
Modeling Context-aware and Socially-enriched Mashups

Martin Treiber
Distributed Systems Group

Vienna University of
Technology

Vienna, Austria
treiber@infosys.tuwien.ac.at

Kyriakos Kritikos
Dipartimento di Elettronica ed

Informazione
Politecnico di Milano

Milano, Italy
kritikos@elet.polimi.it

Daniel Schall
Distributed Systems Group

Vienna University of Technology
Vienna, Austria

schall@infosys.tuwien.ac.at

Schahram Dustdar
Distributed Systems Group

Vienna University of
Technology

Vienna, Austria
dustdar@infosys.tuwien.ac.at

Dimitris Plexousakis
Institute of Computer Science

University of Crete
Heraklion, Crete, Greece
dp@csd.uoc.gr

ABSTRACT
Mashup platforms and end-user centric composition tools have be-
come increasingly popular. Most tools provide Web interfaces and
visual programming languages to create compositions. Much of
the previous work has not considered compositions comprising hu-
man provided services (HPS) and software-based services (SBS).
We introduce a novel HPS aware service mashup model which we
call socially oriented mashups (SOM). The inclusion of HPS in
service mashups raises many challenges such as a QoS model that
must account for human aspects and the need for exible execu-
tion of mashups. We propose human quality attributes, for exam-
ple delegation, and a context model capturing various information
including location and time. The QoS and context model is used at
design-time and for runtime adaptation of mashups. In this paper,
we show how to model context-aware SOMs that include HPS and
SBS and demonstrate the rst results of our working prototype.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques; H.3.5
[Online Information Services]: Web-based Services

Keywords
Mashups, Composition, Context, QoS, Human Provided Services

1. INTRODUCTION
The role of humans in service compositions and workows has

gained tremendous attention. With the proliferation of Web service
mashups [20], human aspects became important for designers and
the end-users as well. The ability of non experts to create mashup
applications for their personal use is considered to increase the pro-
ductivity of employees.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for prot or commercial advantage and that copies
bear this notice and the full citation on the rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specic
permission and/or a fee.
Mashups 2009 October 25, 2009, Orlando, Florida.
Copyright 2010 ACM 978-1-4503-0418-4/10/12 ...$10.00.

Currently there is little support for the exploitation of these dy-
namic aspects in workows, where humans are integrated into ser-
vice mashups. In order to tap resources for the creation of exible
and human oriented service compositions, a framework is required
that offers the required exibility and simplicity for the end-user. In
particular, we propose the seamless integration of HPS into service
mashups. In this context, we refer to these human augmented ser-
vice mashups as socially oriented mashups (SOM) because of phe-
nomena like (sub-)task delegation to other humans during the exe-
cution of the mashup. Furthermore, if we consider humans as part
of service mashups, we add automatically reasoning capabilities to
the mashup. Thus, we make a service mashup exible and adap-
tive to unpredictable situations, where human expertise is needed
to adapt to new situations and to modify parts of the mashup, like
omitting tasks due to contextual information like location or time.

Figure 1: Conceptual Architecture of SOM

However, with the additional exibility we also face a set of chal-
lenges which we address in our work. In particular, we focus on
challenges related to the creation of service mashups model which

(a) Different Dimensions of Context (b) Using the Context Model

Figure 2: Context Model for Social based Mashup Applications

include context information. In addition, we investigate QoS at-
tributes that related to the provision of HPS and show how these
can be exploited during the execution of the mashup (see Figure 1).
In the rst step, we create a mashup model consisting of HPS

and traditional SBS using a lightweight composition language. The
focus of this step lies on the functional part of the composition.
Since HPS offer the same interface as traditional SBS, we do not
require additional considerations concerning interface compatibil-
ity of HPS and SBS. Considering plain SBS, their description fol-
lows the WSDL de-facto standard. By following the HPS concept
proposed by [25] we do not require special considerations for the
creation of HPS service descriptions. We use WSDL based de-
scriptions that serve as interface to HPSs. This abstraction gives
us the benet of having standardized interfaces to humans which
make them composable together with SBS in a well dened man-
ner without having to cope with the inherent complexity of human
interfaces.
In the second step, we attach context related information to the

service composition. We refer to this context as design time context
in which the creator of the mashup makes assumptions about the
expected mashup execution context. The context of the mashup
provides information about the environment and introduces global
constrains that must be met during the execution of the mashup.
For instance, a mashup might not use external services but only
internal ones.
Fine tuning of the service mashup takes place in the third step.

Within the mashup, the designer is required to dene parts which
allow a certain degree of exibility, like delegation or splitting. This
activity attaches detailed context information to parts of the service
mashup which are expected to change during the execution and the
given context. For instance, in a mashup, there might be a critical
HPS which must not be delegated to others or some services are
not allowed to be split among several services.
The rest of the paper is organized as follows. In Section 2 we de-

ne our context model for social-based mashup applications. Sec-
tion 3 introduces our proposed QoS model with emphasis on hu-
mans. In the following section we show how to create social service
compositions with a lightweight service composition language. The
initial results of our prototype are demonstrated in Section 4. We

conclude the paper with related work in Section 5 and an outlook
for future work in Section 6.

2. CONTEXT MODEL FOR SOM
We propose a context model that enables the weaving of context

related information into social service compositions that are de-
scribed in a exible composition language. Our proposed context
model aims at satisfying the following properties:

1. The model should be lightweight pertaining information re-
garding the most relevant entities in SOM.We do not attempt
to provide a general purpose context model, but rather focus
on SOM applications.

2. Context information comes from various sources inducing
physical, e.g., physical location context, and logical sources,
for example, a calender containing information regarding the
user�’s location in a given time interval.

Figure 2(a) depicts our context model and some examples of its
usage in SOM (see Figure 2(b)). Our model captures the well know
dimensions of context (e.g., see [2]) what denoting the activity of
an agent, when capturing time aspects, who denoting a person or
service, and how a set of actions that were executed in the course
of an activity. On the other hand (Figure 2(b)) we show examples
how to use the context model in SOM (context queries).
The context model contains aspects related to the design of mashups

and to their execution (i.e., runtime). At design time, concepts that
need to be supported by the mashup tool are Activity, Agent, Role,
and Requirement.

• Activity: Mashup applications comprise a set of activities
required to model basic ows (processes). However, the con-
text model does not contain details regarding the process
model. Instead, context is related to information such as
Agent and their Roles in Activities; roles may include creator
of an activity or contributor.

• Agent: Both HPS and SBS can contribute to an activity [25].

• Requirement: A requirement may restrict the set of actors,
which can be invoked in an activity, the roles, and most im-
portantly the values of QoS attributes.

The other model entities address the dynamic nature of context.
An Activity as well as Agent is associated with a context change
history. Context change, or more precisely, context change events
are depicted as Object, Action, and Value triples.

• Events are actions taken by agents a) in an activity that is
part of a mashup (composition) or b) independent of an ac-
tivity (person A moves to a new location X). In the rst case,
an object (person or service) triggers an action (the activity
acts as the container for actions) while in the second case,
objects change their state independent of any activity.

• Events are actions acting upon agents. Such an event may
capture invocations of SBS or HPS. In other words, actions
capture functional capabilities (e.g., interface capabilities)
that could change over time. However, actions are typically
driven by the context to enable exible executions of SOM.
Changing actions are important for the context-based evolu-
tion of mashup-based compositions.

Label and Time provide additional metadata to context change
events. Labels provide additional information about the action. The
value gives the result of an action, whereas labels can be regarded
as "tags" to further quantify actions.
Let us discuss two example context queries as depicted by Figure

2(b) to explain the role of context in SOM:

• Replaceability (nd HPS that can replace SBS): Attempts to
discover a set of HPS that can replace SBS that might be, for
example, unavailable due to faults or other technical prob-
lems. The HPS must satisfy functional interface characteris-
tics and capabilities in terms of QoS properties. For exam-
ple, slower response time of a human is acceptable in a given
SOM.

• Restriction and ltering (Find only services in $Loc1 but not
$Loc4): This query selects and lters services based on loca-
tion information (e.g., exclusive combination of input vari-
ables $Loc1 and $Loc4 expressed as Requirement). The His-
tory is used to determine whether an agent, for example, a
person has moved to a certain location (changes in location
context).

3. QOS MODEL FOR SERVICE COMPO-
SITIONS

In contrast to interface issues, quality aspects of HPS require spe-
cial considerations with regard to service compositions. Context
has strong impact on QoS properties due to changing availability
of services. HPS exhibit fundamentally different quality than SBS.
For example, SBS can handle several hundreds requests at once
while humans are limited to a small number of parallel requests.
On the other hand, humans are able to make complex decisions
and to handle data outside the original task specication while SBS
can handle these situations only to a very limited extent. Generally
speaking, humans maintain a more complex notion of context and
are able to maintain multiple contexts at a time. They also have the
ability to resolve context when required. Thus, when combining
human and software-based services, these differences must be con-
sidered in the design of compositions. We propose the extension
of existing QoS models with regard to human attributes that reect
human behavior [15].

3.1 QoS Attributes
Table 1 shows a set of quality attributes, along with their deni-

tion, that can be applied to both human and machine-based services
or to only one of these two types of services. The latter fact (i.e., ap-
plication) is exhibited with the use of the third and fourth columns
of the table. Finally, the last column shows if it is meaningful to
aggregate the same quality attribute of both human and software-
based services for the composition. If the answer is no, then we
can have only local quality constraints on specic tasks of the com-
position, depending on whether the quality attribute is meaningful
to model the quality of the human or machine-based service that is
mapped to this task.
We are going to analyze the differences between the same quality

attribute for the human and software-based services and we are go-
ing to argue why we did not model this attribute for one or the other
service type in the corresponding cases that can be drawn from the
last column of Table 1.

• Throughput: Denes the maximum number of requests that
can be completed in a given time interval. Again, there is no
conceptual difference between humans and software-based
services beside the scale of the respective throughput.

• Availability: SBSs are usually available 99.9 percent of their
time. On the other hand, the availability of humans varies as
it also depends on their context and current load. However,
there are usual patterns inferred from users context where
availability can be approximately dened for humans (e.g.
user�’s usual working schedule, days off and holidays, health
and mental situation, etc.).

• Data quality: This attribute expresses the quality of the data
produced by the service. In the way we dene HPS, this at-
tribute has the same meaning for both service types that we
consider. Moreover, this is an attribute for which we cannot
denitely say that its value is better for one service type than
the other one. Depending on the application domain and the
context, the situation changes so there is no winning service
type. Finally, the data quality of an HPS can increase be-
cause a human can learn from the repetition of a task or by
exploiting the knowledge acquired or derived from its social
network.

• Trust: The way this quality is measured for these entities is
different because for humans it depends on both subjective
and objective criteria while for SBS it depends on only ob-
jective criteria [28]. Moreover, an SBS�’s trust is usually more
constant as compared to a human�’s trust. So, we believe that
it is not meaningful to aggregate this quality for a composite
service containing both human and software-based services.

• Delegation: This attribute concerns the ability of a human
to delegate a part or the whole task he is running to other
humans, including this human�’s coordination capability in
coordinating the splitted task�’s execution. SBS can partially
support this attribute by delegating a whole task�’s execution
to other instances of the same service. However, they cannot
easily delegate parts of a task and coordinate them, if the task
has already executed, as this requires special mechanisms.
So it is not meaningful to model this attribute for SBS.

• Soft Completion: Soft completion refers to the incomplete
result of a service execution which is still useable for fur-
ther activities. For example, a HPS that analyzes images for
the occurrence of objects (e.g., trees) might not qualify all

Attribute Description SBS Human Aggregation
Throughput The number of completed service requests over a time period yes yes yes
Availability Availability of the service provided to customers yes yes yes
Data Quality The ability of a data collection to meet user requirements, dened as the proximity

of a value v to a value v
′

considered as correct
yes yes yes

Trust Indicates the service�’s trustworthiness yes yes no
Delegation Ability to delegate task to another service no yes no

Soft Completion Ability to end a task�’s execution untimely due to time restrictions but with a concrete
result produced

no yes no

Table 1: Service Quality Attributes

Attribute Metric/Type/Unit/Monotonicity Aggregation Pattern
Throughput Maximum/Positive Integer/(Calls/Sec)/Positive thk (CEP) = minspk

m∈ epk

P

ti∈ spk
m

(ti,sj)∈ CEP

thj

Availability (Uptime/Total-Time)/Real in [0.0,1.0]/�–/Positive avk (CEP) =
Q

ti∈ epk

(ti,sj)∈ CEP

avj

Data Quality MAPE [17]/Real in [0.0,1.0]/�–/Negative dqk (CEP) = min ti∈ epk

(ti,sj)∈ CEP

dqj

Trust �–/Real in [0.0,1.0]/�–/Positive trk (CEP) =
Q

ti∈ epk

(ti,sj)∈ CEP

trj

Table 2: Service Quality Metric and Aggregation Pattern

objects. However, it might be the case that only a yes/no
decision of object occurrences is necessary in the context of
the mashup/workow. This is not true for the side of SBS, as
they have to end all their activities before they can produce a
specic and complete output.

3.2 Quality Aggregation Analysis
Several quality attributes can be associated with a service. Each

attribute would have a short denition, a metric, a value type, a
monotonicity and an aggregation pattern associated with it. Mono-
tonicity concerns the way the values that the dimension takes can be
compared. In this paper, we distinguish between positive and nega-
tive dimensions. A dimension is positive (negative) if the higher the
value the higher (lower) the quality or energy level. The aggrega-
tion pattern of a dimension denes how the value of this dimension
for a composite service can be determined based on the value of
the component services. In this paper, we have considered only
the most signicant and widely-used quality attributes that appear
in many research approaches. Table 2 summarizes these attributes
based on the above analysis.

CEP denotes a concrete execution plan [13] of a composite ser-
vice (either HPS or SBS). Each CEP can be transformed [1] to
many (e.g.,K) concrete execution paths symbolized with epk con-
taining a subset of the tasks ti of the CEP . In addition, each exe-
cution path epk has a set of subpaths (i.e. paths not having parallel
tasks) that are indexed bym and denoted by spk

m. Every execution
path epk is associated with a set of aggregated attributes denoted
with attrk. The set of services Si to be executed for a task ti are
called candidate services and are denoted with sj . Each service sj

has a specic set of attributes attrj derived from its service prole.

3.3 QoS and Context
We argue that QoS attributes are driven by the context in which

they are measured. In this regard, we refer to context free QoS at-
tributes and context sensitive attributes. We consider QoS attributes
like availability as context sensitive for HPS, because the location
context of the human (provided service) inuences the availability
quality attribute. For instance, if the location of a human changes,

the human might not be able to provide the service. Another exam-
ple for a context sensitive attribute is delegation. Delegation might
not be allowed in scenarios where a certain instance of a HPS (e.g.,
expert that provides an expertise service) is required. In contrast,
context free quality attributes are not affected by context. An ex-
ample is a valid security certicate which is required to invoke a
service. In the next section we discuss the use of context and QoS
in our proposed mashup model in greater detail.

4. ARCHITECTURE AND IMPLEMENTA-
TION

The main concepts of our approach were dened in the previous
sections. This section is dedicated to analyzing the architecture and
implementation details of our approach. As discussed earlier, our
goal is to benet from both, human exibility and the efciency of
SBS for tasks. Conceptually, the composition process consists of
two main steps as depicted in Figure 3.

1. Design Firstly, one needs to dene the structure of the ser-
vice mashup. The structure of a service mashup denes from
an abstract perspective how services and humans cooperate
and which services are used by humans and vice versa. We
support this activity with a online tool that enables the cre-
ation of social mashups (Flow Editor). It must be noted that
the ow model contains additional information regarding the
relevant context that is used during execution of the process
model (e.g., context queries).

2. Runtime With the use of uniform WSDL interfaces we lay
the foundation for a later generation of BPEL workows.
The composition model is deployed in the Mashup Execu-
tion Engine. An activity is usually performed by invoking
a set of services. We call these invocations actions that can
be performed in a context-aware manner. Thus, the Service
Invocation Handler interprets context associated to activities
to obtain context information via queries from the Context
Store. Interactions with HPS and SBS (service request and
service response) happen in an equivalent service oriented

Figure 3: Architecture and Deployment

manner through the exchange of SOAP messages. Notice
that our approach is not limited to BPEL, since the abstract
denition of mashup can be transformed into other languages
as well.

4.1 Flow Editor
For a proof of concept prototype implementation, and to illus-

trate the end user support, we used ExpressFlow [30]. We inte-
grated concepts that are required for the creation of social service
compositions in Expressow, with regard to the limitations im-
posed by HPS and SBS in service mashups. In our approach, a
service mashup structures activities and denes context channels
which encapsulate context related information. With the help of a
graphical tool (see Figure 4) we support the mashup design pro-
cess. At this level, the mashup designer denes the basic structure
of the mashup using different activities. The tool also provides
basic service registry features which supports the designer in se-
lecting services that are suitable in a given context (e.g., ltering of
all services that operate at certain locations).

Figure 4: Screenshot of ExpressFlow online tool

We incorporate context related information directly into the code
of the mashup. This approach enables context un-aware services
to be fully integrated into context aware mashups. By following

the separation between context and services we gain the needed
exibility to integrate humans, HPS respectively, into mashups. We
discuss the implementation and integration of the basic concepts
and their implementation in a top down manner in the following
subsections and illustrate our approach with short XML examples
that are generated by the Expressow tool, after having specied
the mashup graphically.

4.2 Modeling Context-awareMashups with Ex-
pressow

Mashup: In service mashups, we embed context channels to
structure context information and group actions in activities. These
elements can be further structured with constructs like if then else
or parallel to create complex behavior within context channels.
Listing 1 illustrates two parallel context channels. Every context
channel accesses different context information and uses either Par-
allel or ParallelBranch constructs. Simultaneously, every context
channel species a context scope (e.g., location, time). Upon mashup
execution, these branches are executed in parallel with the context
being evaluated independently.

! "

1 < P r o c e s s e f i d ="5c21c032-091f-45a0-aaf4..."
2 name="OOPSLA Service Mashup Demo"
3 t ype ="Service Mashup" . . . >
4 < P a r a l l e l name="Parallel1"
5 t ype ="Activity" . . . >
6 < P a r a l l e l B r a n c h >
7 <Con t ex t name="Context Channel1"
8 t ype ="ContextChannel"
9 l o c a t i o n ="Vienna" t ime="Today">
10 . . .
11 < / Con t ex t>
12 < / P a r a l l e l B r a n c h >
13 < P a r a l l e l B r a n c h >
14 <Con t ex t name="Context Channel2"
15 t ype ="ContextChannel"
16 d e l e g a t i o n ="No" a v a i l a b i l i t y ="100">
17 . . .
18 < / Con t ex t>
19 < / P a r a l l e l B r a n c h >
20 < / P a r a l l e l >
21 < / P r o c e s s >
$

Listing 1: Denition of Mashup Comprising Two Parallel Con-
text Channels

Context Channel: Context channels act as exible containers
for service related context information which is specied during the
design of the mashup. Conceptually, a context channel denes the
scope and the type of context (e.g., location, time, delegation) for
nested activities. During the execution of the mashup, all activities
of a context channel access the predened context information and
perform the context dependend actions. Examples are data trans-
formation rules which are retrieved from a context store and applied
on the data.

! "

1 <Con t ex t name="Context Channel1"
2 t ype ="ContextChannel"
3 l o c a t i o n ="Vienna" t ime="Today">
4 <A c t i v i t y name="Activity1"
5 t ype ="Activity" p r e v i o u s ="null" . . . / >
6 <A c t i v i t y name="Activity2"
7 t ype ="Activity" p r e v i o u s ="Activity1"
8 n ex t ="Assignment1" . . . / >
9 < / Con t ex t>
$

Listing 2: Context Channel Example

Listing 2 presents an example for a context channel, which de-
nes the location context of all included activities to Vienna and
the time context Today. It it worth noticing, that, unless specied
differently, all activities are per default executed sequentially (Ac-
tivity 2 follows Activity 1).
Activity: Activities structure actions which are the hooks for the

actual service invocation. The example in Listing 3 shows an ac-
tivity (Activity1) which copies three different values (appid, street
and city) to the variable Variable7 for a sequential invocation of
two SBS (SOAPInvoke3 and SOAPInvoke4) which share the same
input parameters.

! "

1 < A c t i v i t y name="Activity2" t ype ="Activity" / >
2 <Assignment name="Assignment1"
3 t ype ="Activity ... >
4 <Copy name="Copy1" type="Ac t i v i t y"
5 copy_from="YD−9G7bey8_JXxQP6rxl . . . "
6 copy_to="$ Va r i a b l e 7 . app i d"
7 previous=" n u l l" ... />
8 <Copy name="Copy2" type="Ac t i v i t y"
9 copy_from="A r g e n t i n i e r s t r e e t +8"
10 copy_to="$ Va r i a b l e 7 . c i t y "
11 previous=" n u l l" next=" n u l l" ... />
12 <Copy name="Copy3" type="Ac t i v i t y"
13 copy_from="Vienna"
14 copy_to="$ Va r i a b l e 7 . c i t y " ... />
15 </Assignment>
16 <Invoke name="SOAPInvoke3" type="SOAPInvoke"
17 input="Va r i a b l e 7"
18 output="Va r i a b l e 8" ... >...
19 <Invoke name="SOAPInvoke4" type="SOAPInvoke"
20 input="Va r i a b l e 7"
21 output="Va r i a b l e 9" ... >...
$

Listing 3: Asynchronous Activity

Action: Actions represent invocations of services that are exe-
cuted in the context of an activity. Listing 4 shows how actions are
modeled in ExpressFlow. Because of having specied the context
on a higher level, we do not require to specify context attributes on
this level. Consequently, services do not need to be aware about the
context in which they are executed. We discuss how we handle the
actual service invocation in Section 4.3.

! "

1 < Invoke name="SOAPInvoke3"
2 t ype ="SOAPInvoke"
3 i n p u t ="Variable7" ou t p u t ="Variable8" . . . >
4 <Resource
5 u r i ="http://local.yahooapis.com/Maps..."
6 s t r e e t =$ Va r i a b l e 7 . c i t y& ;
7 c i t y =$ Va r i a b l e 7 . c i t y "/>
8 </Invoke>
$

Listing 4: SOAP Invoke Example

4.3 Context Store and Service InvocationHan-
dler

Our prototype stores context related information in a MYSQL
database. Our database layout is based on the SOAF data model
[29] and the context model of Figure 2(a). During runtime, we
query the context store for context related actions (e.g., service re-
quest transformations) using our service invocation handler. The
service invocation handler extracts context information (e.g., time,
location, delegation) from SOAP message headers. In our cur-
rent implementation, we use a simple keyword based search to
query for context specic transformations which are represented
as XSLT transformations. These transformations are retrieved as

strings (streams respectively) for the use of Apache XALAN to
transform the request according to the context. Notice that, in our
current implementation, we support the transformation of incoming
SOAP requests, but do not transform the output accordingly. This
is planned for future work.

5. RELATED WORK
Mashups is Web-based applications created by combining and

processing various online resources, which contribute with data,
presentation, or functionality. [16] categorizes mashups accord-
ing to four main dimensions: a) what is mashed up, b) where to
mashup, c) how to mash up, and d) for whom to mash up. Based
on this categorization, there are tools that offer similar functional-
ities with our approach like �“JackBe Presto�”1 , �“Procession�” [19],
�“Serena Mashup Suite�”2 , �“Swashup�” [21], �“JOpera�” [24] and �“re-
mash!�” [4]. However, none of these tools is able to offer a context-
aware and QoS-based mashup development and execution environ-
ment.
Context is any information that can be used to characterize the

situation of entities [12]. Context-aware Systems (CASs) are able
to adapt their behavior to the current context without explicit user
intervention and thus aim at increasing usability and effectiveness
by taking environmental context into account [2]. The behavior
of a CAS can be adapted through context in three levels/dimen-
sions [10]: user interface, content, and service. Moreover, this
adaptation can be performed in a static or dynamic way by differ-
ent combinations of services which are independently selected on
these three dimensions.
Context has been used in discovery, composition, and adaptation

of SBSs. Concerning SBS discovery, context has been used for re-
quest (e.g. location info) and input completion (e.g. missing input)
so as to increase the quality of the discovery result [6]. Various ap-
proaches [9, 22, 23, 27] have been proposed for SBS composition
that use local [32] and global contextual constraints for selecting
among the candidate SBSs for each task of the composite SBS in a
static or dynamic way.
When context changes, composite SBSs may be adapted in three

different ways: a) SBS access channel is changed [3], b) an SBS
is substituted with another one [3, 27], c) a new concrete execution
plan is executed from scratch [14]. Unfortunately, none of the ex-
isting SBS composition and adaptation approaches is able to offer
simultaneously the three different types of adaptation. Moreover,
no approach is able to substitute a single SBS with a new compos-
ite one, which might be the case with cooperating HPSs.
Very few mashup approaches have been proposed to take ad-

vantage of user or environmental context for adaption purposes.
In [5] a system architecture is proposed featuring a context pro-
visioning framework for utilizing local sensors in context-aware
mashups. The work described in [18] presents a services mashup
system which is able to perform context-aware service composition
in a semi- or fully-automatic way and to adapt the results of the
composition according to the user�’s context. Finally, �“remash!�” [4]
offers a framework that enables the exible binding of services at
runtime depending on the changing availability of services or the
situation-specic requirement of the application.
Context and its quality can affect the QoS of a service [7]. QoS

has been widely studied and researched for SBS discovery, com-
position [13], and adaptation [1, 8, 11]. However, no QoS-related
research work has been conducted for mashups or human-based
workows.
1http://www.jackbe.com
2http://www.serena.com

6. SUMMARY AND FUTUREWORK
In this paper we presented a framework for the integration of

humans in socially oriented service mashups. We illustrated the
mechanisms to accomplish this with regard to QoS and context.
We presented our initial prototype and discussed how we addressed
implementation challenges concerning the interpretation of con-
text during the runtime. In future work, we will elaborate our ap-
proach with regard to the adaptivity of mashups and extend our
core context model with complex actions (e.g., reordering of ser-
vice invocations in context channels). We are going to extend our
QoS model with attributes like accuracy or presentation quality and
study these in the context of mashups. Furthermore, we will ex-
tend our current prototype with ExpressFlow to BPEL [31] trans-
formations to generate executable BPEL code and study alternative
approaches (e.g., using scripting languages or document based ap-
proaches [26]). And nally, we will evaluate the performance of
our proposed approach thoroughly and study larger examples for
service mashups and context.

Acknowledgment
This work is supported by the European Union through the projects
S-Cube (FP7-215483) and COIN (FP7-216256). The research lead-
ing to these results has received funding from the European Com-
munity Seventh Framework Programme FP7/2007-2013 under grant
agreement 215483 (S-Cube) and 216256 (COIN). We thank Martin
Vasko for help on modeling SOM with ExpressFlow.

7. REFERENCES
[1] D. Ardagna and B. Pernici. Adaptive service composition in

exible processes. IEEE Trans. Softw. Eng., 33(6):369�–384,
2007.

[2] M. Baldauf, S. Dustdar, and F. Rosenberg. A survey on
context-aware systems. Journal on Ad Hoc and Ubiquitous
Computing, 2007.

[3] L. Baresi, D. Bianchini, V. D. Antonellis, M. G. Fugini,
B. Pernici, and P. Plebani. Context-aware composition of
e-services. In TES 2003, volume 2819 of LNCS, pages
28�–41, Berlin,Germany, 2003. Springer.

[4] B. Blau, S. Lamparter, and S. Haak. remash! - blueprints for
restful situational web applications. In Proceedings of the
2nd Workshop on Mashups, Enterprise Mashups and
Lightweight Composition on the Web at WWW2009, Madrid,
Spain, 2009.

[5] A. Brodt, D. Nicklas, S. Sathish, and B. Mitschang.
Context-aware mashups for mobile devices. InWeb
Engineering (WISE �’08), pages 280�–291. Springer-Verlag,
2008.

[6] T. H. F. Broens, S. Pokraev, M. J. van Sinderen, J. Koolwaaij,
and P. D. Costa. Context-aware, ontology-based, service
discovery. In Symposium on Ambient Intelligence, volume
3295 of LNCS, pages 72�–83. Springer, 2004.

[7] T. Buchholz, A. Küpper, and M. Schiffers. Applying web
services technologies to the management of context
provisioning. In 10th International Workshop of the HP
OpenView University Association, July 2003.

[8] G. Canfora, M. D. Penta, R. Esposito, and M. L. Villani.
QoS-Aware Replanning of Composite Web Services. In
Proceedings of the IEEE International Conference on Web
Services (ICWS�’05), Orlando, FL, USA, pages 121�–129,
2005.

[9] F. Casati, M. Castellanos, U. Dayal, and M.-C. Shan.
Probabilistic, context-sensitive, and goal-oriented service

selection. In ICSOC �’04: Proceedings of the 2nd
international conference on Service oriented computing,
pages 316�–321, New York, NY, USA, 2004. ACM.

[10] T. Chaari, F. Laforest, and A. Celentano. Design of
context-aware application based on web services. Technical
Report CS-2004-5, Universitá Ca�’Foscari di Venezia,
Venezia, Italy, April 2004.

[11] G. Chae, K. Dasgupta, A. Kumar, S. Mittal, and
B. Srivastava. Adaptation in web service composition and
execution. IEEE International Conference on Web Services
(ICWS), pages 549�–557, 2006.

[12] A. K. Dey and G. D. Abowd. Towards a better understanding
of context and context-awareness. In Proceedings of the
Workshop on the What, Who, Where, When and How of
Context-Awareness, New York. ACM Press, 2000.

[13] A. M. Ferreira, K. Kritikos, and B. Pernici. Energy-aware
design of service-based applications. In ICSOC, LNCS.
Springer, 2009.

[14] K. Fujii and T. Suda. Semantics-based context-aware
dynamic service composition. ACM Trans. Auton. Adapt.
Syst., 4(2):1�–31, 2009.

[15] R. Kern, C. Zirpins, and S. Agarwal. Managing quality of
human-based eservices. Service-Oriented Computing
�–ICSOC 2008 Workshops, pages 304�–309, 2009.

[16] A. Koschmider, V. Torres, and V. Pelechano. Elucidating the
mashup hype: Denition, challenges, methodical guide and
tools for mashups. In Proceedings of the 2nd Workshop on
Mashups, Enterprise Mashups and Lightweight Composition
on the Web at WWW2009, Madrid,Spain, April 2009.

[17] K. Kritikos. Qos-based web service description and
discovery. Phd thesis, Computer Science Department,
University of Crete, Heraklion, Greece, December 2008.

[18] Y. Li, J. Fang, and J. Xiong. A context-aware services
mash-up system. In Seventh International Conference on
Grid and Cooperative Computing (GCC �’08), pages
702�–712, Shenzhen, China, 2008. IEEE.

[19] P. S. Limited. Procession process engine data sheet.
Technical report, 2008.

[20] E. M. Maximilien, A. Ranabahu, and K. Gomadam. An
online platform for web apis and service mashups. IEEE
Internet Computing, 12(5):32�–43, 2008.

[21] E. M. Maximilien, A. Ranabahu, and S. Tai. Swashup:
situational web applications mashups. In OOPSLA �’07:
Companion to the 22nd ACM SIGPLAN conference on
Object-oriented programming systems and applications
companion, pages 797�–798, Montreal, Quebec, Canada,
2007. ACM.

[22] S. B. Mokhtar, D. Fournier, N. Georgantas, and V. Issarny.
Context-aware service composition in pervasive computing
environments. In RISE, volume 3943 of LNCS, pages
129�–144. Springer, 2005.

[23] S. K. Mostéfaoui and B. Hirsbrunner. Towards a
context-based service composition framework. In ICWS �’03,
pages 42�–45, Las Vegas, Nevada, USA, June 2003. CSREA
Press.

[24] C. Pautasso. Composing restful services with jopera. In
A. Bergel and J. Fabry, editors, Software Composition,
volume 5634 of Lecture Notes in Computer Science, pages
142�–159. Springer, 2009.

[25] D. Schall, H.-L. Truong, and S. Dustdar. Unifying Human
and Software Services in Web-Scale Collaborations. IEEE

Internet Computing, 12(3):62�–68, 2008.
[26] N. Schuster, C. Zirpins, S. Tai, S. Battle, and N. Heuer. A

service-oriented approach to document-centric situational
collaboration processes. InWETICE �’09: Proceedings of the
2009 18th IEEE International Workshops on Enabling
Technologies: Infrastructures for Collaborative Enterprises,
pages 221�–226, Washington, DC, USA, 2009. IEEE
Computer Society.

[27] Q. Z. Sheng, B. Benatallah, Z. Maamar, and A. H. Ngu.
Congurable composition and adaptive provisioning of web
services. IEEE Transactions on Services Computing,
2(1):34�–49, 2009.

[28] F. Skopik, D. Schall, and S. Dustdar. The cycle of trust in
mixed service-oriented systems. In SEAA, 2009.

[29] M. Treiber, H.-L. Truong, and S. Dustdar. Soaf �–design and
implementation of a service-enriched social network. Web
Engineering, pages 379�–393, 2009.

[30] M. Vasko and S. Dustdar. Introducing Collaborative Service
Mashup Design. In Lightweight Integration on the Web
(ComposableWeb�’09), pages 51�–62. CEUR - Workshop
Proceedings, June 2009.

[31] WS-BPEL. Business Process Execution Language for Web
Services Version 2.0, April 2007.

[32] Y. Yamato and H. Sunaga. Context-aware service
composition and component change-over using semantic
web techniques. IEEE International Conference on Web
Services (ICWS), pages 687�–694, 2007.

