services beside the scale of the respective throughput.

Availability : SBSs are usually available 99.9 percent of
their time. On the other hand, the availability of humans
varies as it also depends on their context and current load.
However, there are usual patterns inferred from users context
where availability can be approximately defined for humans
(e.g. user’s usual working schedule, days off and holidays,
health and mental situation, etc.).

Data quality: This attribute expresses the quality of the
data produced by the service. In the way we define HPS, this
attribute has the same meaning for both service types that we
consider. Moreover, this is an attribute for which we cannot
definitely say that its value is better for one service type

Attribute Description SBS Human Aggregation

Throughput The number of completed service requests over a time period yes yes yes
Availability Availability of the service provided to customers yes yes yes
Data Quality The ability of a data collection to meet user requirements, defined as

the proximity of a valuev to a valuev
′

considered as correct
yes yes yes

Trust Indicates the service’s trustworthiness yes yes no
Delegation Ability to delegate task to another service no yes no

Soft Completion Ability to end a task’s execution untimely due to time restrictions but
with a concrete result produced

no yes no

Table 1. Service Quality Attributes

Attribute Metric/Type/Unit/Monotonicity Aggregation Pattern

Throughput Maximum/Positive Integer/(Calls/Sec)/Positive thk (CEP) = minspk
m∈ epk

∑
ti∈ spk

m

(ti,sj)∈CEP

thj

Availability (Uptime/Total-Time)/Real in [0.0,1.0]/–/Positiveavk (CEP) =
∏

ti∈ epk

(ti,sj)∈CEP

avj

Data Quality MAPE [17]/Real in [0.0,1.0]/–/Negative dqk (CEP) = min ti∈ epk

(ti,sj)∈CEP

dqj

Trust –/Real in [0.0,1.0]/–/Positive trk (CEP) =
∏

ti∈ epk

(ti,sj)∈CEP

trj

Table 2. Service Quality Metric and Aggregation Pattern

than the other one. Depending on the application domain
and the context, the situation changes so there is no winning
service type. Finally, the data quality of an HPS can increase
because a human can learn from the repetition of a task or by
exploiting the knowledge acquired or derived from its social
network.

Trust : The way this quality is measured for these entities
is different because for humans it depends on both subjective
and objective criteria while for SBS it depends on only ob-
jective criteria [29]. Moreover, an SBS’s trust is usually more
constant as compared to a human’s trust. So, we believe that
it is not meaningful to aggregate this quality for a composite
service containing both human and software-based services.

Delegation: This attribute concerns the ability of a human
to delegate a part or the whole task he is running to other
humans, including this human’s coordination capability in
coordinating the splitted task’s execution. SBS can partially
support this attribute by delegating a whole task’s execution
to other instances of the same service. However, they cannot
easily delegate parts of a task and coordinate them, if the task
has already executed, as this requires special mechanisms.
So it is not meaningful to model this attribute for SBS.

Soft Completion: Soft completion refers to the incom-
plete result of a service execution which is still useable for
further activities. For example, a HPS that analyzes images
for the occurrence of objects (e.g., trees) might not qualify
all objects. However, it might be the case that only a yes/no
decision of object occurrences is necessary in the context of
the mashup/workflow. This is not true for the side of SBS, as
they have to end all their activities before they can produce
a specific and complete output.

3.2 Quality Aggregation Analysis

Several quality attributes can be associated with a service.
Each attribute would have a short definition, a metric, a value
type, a monotonicity and an aggregation pattern associated
with it. Monotonicity concerns the way the values that the
dimension takes can be compared. In this paper, we distin-
guish between positive and negative dimensions. A dimen-
sion is positive (negative) if the higher the value the higher
(lower) the quality or energy level. The aggregation pattern
of a dimension defines how the value of this dimension for a
composite service can be determined based on the value of
the component services. In this paper, we have considered
only the most significant and widely-used quality attributes
that appear in many research approaches. Table 2 summa-
rizes these attributes based on the above analysis.

CEP denotes a concrete execution plan [13] of a com-
posite service (either HPS or SBS). EachCEP can be trans-
formed [1] to many (e.g.,K) concrete execution paths sym-
bolized withepk containing a subset of the tasksti of the
CEP . In addition, each execution pathepk has a set ofsub-
paths(i.e. paths not having parallel tasks) that are indexed by
m and denoted byspk

m. Every execution pathepk is associ-
ated with a set of aggregated attributes denoted withattrk.
The set of servicesSi to be executed for a taskti are called
candidate servicesand are denoted withsj . Each servicesj

has a specific set of attributesattrj derived from its service
profile.

3.3 QoS and Context

We argue that QoS attributes are driven by the context in
which they are measured. In this regard, we refer to context

free QoS attributes and context sensitive attributes. We con-
sider QoS attributes like availability as context sensitive for
HPS, because the location context of the human (provided
service) influences the availability quality attribute. For in-
stance, if the location of a human changes, the human might
not be able to provide the service. Another example for a
context sensitive attribute is delegation. Delegation might
not be allowed in scenarios where a certain instance of a
HPS (e.g., expert that provides an expertise service) is re-
quired. In contrast, context free quality attributes are not af-
fected by context. An example is a valid security certificate
which is required to invoke a service. In the next section we
discuss the use of context and QoS in our proposed mashup
model in greater detail.

4. Architecture and Implementation
The main concepts of our approach were defined in the pre-
vious sections. This section is dedicated to analyzing the ar-
chitecture and implementation details of our approach. As
discussed earlier, our goal is to benefit from both, human
flexibility and the efficiency of SBS for tasks. Conceptually,
the composition process consists of two main steps as de-
picted in Figure 3.

Mashup Execution
Engine

Context Store

Flow Editor

2) Output of Design

Relevant
ContextDesign

1) Design of
Composition

Runtime

3) Deployment of
Composition Model

Process
Model

Service
Invocation
Handler

Invoke Activity

Context Query

Context Query
Response

HPS + SWS

Service Request

Service Response

XML Result

4) Context-aware
Execution of Mashup

Figure 3. Architecture and Deployment

1. DesignFirstly, one needs to define the structure of the
service mashup. The structure of a service mashup de-
fines from an abstract perspective how services and hu-
mans cooperate and which services are used by humans
and vice versa. We support this activity with a online tool
that enables the creation of social mashups (Flow Edi-
tor). It must be noted that the flow model contains addi-
tional information regarding therelevant contextthat is
used during execution of the process model (e.g., context
queries).

2. Runtime With the use of uniform WSDL interfaces we
lay the foundation for a later generation of BPEL work-
flows. The composition model is deployed in theMashup
Execution Engine. An activity is usually performed by
invoking a set of services. We call these invocationsac-
tions that can be performed in a context-aware manner.
Thus, theService Invocation Handlerinterprets context
associated to activities to obtain context information via
queries from theContext Store. Interactions with HPS
and SBS (service request and service response) happen
in an equivalent service oriented manner through the ex-
change of SOAP messages. Notice that our approach
is not limited to BPEL, since the abstract definition of
mashup can be transformed into other languages as well.

4.1 Flow Editor

For a proof of concept prototype implementation, and to il-
lustrate the end user support, we used ExpressFlow [31]. We
integrated concepts that are required for the creation of so-
cial service compositions in Expressflow, with regard to the
limitations imposed by HPS and SBS in service mashups.
In our approach, a service mashup structures activities and
defines context channels which encapsulate context related
information. With the help of a graphical tool (see Figure
4) we support the mashup design process. At this level, the
mashup designer defines the basic structure of the mashup
using different activities. The tool also provides basic ser-
vice registry features which supports the designer in select-
ing services that are suitable in a given context (e.g., filtering
of all services that operate at certain locations).

Figure 4. Screenshot of ExpressFlow online tool

We incorporate context related information directly into
the code of the mashup. This approach enables context un-
aware services to be fully integrated into context aware
mashups. By following the separation between context and
services we gain the needed flexibility to integrate humans,
HPS respectively, into mashups. We discuss the implemen-
tation and integration of the basic concepts and their imple-
mentation in a top down manner in the following subsections
and illustrate our approach with short XML examples that

are generated by the Expressflow tool, after having specified
the mashup graphically.

4.2 Modeling Context-aware Mashups with
Expressflow

Mashup: In service mashups, we embed context channels
to structure context information and group actions in activ-
ities. These elements can be structured with constructs like
if then elseor parallel. Listing 1 illustrates two parallel con-
text channels with different context information usingPar-
allel and ParallelBranchconstructs. Each context channel
specifies a context scope (e.g., location, time). During the
execution these branches are executed in parallel with the
context being evaluated independently.

� �
1 <P r o c e s s e f i d ="5c21c032-091f-45a0-aaf4..."
2 name="OOPSLA Service Mashup Demo"
3 t ype ="Service Mashup" . . . >

4 <P a r a l l e l name="Parallel1" t ype ="Activity" . . . >

5 <P a r a l l e l B r a n c h>
6 <Con tex t name="Context Channel1"
7 t ype ="ContextChannel"
8 l o c a t i o n ="Vienna" t ime ="Today">
9 . . .

10 < / Con tex t>
11 </ P a r a l l e l B r a n c h>
12 <P a r a l l e l B r a n c h>
13 <Con tex t name="Context Channel2"
14 t ype ="ContextChannel"
15 d e l e g a t i o n ="No" a v a i l a b i l i t y ="100">
16 . . .
17 < / Con tex t>
18 </ P a r a l l e l B r a n c h>
19 < / P a r a l l e l>
20 < / P r o c e s s>
� �

Listing 1. Definition of Mashup Comprising Two Parallel
Context Channels

Context Channel: Context channels act as flexible con-
tainers for service related context information which is spec-
ified during the design of the mashup. Conceptually, a con-
text channel defines the scope and the type of context (e.g.,
location, time, delegation) for nested activities. Duringthe
execution of the mashup, all activities of a context channel
access the predefined context information and perform the
context dependend actions (e.g., data transformation) which
are retrieved from a context store.

� �
1 <Con tex t name="Context Channel1"
2 t ype ="ContextChannel"
3 l o c a t i o n ="Vienna" t ime ="Today">
4 <A c t i v i t y name="Activity1"
5 t ype ="Activity" p r e v i o u s ="null" . . . />
6 <A c t i v i t y name="Activity2"
7 t ype ="Activity" p r e v i o u s ="Activity1"
8 nex t ="Assignment1" . . . />
9 </ Con tex t>
� �

Listing 2. Context Channel Example

Listing 2 presents an example for a context channel,
which defines the location context of all included activities

to Viennaand the time contextToday. It it worth noticing,
that, unless specified differently, all activities are per default
executed sequentially (Activity 2 follows Activity 1).

Activity: Activities structure actions which are the hooks
for the actual service invocation. The example in Listing 3
shows an activity (Activity1) which copies three different
values (appid, streetandcity) to the variableVariable7for a
sequential invocation of two SBS (SOAPInvoke3andSOAP-
Invoke4) which share the same input parameters.

� �
1 <A c t i v i t y name="Activity2" t ype ="Activity" . . . />
2 <Assignment name="Assignment1" t ype ="Activity ... >
3 <Copy name="Copy1" type="A c t i v i t y "
4 copy_from="YD−9G7bey8 JXxQP6rxl . fBFGgCdNj . . ."
5 copy_to="$ V a r i a b l e 7 . app id" previous=" n u l l" ... />
6 <Copy name="Copy2" type="A c t i v i t y "
7 copy_from="A r g e n t i n i e r s t r e e t +8"
8 copy_to="$ V a r i a b l e 7 . c i t y"
9 previous=" n u l l" next=" n u l l" ... />

10 <Copy name="Copy3" type="A c t i v i t y "
11 copy_from="Vienna"
12 copy_to="$ V a r i a b l e 7 . c i t y" ... />
13 </Assignment>
14 <Invoke name="SOAPInvoke3" type="SOAPInvoke"
15 input="V a r i a b l e 7" output="V a r i a b l e 8" ... >...
16 <Invoke name="SOAPInvoke4" type="SOAPInvoke"
17 input="V a r i a b l e 7" output="V a r i a b l e 9" ... >...
� �

Listing 3. Asynchronous Activity

Action: Actions represent invocations of services that
are executed in the context of an activity. Listing 4 shows
how actions are modeled in ExpressFlow. Because of hav-
ing specified the context on a higher level, we do not require
to specify context attributes on this level. Consequently,ser-
vices do not need to be aware about the context in which they
are executed. We discuss how we handle the actual service
invocation in Section 4.3.

� �
1 <Invoke name="SOAPInvoke3"
2 t ype ="SOAPInvoke"
3 i n p u t ="Variable7" o u t p u t ="Variable8" . . . >

4 <Resource
5 u r i ="http://local.yahooapis.com/MapsService...
6 appid=$Variable7.appid&
7 street=$Variable7.city&
8 city=$Variable7.city" />
9 </ Invoke>
� �

Listing 4. SOAP Invoke Example

4.3 Context Store and Service Invocation Handler

Our prototype stores context related information in a MYSQL
database. Our database layout is based on the SOAF data
model [30] and the context model of Figure 2(a). During
runtime, we query the context store for context related ac-
tions (e.g., service request transformations) using our service
invocation handler. The service invocation handler extracts
context information (e.g., time, location, delegation) from
SOAP message headers. In our current implementation, we
use a simple keyword based search to query for context spe-

cific transformations which are represented as XSLT trans-
formations. These transformations are retrieved as strings
(streams respectively) for the use of Apache XALAN to
transform the request according to the context. Notice that,
in our current implementation, we support the transforma-
tion of incoming SOAP requests, but do not transform the
output accordingly. This is planned for future work.

5. Related Work
Generally speaking, mashups are applications created of ex-
isting online resources. [16] categorizes mashups according
to four main dimensions: a) what is mashed up, b) where
to mashup, c) how to mash up, and d) for whom to mash
up. Based on this categorization, there are tools that of-
fer similar functionalities with our approach like “JackBe
Presto”1 , “Procession” [20], “Serena Mashup Suite”2 ,
“Swashup” [22], “JOpera” [25] and “remash!” [4]. However,
none of these tools is able to offer a context-aware and QoS-
based mashup development and execution environment.

Context is any information that can be used to charac-
terize the situation of entities [12]. Context-aware Systems
(CASs) are able to adapt their behavior to the current context
without explicit user intervention and thus aim at increas-
ing usability and effectiveness by taking environmental con-
text into account [2]. The behavior of a CAS can be adapted
through context in three levels/dimensions [10]:user inter-
face, content, andservice. Moreover, this adaptation can be
performed in a static or dynamic way by different combina-
tions of services which are independently selected on these
three dimensions.

Context has been used in discovery, composition, and
adaptation of SBSs. Concerning SBS discovery, context has
been used for request (e.g. location info) and input comple-
tion (e.g. missing input) so as to increase the quality of the
discovery result [6]. Various approaches [9, 23, 24, 28] have
been proposed for SBS composition that use local [33] and
global contextual constraints for selecting among the candi-
date SBSs for each task of the composite SBS in a static or
dynamic way.

When context changes, composite SBSs may be adapted
in three different ways: a) SBS access channel is changed [3],
b) an SBS is substituted with another one [3, 28], c) a new
concrete execution plan is executed from scratch [14]. Un-
fortunately, none of the existing SBS composition and adap-
tation approaches is able to offer simultaneously the three
different types of adaptation. Moreover, no approach is able
to substitute a single SBS with a new composite one, which
might be the case with cooperating HPSs.

Very few mashup approaches have been proposed to take
advantage of user or environmental context for adaption
purposes. In [5] a system architecture is proposed featuring a
context provisioning framework for utilizing local sensors in

1http://www.jackbe.com
2http://www.serena.com

context-aware mashups. The work described in [19] presents
a services mashup system which is able to perform context-
aware service composition in a semi- or fully-automatic way
and to adapt the results of the composition according to the
user’s context. Finally, “remash!” [4] offers a framework that
enables the flexible binding of services at runtime depending
on the changing availability of services or the situation-
specific requirement of the application.

Context and its quality can affect the QoS of a service [7].
QoS has been widely studied and researched for SBS discov-
ery, composition [13], and adaptation [1, 8, 11]. However, no
QoS-related research work has been conducted for mashups
or human-based workflows.

6. Summary and Future Work
In this paper we presented a framework for the integration
of humans in socially oriented service mashups. We illus-
trated the mechanisms to accomplish this with regard to
QoS and context. We presented our initial prototype and dis-
cussed how we addressed implementation challenges con-
cerning the interpretation of context during the runtime. In
future work, we will elaborate our approach with regard to
the adaptivity of mashups and extend our core context model
with complex actions (e.g., reordering of service invoca-
tions in context channels). We are going to extend our QoS
model with attributes like accuracy or presentation quality
and study these in the context of mashups. Furthermore, we
will extend our current prototype with ExpressFlow to BPEL
[32] transformations to generate executable BPEL code and
study alternative approaches (e.g., using scripting languages
or document based approaches [27]). And finally, we will
evaluate the performance of our proposed approach thor-
oughly and study larger examples for service mashups and
context.

Acknowledgment
The research leading to these results has received funding
from the European Community Seventh Framework Pro-
gramme FP7/2007-2013 under grant agreement 215483 (S-
Cube) and 216256 (COIN). We thank Martin Vasko for help
on modeling SOM with ExpressFlow.

References
[1] D. Ardagna and B. Pernici. Adaptive service compositionin

flexible processes.IEEE Trans. Softw. Eng., 33(6):369–384,
2007.

[2] M. Baldauf, S. Dustdar, and F. Rosenberg. A survey on
context-aware systems.Journal on Ad Hoc and Ubiquitous
Computing, 2007.

[3] L. Baresi, D. Bianchini, V. D. Antonellis, M. G. Fugini,
B. Pernici, and P. Plebani. Context-aware composition of e-
services. InTES 2003, volume 2819 ofLNCS, pages 28–41,
Berlin,Germany, 2003. Springer.

[4] B. Blau, S. Lamparter, and S. Haak. remash! - blueprints for
restful situational web applications. InProceedings of the 2nd
Workshop on Mashups, Enterprise Mashups and Lightweight
Composition on the Web at WWW2009, Madrid, Spain, 2009.

[5] A. Brodt, D. Nicklas, S. Sathish, and B. Mitschang. Context-
aware mashups for mobile devices. InWeb Engineering
(WISE ’08), pages 280–291. Springer-Verlag, 2008.

[6] T. H. F. Broens, S. Pokraev, M. J. van Sinderen, J. Koolwaaij,
and P. D. Costa. Context-aware, ontology-based, service dis-
covery. InSymposium on Ambient Intelligence, volume 3295
of LNCS, pages 72–83. Springer, 2004.

[7] T. Buchholz, A. Küpper, and M. Schiffers. Applying web ser-
vices technologies to the management of context provisioning.
In 10th International Workshop of the HP OpenView Univer-
sity Association, July 2003.

[8] G. Canfora, M. D. Penta, R. Esposito, and M. L. Villani. QoS-
Aware Replanning of Composite Web Services. InProceed-
ings of the IEEE International Conference on Web Services
(ICWS’05), Orlando, FL, USA, pages 121–129, 2005.

[9] F. Casati, M. Castellanos, U. Dayal, and M.-C. Shan. Proba-
bilistic, context-sensitive, and goal-oriented service selection.
In ICSOC ’04: Proceedings of the 2nd international confer-
ence on Service oriented computing, pages 316–321, New
York, NY, USA, 2004. ACM.

[10] T. Chaari, F. Laforest, and A. Celentano. Design of context-
aware application based on web services. Technical Report
CS-2004-5, Università Ca’Foscari di Venezia, Venezia, Italy,
April 2004.

[11] G. Chafle, K. Dasgupta, A. Kumar, S. Mittal, and B. Sri-
vastava. Adaptation in web service composition and execu-
tion. IEEE International Conference on Web Services (ICWS),
pages 549–557, 2006.

[12] A. K. Dey and G. D. Abowd. Towards a better understanding
of context and context-awareness. InProceedings of the Work-
shop on the What, Who, Where, When and How of Context-
Awareness, New York. ACM Press, 2000.

[13] A. M. Ferreira, K. Kritikos, and B. Pernici. Energy-aware
design of service-based applications. InICSOC, LNCS.
Springer, 2009.

[14] K. Fujii and T. Suda. Semantics-based context-aware dynamic
service composition.ACM Trans. Auton. Adapt. Syst., 4(2):1–
31, 2009.

[15] R. Kern, C. Zirpins, and S. Agarwal. Managing quality
of human-based eservices.Service-Oriented Computing –
ICSOC 2008 Workshops, pages 304–309, 2009.

[16] A. Koschmider, V. Torres, and V. Pelechano. Elucidating the
mashup hype: Definition, challenges, methodical guide and
tools for mashups. InProceedings of the 2nd Workshop on
Mashups, Enterprise Mashups and Lightweight Composition
on the Web at WWW2009, Madrid,Spain, April 2009.

[17] K. Kritikos. Qos-based web service description and discov-
ery. Phd thesis, Computer Science Department, University of
Crete, Heraklion, Greece, December 2008.

[18] K. Kritikos and D. Plexousakis. Mixed-Integer Programming
for QoS-Based Web Service Matchmaking.IEEE Transac-
tions on Services Computing, 2(2):122–139, 2009.

[19] Y. Li, J. Fang, and J. Xiong. A context-aware services mash-
up system. InSeventh International Conference on Grid and
Cooperative Computing (GCC ’08), pages 702–712, Shen-
zhen, China, 2008. IEEE.

[20] P. S. Limited. Procession process engine data sheet. Technical
report, 2008.

[21] E. M. Maximilien, A. Ranabahu, and K. Gomadam. An online
platform for web apis and service mashups.IEEE Internet
Computing, 12(5):32–43, 2008.

[22] E. M. Maximilien, A. Ranabahu, and S. Tai. Swashup: sit-
uational web applications mashups. InOOPSLA ’07: Com-
panion to the 22nd ACM SIGPLAN conference on Object-
oriented programming systems and applications companion,
pages 797–798, Montreal, Quebec, Canada, 2007. ACM.

[23] S. B. Mokhtar, D. Fournier, N. Georgantas, and V. Issarny.
Context-aware service composition in pervasive computing
environments. InRISE, volume 3943 ofLNCS, pages 129–
144. Springer, 2005.

[24] S. K. Mostéfaoui and B. Hirsbrunner. Towards a context-
based service composition framework. InICWS ’03, pages
42–45, Las Vegas, Nevada, USA, June 2003. CSREA Press.

[25] C. Pautasso. Composing restful services with jopera. In
A. Bergel and J. Fabry, editors,Software Composition, volume
5634 ofLecture Notes in Computer Science, pages 142–159.
Springer, 2009.

[26] D. Schall, H.-L. Truong, and S. Dustdar. Unifying Human
and Software Services in Web-Scale Collaborations.IEEE
Internet Computing, 12(3):62–68, 2008.

[27] N. Schuster, C. Zirpins, S. Tai, S. Battle, and N. Heuer.A
service-oriented approach to document-centric situational col-
laboration processes. InWETICE ’09: Proceedings of the
2009 18th IEEE International Workshops on Enabling Tech-
nologies: Infrastructures for Collaborative Enterprises, pages
221–226, Washington, DC, USA, 2009. IEEE Computer So-
ciety.

[28] Q. Z. Sheng, B. Benatallah, Z. Maamar, and A. H. Ngu.
Configurable composition and adaptive provisioning of web
services.IEEE Transactions on Services Computing, 2(1):34–
49, 2009.

[29] F. Skopik, D. Schall, and S. Dustdar. The cycle of trust in
mixed service-oriented systems. InSEAA, 2009.

[30] M. Treiber, H.-L. Truong, and S. Dustdar. Soaf –design and
implementation of a service-enriched social network.Web
Engineering, pages 379–393, 2009.

[31] M. Vasko and S. Dustdar. Introducing Collaborative Service
Mashup Design. InLightweight Integration on the Web (Com-
posableWeb’09), pages 51–62. CEUR - Workshop Proceed-
ings, June 2009.

[32] WS-BPEL. Business Process Execution Language for Web
Services Version 2.0, April 2007.

[33] Y. Yamato and H. Sunaga. Context-aware service composi-
tion and component change-over using semantic web tech-
niques. IEEE International Conference on Web Services
(ICWS), pages 687–694, 2007.

