
The Dark Side of SOA Testing: Towards Testing
Contemporary SOAs Based on Criticality Metrics

Philipp Leitner, Stefan Schulte, Schahram Dustdar
Distributed Systems Group,

Vienna University of Technology
Argentinierstrasse 8/184-1, 1040 Vienna, Austria

{lastname}@infosys.tuwien.ac.at

Ingo Pill, Marco Schulz, Franz Wotawa
Institute for Software Technology,

Graz University of Technology
Inffeldgasse 16b/II, 8010 Graz, Austria

{lastname}@ist.tugraz.at

Abstract—Service-Oriented Architectures (SOAs) have widely
been accepted as the standard way of building large-scale,
heterogeneous enterprise IT systems. In this paper, we explore
the current limitations of testing contemporary SOAs, which are
typically assemblies of various components, including services,
message buses, business processes, and support components.
We argue that, currently, SOA testing is too much concerned
with testing single services or business processes, while there
is little scientific literature on holistic testing of contemporary
SOAs that includes all critical components and their mutual
dependencies and interactions. In this paper, we detail the
architecture of contemporary SOA, thoroughly assess the current
state of research in respect of their testing, and introduce the
notion of SOA criticality metrics as indicators for an individual
component’s criticality for the SOA as a whole. We enumerate an
initial metric set for various component types and interactions,
as well as discuss how these metrics can be used for testing
contemporary SOA.

Index Terms—service-based computing, contemporary SOA,
SOA testing, metrics

I. INTRODUCTION

In recent years, the principles of Service-Oriented Archi-
tectures (SOAs) have been receiving high attention, and are
nowadays widely accepted in the software industry [1], [2].
The reasons for this trend origin in the advantages that SOAs
offer with respect to communication interoperability, reusabil-
ity and compatibility of services, as well as loose coupling
between clients and servers. The evolution of SOAs entailed
a variety of novel SOA-based technologies, including self-
healing SOA systems [3], service runtime environments [4],
enterprise service buses (ESBs) [5] and cloud computing [6].

However, one consequence of the fast evolution of SOAs
is that the complexity of corresponding systems has been
increasing steadily. Nowadays, SOA-based systems consist of
more than just services and consumers. Instead, they comprise
a multitude of Web services, registries, aggregators, mediators,
message buses, monitoring and governance systems, and other
components. Such SOAs are often referred to as contemporary
SOAs [1]. The inherent complexity of contemporary SOAs re-
sult in a rather high error-proneness of corresponding systems.

While there is a large body of work assisting engineers with
testing single services (e.g., [7], [8], [9]) or single business
processes (e.g., [10], [11], [12]), we argue that, so far, the
scientific community has failed to deliver adequate models to

test contemporary SOAs in its entirety, both with regard to
functional aspects, as well as with regard to non-functional
system properties.

SOA Model Test Criteria 
Specification User Model

Test 
Suite

Test 
Bed

Runtime Testing

Test 
Result

Fault(s) 
Detected?Fault Diagnosis

Fault(s) 
Isolated?

Active 
Diagnosis

Discriminating 
Tests

End
YES NO

YES NO

Fig. 1. High-Level Overview of SOA Testing

In Figure I, we give a high-level conceptual overview over
the general field of SOA testing. This testing process underpins
our work in the Audit 4 SOAs project1, and also forms the basis
of this paper. Essentially, SOA testing comprises design-time
and runtime aspects. At design-time, models of the entire SOA
(including services, compositions, message buses, mediators,
etc.) need to be developed and validated. This requires a
deep understanding of the SOA under test regarding which
components are more error-prone, complex and critical than
others, as well as with regard to how these components

1http://www.infosys.tuwien.ac.at/linksites/audit4soas/

978-1-4673-6435-5/13/$31.00 c© 2013 IEEE PESOS 2013, San Francisco, CA, USA45



interact and depend on each other. For instance, consider a
business process that uses a given service. Obviously, the
correct functioning of the business process depends upon the
functioning of this service. Furthermore, both process and
service depend on the availability and correct operation of
the message bus. Such dependencies need to be made explicit
and have to be taken into account when designing test cases.
In general, the principle of the weakest element in the chain
applies, i.e., overtesting, for instance, the business processes
does not improve the stability of the system in total, if the
underlying components are not sufficiently covered. Similarly,
overtesting a service that is hardly used in the core processes of
the SOA instead of a more critical one is also hardly optimal.

At runtime, previously defined test suites are executed using
a test bed, which is an abstraction and staging environment
for the real SOA. The results of these test runs are analyzed,
and, if necessary, more discriminating test cases are designed.
Oftentimes, this will also mean extending the test bed, i.e.,
taking more components into account. For implementing test
beds, tools such as Genesis2 [13] can be used.

In this paper, we focus on the aspect of how to identify the
most critical components in a contemporary SOA, and how to
make explicit the dependencies between those components. We
argue that this is required to steer the testing of contemporary
SOAs, as well as to support the definition of useful testbeds
(i.e., to build a useful staging environment, one first needs
to identify the most critical components that need to be
modelled). To this end, we propose to adopt complexity
metrics [14] from the software engineering domain, in order
to capture component dependencies and identify critical com-
ponents that have to be tested with particular care. We refer to
these metrics as criticality metrics. In this paper, we give an
initial overview over some important criticality metrics (some
of which are adapted from the current state of research), and
showcase their relevance for, as well as integration with, SOA
testing.

The remainder of this paper is structured as follows. In
Section II, we explain the concept of contemporary SOAs in
detail, and thoroughly discuss the current state of research
with regard to testing contemporary SOAs. Arguing about
their relevance and impact, we then introduce in Section III
criticality metrics for SOA and give an initial set of SOA
metrics useful for building suitable SOA testing strategies.
Afterwards, we sketch how criticality metrics can be used
to steer the concrete SOA testing in Section IV. Finally,
Section V ends the paper with concluding remarks, and a brief
outlook on open issues and future work.

II. STATE OF RESEARCH IN CONTEMPORARY SOA
TESTING

Early publications on service-oriented computing assumed
that, in principle, SOAs orchestrate three role models: services,
consumers, and one logical service registry that decouples
consumers and services [15] (see Figure 2).

However, as indicated in Section I, as well as, for instance,
in [2], today’s service-based systems have come a long way

Service 
Registry

Service
Consumers

CRM 
Service

Billing 
Service

Compute 
Service

Services

Fig. 2. Original SOA Model

from the simple publish-find-bind triangle assumed in the early
days of SOA [15]. Nowadays, contemporary SOAs are an
amalgam of services, business processes, message buses, ser-
vice registries, mediators, aggregators, and service monitors.
This more complex view on SOA is sketched in Figure 3, and
is often referred to as the contemporary SOA model.

In current literature, software testing is already a relatively
well-covered research field [16], [17]. However, most research
papers still mostly consider a world resembling Figure 2,
where services are operating in isolation, and interactions
between clients and services are point-to-point.

A. Testing Contemporary SOA Components

In the following, we iterate over the components of contem-
porary SOAs, as sketched in Figure 3, and discuss the current
state of research regarding their testing.

Services: are the fundamental building blocks of SOAs.
They are self-contained, reusable components that provide
some domain functionality over a standardized interface [1].
Existing research deals with testing atomic services for ro-
bustness [8], conformance to a model [18], reliability [19], or
generating test data used in service unit tests [20]. Among all
the SOA components, services are certainly the ones whose
testing is understood best today.

Business Processes: provide higher-level functionality
as compositions of services [21]. Large enterprises typically
make use of dozens, or even hundreds, of separate business
processes. However, not all processes are equally important to
the functioning of the enterprise. While operational processes
are often mission-critical, some support and management
processes are of more optional nature (and, hence, temporary
failures in those processes are often preferred to failures in
operational processes). Further, as show in Figure 3, business
processes themselves often provide a service in the SOA,
leading to complex, multi-level composition scenarios. The
sum of all services and processes is often referred to as the
process landscape of an enterprise. Testing of single business
processes in isolation is well covered in today’s scientific
literature. This can take the form of generating test data for
processes [22], BPEL conformance testing [11], composition

46



Service 
Registry

Business Processes

Message Bus

Service Monitor

Frontend Application

CRM 
Service

Services

Aggregator

Billing 
Service

Mediators

Compute 
Service 1

Compute 
Service 2

Backend Applications

Fig. 3. Contemporary SOA Model

reliability testing [10], unit testing for BPEL [23], or data
and flow coverage testing [12]. However, currently, there is
little discussion regarding testing entire process landscapes as
a whole.

Message Buses: have proven to be the invaluable glue
that brings independent and heterogeneous services and pro-
cesses together [5]. Buses provide message routing between
services (decoupling consumers and services referentially as
well as temporally), and, to some degree, message transfor-
mation that resolves interface and data differences between
services (even though this task is often delegated to dedicated
mediators, as discussed below). However, message buses are
typically not, or not entirely, off-the-shelf components. For
most contemporary SOAs, customizations and adaptations of
off-the-shelf ESB products (such as, for instance, the open
source product Apache ServiceMix2) are necessary. Hence,
taking the bus into account during testing seems essential, as
those custom deployments cannot be assumed to be error-free,
especially in conjunction with the specific services, mediators
and processes used. However, again, while there is some work
on testing message buses in isolation (e.g., [24]), little research
exists on testing the interplay between message buses and other
components of contemporary SOAs.

Service Registries: are the only components in the “orig-
inal” SOA model that have, in fact, failed to take off to the
extent originally envisioned. Even today, services are rarely
discovered dynamically, and connections between consumers
and services are typically static. Still, service registries are
oftentimes part of enterprise SOAs, either as part of the
message bus [4] or as stand-alone applications. Interestingly

2http://servicemix.apache.org/

enough, even though plenty of research exists on service
registries and discovery (e.g., [25], [4], [26], [27]), very little
work focuses on their testing, neither in isolation nor in
conjunction with other SOA components.

Mediators: are the result of the observation, that, in
spite of standardized interfaces and semantic Web services
technology [28], communication of services built by different
departments or vendors is still difficult. Hence, mediators are
often used to translate between different data formats and
protocols [29], [30]. Evidently, this transformation is often
technically complex and brittle. Still, very few testing ap-
proaches for mediators are currently available in the literature.

Aggregators: are used to combine different services out-
side of the message bus. Aggregators typically appear as a
single service to the bus, as well as to users of the service,
and are sometimes used in load balancing or integration
scenarios. Note that aggregators are not the same as service
compositions. For testing purposes, some of the same methods
used to test atomic services can be re-used. However, there is
little work on how to test aggregators in conjunction with
message buses and business processes.

Service Monitors: (as well as other components related
to service governance) are the last puzzle pieces we need to
take into account when testing contemporary SOAs. Unlike
all other components discussed so far, service monitors are
typically not critical to the correct basic functioning of the
SOA (i.e., an outage of a service monitor does not nec-
essarily mean the unavailability of any core business pro-
cesses). However, today, business activity monitoring [31]
has become such an essential tool for process owners and
business analysts that an extended unavailability of service
monitors is typically equally unacceptable as the unavailability

47



of core processes. Hence, service monitors also need to be
part of a contemporary SOA testing strategy. Indeed, one
large research thread considered by the community covers
the testing of services with respect to their non-functional
properties (typically referred to as Quality-of-Service, QoS).
QoS testing comprises either passive monitoring of service
performance [32], or active testing (for instance, using test
invocations [33]). One paradigm that has lately been gaining
traction for monitoring non-functional properties is the concept
of event-based monitoring [34]. Event-based monitoring is a
special case of passive testing, where data is extracted from
low-level information by means of complex event processing
techniques [35]. In earlier research, we used event-based
monitoring in the context of business processes [36] and for
applications deployed to the cloud [37], as well as for quality
prediction in service compositions [38].

B. The Dark Side of SOA Testing

Generalizing, the inherent assumptions of existing SOA
testing research are still rather limiting. Typically, the system
under test is one single service or business process, along with
the services used by this process. However, business processes
and service-based applications in a contemporary SOA do not
operate in a vacuum, and thus should not be tested in such
artificial and barren environments. We refer to this as the dark
(as in, the currently unexplored) side of SOA testing.

One approach to deal with the dark side of SOA testing is to
take more and more components into account when designing
tests. Ultimately, this leads to complex test environments
(testbeds), where not only services and interactions are mod-
elled, but entire environments and the various cross-references.
Research regarding tools suitable for this task is currently at
square one, with few notable exceptions (e.g., Genesis2 [13] or
PUPPET [39]). However, using these tools to build actually
useful testbeds that cover the most important properties of
the SOA under test, is not trivial. In this paper, we introduce
criticality metrics as heuristics to reflect the criticality of
various components of the entire SOA, as well as capture
interdependencies between components in a contemporary
SOA. These simple metrics give us estimations for both, how
error-prone and how important any given component is for
the functioning of the system. We identify different criticality
metrics for different types of components. Please note that the
metrics we present here are not exhaustive. Thus, they are a
mere starting point for future research.

III. CRITICALITY METRICS FOR SOA TESTING

The metrics we consider in this paper were inspired by
metrics used in the software engineering domain to measure
the complexity of computer programs [40]. The cyclomatic
complexity, for instance, is defined via the amount of choices
and cycles inside a program, where these choices and cycles
correspond to conditionals and loops at programming language
level. Accordingly, programs with high condition and loop
counts suffer from a rather high cyclomatic complexity. The
original claim in [40] was then that such program modules

with a high cyclomatic complexity are error-prone, and thus
should either be refactored or thoroughly tested.

Existing research [14] has already proposed a number of
analogous complexity metrics for SOAs, including metrics
such as the number of services, the number of versions per
service, and the number of human tasks. However, these
metrics do not aim at SOA testing. Much more, they are
used to calculate aggregated complexity indices for the SOA
in its entirety. Hence, in the following, we propose a set of
metrics geared towards testing. We refer to those metrics as
criticality metrics. It should be noted that, evidently, criticality
metrics can only serve as heuristics aiming to objectively
measure a component’s actual criticality. For instance, it is
indeed possible that metrics suggest a high criticality (and
thus a higher risk level demanding for thorough testing) for
a given business process, whereas, in practice, this process
is so well-understood by domain experts that the actually
associated risk level is much lower. Therefore, the intention
of the metric model concept we propose is to serve as initial,
sound, and objective fundament for reasoning about testing-
critical components.

A. Introduction to Criticality Metrics

In general, each component in a contemporary SOA should
be assigned one or more criticality metric value(s). Evidently,
different metrics are used to capture the criticality of business
processes, services, or service registries. Furthermore, the
range of legal values is different for different metrics.

Billing 
Service

NOSP

4

CPC

2

PLC

corePOCU

100%

Fig. 4. Example Criticality Metrics on Different Levels

Some example is given in Figure 4 depicting a rather simple
business process. The process is assigned values for three met-
rics, i.e., the number of services used in the process (NOSP),
the cyclomatic process complexity (CPC), and the process
landscape categorization (PLC). Furthermore, the process is
using a service (the billing service), which is evaluated with
another metric (POCU, the percentage of core process usages).
PLC is an ordinal metric, with possible values core and
support.

B. Initial Multi-Level SOA Criticality Metric Set

In the following, we propose an initial set of multi-level
SOA criticality metrics. We focus on metrics for measuring
services and business processes, mostly because these compo-
nents are currently best understood by the research community.
Hence, they are very useful for illustrating our general idea.

48



We summarize our initial metric set in Table I. More detailed
discussions for each metric can be found in the following.

1) Service-Level Criticality Metrics: On service level, var-
ious metrics can be used to estimate how critical a specific
service is to the SOA in general. That is, as a first step, a
tester needs to have a look at the service in isolation, in order
to estimate the complexity that a specific service induces on
its own. Two simple ordinal metrics capturing this aspect are
(1) the service statefulness (SST), i.e., whether the service’s
operations can be used in any order or whether a specific
protocol is assumed, and (2) the whether the service requires
a mediator for connecting to the message bus (IMR). Typically,
stateful services are vastly more error-prone than stateless ones
(see also [14]). Similarly, mediation is known to be complex
and error-prone, hence, services that require mediation need
to be tested with more care. Another relevant aspect considers
the number of different service versions available (NOSV).
This metric is motivated by the observation that real-life
SOAs sometimes require multiple versions be kept online in
parallel [41], which is formally known to affect reusability and
testability.

Given that the primary goal of SOA services is to be used
in business processes, it is not sufficient to just consider the
complexity or criticality of services in isolation. In addition,
we also need to take into account how often a service is used
in processes, and how critical those processes are (i.e., services
that are often used in core processes require more thorough
testing). In our initial metric set, we capture this aspect with
three related metrics. Firstly, the number of process usages
(NOPU) defined as the number of business processes that
refer to a given service as WS-BPEL partner link. Secondly,
and based on NOPU, we define POCU as the percentage of
times a service is used in core processes. POCU is defined in
Equation 1. In the equation, NOCU is the number of times a
service is used in a core business process in the SOA’s process
landscape. Note that POCU is related to the “coupling between
services” metric discussed in [42]. Here, we have decided to
not include this specific metric, as we assume that services in
a contemporary SOA are not directly invoking each other.

POCU = 100
NOCU

NOPU
(1)

2) Process-Level Criticality Metrics: In order to capture the
complexity and criticality of business processes, the most basic
metric is to simply count the number of service invocations
in the process (e.g., count the number of “Invoke” activities
in a WS-BPEL process). We refer to this metric as NOAP,
the number of service invocation activities in a process. NOAP
is closely related to two further metrics, (1) the number of
distinct services that a process interacts with (NOSP), and
(2) the number of sub-processes that are invoked (NOPP). In
WS-BPEL, NOAP reflects the number of partner links that are
used by the process. In contrast, NOPP cannot be calculated
directly from the process definition, as sub-processes are not
identifiable from the partner links in standard WS-BPEL.
However, in our experience, invocations of sub-processes are

particularly important to testing, as they establish “part-of”
relationships between processes in the process landscape.
Hence, for processes with NOPP > 0, it becomes crucial to
take also special care of the sub-processes during testing. Some
sophisticated contemporary SOAs make use of the principle of
dynamic binding [43], i.e., they use a registry to find the most
suitable concrete implementation of an abstract functionality
at runtime, and invoke it dynamically using tools such as
Daios [44]. In such SOAs, another important metric is NODAP,
the number of dynamically bound service invocation activities
in a process. Dynamic binding is inherently more complex and
error-prone than static binding, and needs to be tested with
care. One particularly tricky aspect of testing processes with
NODAP ≥ 2 is that, in order to achieve full test coverage, all
possible combinations of concrete services need to be tested
together. However, for non-trivial NODAP values, this leads to
combinatorial explosion. Hence, in earlier research [12], we
proposed heuristics on how to limit the problem space and
still produce valid test results.

Moving on to more structure-related metrics, we adapt the
original cyclomatic complexity metric as discussed before, in
order to arrive at CPC, the cyclomatic process complexity of
a WS-BPEL process defined in Equation 2. In this equation, e
corresponds to the process’ activity count (including all WS-
BPEL activities, not only service invocations as in NOAP), n
is the sum of all graphs in the process, and p is the count of
the single control flow graphs.

CPC = e− n+ 2p (2)

An important aspect of a business process’ complexity is
not captured by CPC; the complexity of its message exchange
pattern (MEP). Essentially, a MEP defines the message pro-
tocol required to correctly interact with the process. Some
example MEPs for real-life processes are given in Figure 5.
The simplest MEP is in-only. Such processes are started
via an input message from the message bus, and do not write
any answer back to the bus. Similarly well-understood are
in-out MEPs, which are again started via an input message
from the bus, and which write their result back to the bus using
a single message. However, in addition to these simple MEPs,
many processes use more complicated protocols, mixing var-
ious input and output messages, e.g., in-multipleOut. It
goes without saying that such processes are inherently more
complex, and, hence, require more testing.

M
es

sa
ge

 B
us

M
es

sa
ge

 B
us

M
es

sa
ge

 B
us

in-only in-out in-multipleOut

Fig. 5. Example MEPs of Business Processes

49



TABLE I
INITIAL CRITICALITY METRICS OVERVIEW

Component Short Name Full Name Range

Service-Level Metrics
SSF Service Statefulness SSF ∈ {stateful, stateless}
IMR Interface Mediation Required IMR ∈ {yes, no}
NOSV Number of Service Versions NOSV ∈ N1

NOPU Number of Process Usages NOSV ∈ N0

POCU Percentage of Core Process Usages POCU ∈ [0; 100]

Process-Level Metrics
NOAP Number of Service Invocation Activities in Process NOAP ∈ N0

NOSP Number of Services in Process NOSP ∈ N0

NOPP Number of Sub-Processes in Process NOPP ∈ N0

NODAP Number of Dynamically Bound Service Invocation Activities in Process NODAP ∈ N0

CPC Cyclomatic Process Complexity CPC ∈ N1

CMEP Complexity of Message Exchange Pattern CMEP ∈ N1

PLC Process Landscape Categorization PLC ∈ {core, support}

Other Metrics
NRU Number of Registry Users NRU ∈ N0

DIR Dynamic Invocation Ratio DIR ∈ [0; 100]

To the best of our knowledge, the current state of research
has not yet identified a suitable metric for measuring the
complexity of process MEPs. Hence, as a starting point, we
propose the metric CMEP defined in Equation 3. Here, |mi| is
the number of input messages that the process receives, and
|mo| is the number of output messages it produces. In practice,
CMEP can easily be calculated for WS-BPEL processes by
counting the number of “Receive” and “Reply” activities in the
process definition file. One thing to keep in mind with CMEP
is that there is usually a significant increase of complexity
between CMEP = 2 and CMEP = 3. The reason for this is that
for CMEP ≥ 3, issues of asynchrony and WS-BPEL message
correlation can manifest themselves, especially if |mi| ≥ 1
(that is, if there is at least one non-initial “Receive” activity
in the WS-BPEL definition).

CMEP = |mi|+ |mo| (3)

Finally, there is one additional metric that has a tremendous
impact on the criticality of business process, the process
landscape categorization (PLC). This metric measures whether
the process is a core process in the SOA’s process landscape, or
whether it’s a support or management process. This metric is
ordinal and can have one of two values (core or support).
We do not distinguish between support and management
processes here. Typically, core processes require significantly
more thorough testing, as their outage is less acceptable than
the temporary unavailability of support processes.

3) Other Metrics: As discussed in detail in Section II,
contemporary SOAs do not only consist of services and
processes. Hence, we also introduce some metrics to measure
the complexity and importance of service registries. Typically,
registries in a contemporary SOA serve two purposes. Firstly,
they are often used as repository of enterprise services, which
is used by engineers at design-time to find existing services.
In this case, the registry is not a core component of the

running SOA. That is, short-time outages of a registry can
typically be tolerated, as they have no negative bearing on the
running processes. However, long-time outages are typically
unacceptable, as they would hamper the ongoing development
and improvement of processes. A most simple metric to
measure the criticality of a registry in this respect, is the
number of registry users NRU, that is, the number of developers
or teams that require the registry for their work. Note that not
every developer that has ever accessed the registry is counted
towards NRU. Instead, we only count users that use the registry
with a certain regularity. Typically, this metric can be extracted
rather easily from corresponding access logs. NRU = 0 means
that the registry is not critical for anybody, hence, testing of
this component can be executed on a best-effort basis.

DIR = 100

∑
p∈P NODAPp∑
p∈P NOAPp

(4)

However, if at least some services are invoked via dynamic
binding, the involved service registry automatically becomes
more critical. Naively, we can state that testing the service
registry becomes the more important, the higher the percentage
of dynamic bindings among all service invocations. We refer
to this criticality metric as DIR, the dynamic invocation ratio,
as defined in Equation 4. Here, P is the set of all processes in a
SOA, and NODAPp and NOAPp are the corresponding NODAP
and NOAP metric values for a given process p.

IV. DESIGNING SOA TEST SCENARIOS BASED ON
CRITICALITY METRICS

Our discussion of criticality metrics for SOAs in the last
section immediately raises the question of how to actually
exploit them in testing. In particular, someone might be
interested in using them for designing test suites that are
well adapted to a given SOA-based system. In the course of
answering this question, we first elaborate on the exploitation

50



of metrics for testing in general. That is, within the testing
community the use of coverage metrics and mutation scores
for an evaluation but also a construction of effective test suites
is well documented. In the case of SOAs [45], for example,
used path coverage for the purpose of test-case generation.
Hence, a straight forward use of metrics would be to adapt the
test-case generation methods and algorithms for SOA testing.

In contrast to coverage metrics or similar measures used
for assessing the quality of a test suite, our criticality metrics
introduced for SOAs do not provide any direct means for gen-
erating test cases. This stems from the fact that our criticality
metrics aim at determining risk levels for a SOA component,
i.e., the corresponding effects of a faulty component for the
SOA as a whole. Hence, the objective of criticality metrics
is to estimate risks in the architecture of a certain SOA-based
system. In order to exploit these data for generating test cases,
we have to combine criticality metrics with measures for test-
suite quality. A promising way to achieve this is to introduce
a function that provides certain test-suite quality requirements
for given criticality metrics values.

For example, it is reasonable to assume that a faulty core
service poses a severe threat to a SOA, resulting in a higher
risk level for this service. In case of service S having a
PLC value core, we should spend more efforts on its testing.
This can be ensured by stating that a test suite for S has to
satisfy a 100 % MC/DC coverage, or alternatively that the
mutation score for S should be larger than 80 %. Beware,
that we assume these figures vary. Most likely, in practice a
combination of several coverage criteria is desirable. More-
over, alternative measures like using the category-partitioning
method might be applied in case of the requirement for white-
box testing of services. Hence, a generally applicable method
that is independent of the underlying SOA seems unlikely. As a
consequence, we suggest to continuously improve the function
(in its simplest form we assume a rule set from now on).
That is, we start with a basic underlying rule set for mapping
criticality metric data to test-suite quality criteria as used for
test-case generation. Every time faults are detected (test cases
fail), the rule set is evaluated and updated in order to integrate
newly derived knowledge.

Concerning the desired learning effect, this continuous
improvement process is likely to be individual to a certain
SOA or even the company developing SOAs. Whether such a
rule set can be generalized, or adapted to be used in different
domains is an open research question. Moreover, within this
process it is also important to impose additional constraints
in respect of ressource limits (including testing time, budget
etc.). If corresponding constraints are not defined, obviously
the best and most likely most expensive testing method should
be applied, i.e., testing all possible inputs, which is not feasible
in practice.

In this paper we discuss SOA criticality metrics merely in a
conceptual sense, and as suggested earlier, current research
aims at extending our initial metric set. In the course of
this work, an evaluation of the metrics themselves and corre-
sponding amalgams will provide us with the necessary details

to suggest actual strategies and implement a corresponding
automatic or semi-automatic tool set for SOA testing. Unsaid
so far, distinctive metrics might also suggest in which scope
individual components or component subsets will have to
be considered. That is, not every aspect will have to be
considered in the general scope of system-wide run-time tests,
so that the metrics will help also in deriving testing strategies
that optimize testing efforts and thus allow to utilize defined
budgets in an efficient manner.

V. CONCLUSIONS

In this paper, our goal was to motivate the necessity of
an integrative, end-to-end testing of contemporary SOAs. We
have shown that current research on SOA testing is too
narrowly focussed on testing SOA components in isolation.
In this work, we introduce SOA criticality metrics as a tool to
steer the targeted and efficient testing of an SOA in its entirety,
including services, business processes, mediators, aggregators
and service registries. In order to provide a foundation for our
discussion, we introduced an initial set of criticality metrics
suitable for SOA, some of which are based on the results
of related research. Furthermore, we illustrated how one can
use this initial metric set to steer the testing of contemporary
SOAs.

A. Future Research

As this paper only represents our first steps, there are of
course a multitude of directions that require further research.
Firstly, we need to extend and rework our initial criticality
metric set. So far, we have been focusing mostly on metrics for
services and business processes. In the future, we will extend
this set with additional metrics for message buses, service
registries, aggregators and service monitors. Additionally, the
metrics we identified so far are mostly based on the study
of related research and our own experience in building and
testing SOAs. Hence, we will evaluate this metric set in the
scope of real-life SOA, in order to assess whether these metrics
actually provide the desired focus. Furthermore, while we gave
an informal introduction in Section IV, we will elaborate on
formalizing the process of testing SOAs by exploiting criti-
cality metrics. Finally, we will continue our work on a semi-
automated tool set that will simplify the calculation of diverse
criticality metrics by parsing various artifacts, including WS-
BPEL process definitions, WSDL contracts, message bus event
logs and registry access logs.

ACKNOWLEDGEMENTS

We would like to thank Lukasz Juszczyk for his work
on the initial ideas underlying this paper. The research lead-
ing to these results has received funding from the Austrian
Science Fund (FWF) under project references P23313-N23
(Audit4SOAs) and P22959-N23 (MoDiaForTed), as well as
the European Community’s Seventh Framework Programme
[FP7/2007-2013] under grant agreement 257483 (Indenica).

51



REFERENCES

[1] T. Erl, Service-Oriented Architecture: Concepts, Technology, and De-
sign. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2005.

[2] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann, “Service-
Oriented Computing: State of the Art and Research Challenges,” IEEE
Computer, vol. 40, no. 11, pp. 38–45, November 2007.

[3] R. B. Halima, K. Drira, and M. Jmaiel, “A QoS-Oriented Reconfigurable
Middleware for Self-Healing Web Services,” in Proceedings of the
2008 IEEE International Conference on Web Services (ICWS’08).
Washington, DC, USA: IEEE Computer Society, 2008, pp. 104–111.
[Online]. Available: http://dx.doi.org/10.1109/ICWS.2008.113

[4] A. Michlmayr, F. Rosenberg, P. Leitner, and S. Dustdar, “End-to-End
Support for QoS-Aware Service Selection, Binding, and Mediation in
VRESCo,” IEEE Transactions on Services Computing, vol. 3, pp. 193–
205, July 2010.

[5] M.-T. Schmidt, B. Hutchison, P. Lambros, and R. Phippen, “The
Enterprise Service Bus: Making Service-Oriented Architecture Real,”
IBM Systems Journal, vol. 44, no. 4, 2005.

[6] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz,
A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and
M. Zaharia, “A View of Cloud Computing,” Communications of
the ACM, vol. 53, no. 4, pp. 50–58, 2010. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1721672

[7] F. Rosenberg, C. Platzer, and S. Dustdar, “Bootstrapping Performance
and Dependability Attributes of Web Services,” in Proceedings of the
IEEE International Conference on Web Services (ICWS’06). Washing-
ton, DC, USA: IEEE Computer Society, 2006, pp. 205–212.

[8] E. Martin, S. Basu, and T. Xie, “WebSob: A Tool for Robustness
Testing of Web Services,” in Companion to the proceedings of the
29th International Conference on Software Engineering (ICSE’07).
Washington, DC, USA: IEEE Computer Society, 2007, pp. 65–66.
[Online]. Available: http://dx.doi.org/10.1109/ICSECOMPANION.2007.
84

[9] M. D. Barros, J. Shiau, C. Shang, K. Gidewall, H. Shi, and J. Forsmann,
“Web Services Wind Tunnel: On Performance Testing Large-Scale
Stateful Web Services,” in Proceedings of the 37th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks
(DSN’07). Washington, DC, USA: IEEE Computer Society, 2007, pp.
612–617. [Online]. Available: http://dx.doi.org/10.1109/DSN.2007.102

[10] Z. Ding and M. Jiang, “Port Based Reliability Computing for
Service Composition,” in Proceedings of the 2009 IEEE International
Conference on Services Computing (SCC’09). Washington, DC, USA:
IEEE Computer Society, 2009, pp. 403–410. [Online]. Available:
http://dx.doi.org/10.1109/SCC.2009.12

[11] A. J. Maâlej, M. Krichen, and M. Jmaiel, “Model-Based Conformance
Testing of WS-BPEL Compositions,” in COMPSAC Workshops, 2012,
pp. 452–457.

[12] W. Hummer, O. Raz, O. Shehory, P. Leitner, and S. Dustdar, “Test
Coverage of Data-Centric Dynamic Compositions in Service-Based
Systems,” in Proceedings of the 2011 Fourth IEEE International
Conference on Software Testing, Verification and Validation (ICST’11).
Washington, DC, USA: IEEE Computer Society, 2011, pp. 40–49.
[Online]. Available: http://dx.doi.org/10.1109/ICST.2011.55

[13] L. Juszczyk and S. Dustdar, “Programmable Fault Injection Testbeds for
Complex SOA,” in Proceedings of the 8th International Conference on
Service-Oriented Computing (ICSOC’10), 2010, pp. 411–425.

[14] M. Hirzalla, J. Cleland-Huang, and A. Arsanjani, “A Metrics
Suite for Evaluating Flexibility and Complexity in Service Oriented
Architectures,” in Service-Oriented Computing — ICSOC 2008
Workshops. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 41–52.
[Online]. Available: http://dx.doi.org/10.1109/DSN.2007.102

[15] M. P. Papazoglou, “Service-Oriented Computing: Concepts, Charac-
teristics and Directions,” in Proceedings of the Fourth International
Conference on Web Information Systems Engineering (WISE’03).
Washington, DC, USA: IEEE Computer Society, 2003, pp. 3–.
[Online]. Available: http://dl.acm.org/citation.cfm?id=960322.960404

[16] G. Canfora and M. Penta, “Software engineering,” A. Lucia and F. Fer-
rucci, Eds. Berlin, Heidelberg: Springer-Verlag, 2009, ch. Service-
Oriented Architectures Testing: A Survey, pp. 78–105.

[17] W. Tsai, X. Zhou, Y. Chen, and X. Bai, “On Testing and Evaluating
Service-Oriented Software,” Computer, vol. 41, no. 8, pp. 40 –46, aug.
2008.

[18] R. Heckel and L. Mariani, “Automatic Conformance Testing of Web
Services,” in Proceedings of the 8th International Conference on Fun-
damental Approaches to Software Engineering (FASE’05). Berlin,
Heidelberg: Springer-Verlag, 2005, pp. 34–48.

[19] S. Zhao, X. Lu, X. Zhou, and T. Zhang, “A Reliability Model for Web
Services - From the Consumers’ Perspective,” in Proceedings of the
2011 International Conference on Computer Science and Service System
(CSSS), 2011.

[20] C. Bartolini, A. Bertolino, E. Marchetti, and A. Polini, “WS-TAXI: A
WSDL-based Testing Tool for Web Services,” in Proceedings of the 2009
International Conference on Software Testing Verification and Validation
(ICST’09). Washington, DC, USA: IEEE Computer Society, 2009, pp.
326–335. [Online]. Available: http://dx.doi.org/10.1109/ICST.2009.28

[21] W. Van Der Aalst, A. H. M. T. Hofstede, and M. Weske,
“Business Process Management: a Survey,” in Proceedings of the 2003
International Conference on Business Process Management (BPM’03).
Berlin, Heidelberg: Springer-Verlag, 2003, pp. 1–12. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1761141.1761143

[22] Y. Ni, S.-S. Hou, L. Zhang, J. Zhu, Z. Li, Q. Lan, H. Mei, and J.-S. Sun,
“Effective Message-Sequence Generation for Testing BPEL Programs,”
IEEE Transactions on Services Computing (TSC), vol. 99, no. PrePrints,
2011.

[23] Z. Zakaria, R. Atan, A. A. A. Ghani, and N. F. M. Sani, “Unit Testing
Approaches for BPEL: A Systematic Review,” in Proceedings of the
2009 16th Asia-Pacific Software Engineering Conference (APSEC’09).
Washington, DC, USA: IEEE Computer Society, 2009, pp. 316–322.
[Online]. Available: http://dx.doi.org/10.1109/APSEC.2009.72

[24] K. Ueno and M. Tatsubori, “Early Capacity Testing of an Enterprise
Service Bus.” Washington, DC, USA: IEEE Computer Society, 2006,
pp. 709–716. [Online]. Available: http://dx.doi.org/10.1109/ICWS.2006.
57

[25] D. N. Le, S. Goh, and A. Eck, “A Survey of Web Service Discovery
Systems,” International Journal of Information Technology and Web
Engineering (IJITWE), vol. 2, no. 2, pp. 65 – 80, 2007.

[26] C. Schmidt and M. Parashar, “A Peer-to-Peer Approach to Web Service
Discovery,” World Wide Web, vol. 7, no. 2, pp. 211–229, 2004.

[27] L.-H. Vu, M. Hauswirth, and K. Aberer, “Towards P2P-Based Semantic
Web Service Discovery with QoS Support,” in Proceedings of the
Third international conference on Business Process Management
(BPM’05). Berlin, Heidelberg: Springer-Verlag, 2006, pp. 18–31.
[Online]. Available: {http://dx.doi.org/10.1007/11678564 3}

[28] S. A. McIlraith, T. C. Son, and H. Zeng, “Semantic Web Services,”
IEEE Intelligent Systems, vol. 16, no. 2, 2001.

[29] P. Leitner, A. Michlmayr, and S. Dustdar, “Towards Flexible Interface
Mediation for Dynamic Service Invocations,” in Proceedings of the
3rd Workshop on Emerging Web Services Technology, co-located with
ECOWS’08, 2008.

[30] S. K. Williams, S. A. Battle, and J. E. Cuadrado, “Protocol Mediation for
Adaptation in Semantic Web Services,” in Proceedings of the European
Semantic Web Conference (ESWC 2006), 2006, pp. 635–649.

[31] J.-P. Friedenstab, C. Janiesch, M. Matzner, and O. Muller, “Extending
BPMN for Business Activity Monitoring,” in Proceedings of the 2012
45th Hawaii International Conference on System Sciences (HICSS’12).
Washington, DC, USA: IEEE Computer Society, 2012, pp. 4158–4167.
[Online]. Available: http://dx.doi.org/10.1109/HICSS.2012.276

[32] A. Michlmayr, F. Rosenberg, P. Leitner, and S. Dustdar, “Comprehensive
QoS Monitoring of Web Services and Event-Based SLA Violation
Detection,” in Proceedings of the 4th International Workshop on Mid-
dleware for Service Oriented Computing (MWSOC’09). New York,
NY, USA: ACM, 2009, pp. 1–6.

[33] A. Metzger, O. Sammodi, K. Pohl, and M. Rzepka, “Towards Pro-
Active Adaptation With Confidence: Augmenting Service Monitoring
With Online Testing,” in Proceedings of the 2010 ICSE Workshop
on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS’10). New York, NY, USA: ACM, 2010, pp. 20–28. [Online].
Available: http://doi.acm.org/10.1145/1808984.1808987

[34] L. Zeng, H. Lei, and H. Chang, “Monitoring the QoS for Web Services,”
in Proceedings of the 5th International Conference on Service-Oriented
Computing (ICSOC’07). Berlin, Heidelberg: Springer-Verlag, 2007, pp.
132–144.

[35] D. Luckham, The Power of Events: An Introduction to Complex Event
Processing in Distributed Enterprise Systems. Addison-Wesley Profes-
sional, May 2002.

52



[36] B. Wetzstein, P. Leitner, F. Rosenberg, S. Dustdar, and F. Leymann,
“Identifying influential factors of business process performance using
dependency analysis,” Enterprise Information Systems, vol. 5, no. 1,
pp. 79–98, Feb. 2011. [Online]. Available: http://dx.doi.org/10.1080/
17517575.2010.493956

[37] P. Leitner, C. Inzinger, W. Hummer, B. Satzger, and S. Dustdar,
“Application-Level Performance Monitoring of Cloud Services Based on
the Complex Event Processing Paradigm,” in IEEE International Con-
ference on Service-Oriented Computing and Applications (SOCA’12),
2012, p. (to appear).

[38] P. Leitner, B. Wetzstein, F. Rosenberg, A. Michlmayr, S. Dustdar,
and F. Leymann, “Runtime Prediction of Service Level Agreement
Violations for Composite Services,” in Proceedings of the 3rd
Workshop on Non-Functional Properties and SLA Management in
Service-Oriented Computing (NFPSLAM-SOC’09). Berlin, Heidelberg:
Springer-Verlag, 2009, pp. 176–186. [Online]. Available: http://portal.
acm.org/citation.cfm?id=1926618.1926639

[39] A. Bertolino, G. Angelis, L. Frantzen, and A. Polini, “Model-Based
Generation of Testbeds for Web Services,” in Proceedings of the 20th
IFIP TC 6/WG 6.1 International Conference on Testing of Software and
Communicating Systems (TestCom’08). Berlin, Heidelberg: Springer-
Verlag, 2008, pp. 266–282.

[40] T. J. McCabe, “A Complexity Measure,” IEEE Transactions on
Software Engineering, vol. 2, no. 4, pp. 308–320, Jul. 1976. [Online].

Available: http://dx.doi.org/10.1109/TSE.1976.233837
[41] P. Leitner, A. Michlmayr, F. Rosenberg, and S. Dustdar, “End-to-End

Versioning Support for Web Services,” in Proceedings of the 2008
IEEE International Conference on Services Computing (SCC’08).
Washington, DC, USA: IEEE Computer Society, 2008, pp. 59–
66. [Online]. Available: http://portal.acm.org/citation.cfm?id=1447562.
1447851

[42] H. Q. T. Pham Thi Quynh, “International journal of electrical and
electronics engineering 3:5 2009,” 2009, ch. Dynamic Coupling Metrics
for Service Oriented Software, pp. 282–87.

[43] M. D. Penta, R. Esposito, M. L. Villani, R. Codato, M. Colombo, and
E. D. Nitto, “WS Binder: a Framework to Enable Dynamic Binding
of Composite Web Services,” in Proceedings of the International
Workshop on Service-Oriented Software Engineering (SOSE’06). New
York, NY, USA: ACM, 2006, pp. 74–80. [Online]. Available:
http://doi.acm.org/10.1145/1138486.1138502

[44] P. Leitner, F. Rosenberg, and S. Dustdar, “Daios: Efficient Dynamic Web
Service Invocation,” IEEE Internet Computing, vol. 13, pp. 72–80, 2009.

[45] Y. Yuan, Z. Li, and W. Sun, “A graph-search based approach to bpel4ws
test generation,” in Proceedings of the International Conference on
Software Engineering Advances, ser. ICSEA ’06. Washington, DC,
USA: IEEE Computer Society, 2006, pp. 14–. [Online]. Available:
http://dx.doi.org/10.1109/ICSEA.2006.6

53


