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Abstract—Cloud computing represents a promising computing
paradigm where resources have to be allocated to software that
needs to be executed. Self-manageable Cloud infrastructures are
required to achieve that level of flexibility on the one hand, and
to comply to users’ requirements specified by means of Service
Level Agreements (SLAs) on the other. Such infrastructures
should automatically respond to changing component, workload,
and environmental conditions minimizing user interactions with
the system and preventing violations of agreed SLAs. However,
identification of system states where reactive actions are necessary
for the prevention of SLA violations is far from trivial. In
this paper we investigate how current knowledge management
systems can be used for the prevention of SLA violations in
Clouds. First, we define a typical SLA use case and formulate
the expected behavior of the knowledge management system in
order to prevent possible SLA violations. Second, we investigate
different methods for the knowledge management, e.g., situation
calculus and case based reasoning (CBR). We discuss how
these methods match the expected behavior for SLA violation
prevention. We in particular examine the CBR method and devise
several approaches for the knowledge management in Clouds
based on CBR. Finally, we evaluate our approach based on the
presented use case.

I. INTRODUCTION

Cloud Computing is a novel computing paradigm, which
offers computational power similar to utilities like water,
electricity or gas. In order to achieve such a level of flexibility,
computing resources have to be allocated to software waiting
to be executed in a not only dynamic, but also autonomous
way. These resources are allocated according to predefined
Service Level Agreements (SLAs), which consist of SLA pa-
rameters like response time, availability or storage. A Service
Level Objective (SLO) defines for every SLA parameter the
goal to be achieved, e.g., availability > 98%. Usually, if
SLOs are violated, the Cloud provider has to pay penalties
to the costumer, which are also stated within the SLA. In
many cases simple reactions, like moving virtual machines
(VMs) from already allocated nodes to additional available
nodes can prevent the violation of established SLAs. However,
identifying such reactions is far from trivial.

The positive effects of sensing possible SLA violations
before they occur are twofold. On the one hand it helps the
Cloud provider to save money (not paying penalties), and to
minimize user (e.g., system administrator) interaction in the
Cloud itself on the other. Furthermore, effective SLA man-
agement also shuts down unnecessary resources for fulfilling

the SLA, and therefore is an important component of Green
IT and management of energy efficiency [19] as well.

On the one hand, large body of work has been done for the
development of SLA management frameworks, which react
to SLA violations [6], [16], but do not try to prevent the
occurrence of these violations. On the other hand, considerable
body of work has also been done for the prevention of SLA
violations [20]. These approaches, however, are very tied to a
single special parameter, e.g., CPU utilization. However, SLA
management that proactively acts even before SLA violations
occur – in a general way not specific to any SLA parameter
– is still an open research issue. Thus, the development of
knowledge systems for the management of reactive actions for
the SLA violation prevention is the first step towards achieving
this goal.

In this paper we facilitate the usage of knowledge bases
for the self-management in Clouds. Therefore, we define a
use case considering a typical SLA example and employ it
to evaluate existing knowledge management approaches. We
evaluate rule based systems, default logic, situation calculus,
and case based reasoning. We particularly focus on one of
these approaches, case based reasoning (CBR), and devise
a concept for the management of measurement inputs using
active and passive system observation methods. We present
and discuss a concept and methods for the derivation or
even avoidance of threat thresholds used to sense future SLA
violations. Our development of the knowledge management
systems for Clouds is embedded into the Foundations of Self-
governing ICT (FoSII) infrastructure [2]. The FoSII project
aims at developing an infrastructure for autonomic SLA man-
agement and enforcement. Thus, the knowledge management
system presented in this paper represents the first building
block of the FoSII infrastructure. Furthermore, we discuss
implementation choices of the presented concepts for the
knowledge management in self-adaptable Clouds and present
a preliminary evaluation thereof.

The major contributions of this paper are: (i) a specification
of a complete use case for a knowledge management system
in Cloud Computing; (ii) a theoretical evaluation of some
promising knowledge management methods to be used in the
field of Cloud Computing; and (iii) a design, an implementa-
tion, and a preliminary evaluation of a CBR-aware knowledge
management system.

The remainder of this paper is organized as follows: Section



II describes related work. In Section III we discuss the goals
for the development of the knowledge management system,
its relation to the FoSII project, and a use case. Section IV
describes and theoretically evaluates knowledge management
models to be applied in the field of Cloud Computing. Sec-
tion V introduces a very promising method for knowledge
representation and inference, CBR. Sections VI and VII show
the implementation and a preliminary evaluation of CBR,
respectively, whereas Section VIII concludes the work and
gives an outlook and motivation for further research in this
field.

II. RELATED WORK

Currently most of the related work on the knowledge
management in self-adaptable Clouds can be classified into
the following groups: (i) work on SLA management which
is however not preventive SLA management [12], [14], [16],
[24]; (ii) knowledge management in general and not tied to
Cloud computing [20], [23]; and (iii) autonomic management
in various areas (e.g., SOA, workflow based systems, energy
efficiency) [10], [17]–[19], [22], [25].

The Reservoir model [24] is a framework for Cloud Com-
puting with the conceptual addition of SLA management. It
states the need of dynamically adjusting resources (in addition
to federating resources from peer providers) in order to meet
SLAs, but does not specify a way to do that. Paschke et al.
describe a rule based approach for dynamically dealing with
SLAs in combination with ContractLog [23]. It specifies rules
to trigger after a violation has occurred, but it does not deal
with avoidance of SLA violations.

Some papers like [12] describe in detail the process of how
to fulfill an SLA. In these papers, the SLA is very often limited
to only one SLO and the analysis of this resource provisioning
is closely tied to a special resource, e.g., CPU utilization.
Others inspected the use of ontologies as knowledge bases
only on a very conceptual level. [20] viewed the system in
four layers (i.e., business, system, network and device) and
broke down the SLA into relevant information for each layer,
which had the responsibility of allocating required resources.
Again, no details on how to achieve this have been given. The
authors of [14] only describe the monitoring of SLAs.

Kephart et al. [18] get more specific when it comes to
how to adjust resource allocations. They argue for avoiding a
system based on action or goal policies, and opt for a utility-
driven approach, where they give a detailed view on how to
derive utility functions. However, it would be interesting to
develop an automatic mapping of general SLAs to these utility
functions, because as in [12], the authors only deal with one
SLA parameter, response time, and relate it to the number of
servers they use for satisfying a certain consumer load. Thus,
the only actions to execute are shut down server and start
server. Muthusamy at al.’s vision [22] is quite similar to our
goals; yet, they do not investigate the use of a knowledge base.

Bahati et al. [10] also use policies, i.e., rules, to achieve
autonomic management. They provide a system architecture
including a knowledge base and a learning component, and
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Figure 1. FoSII infrastructure

divide all possible states of the system into so called regions,
which they assign a real value between 0 and 100 that signal-
izes the benefit of being in this region. The states themselves
are derived from the SLA, i.e., response time > 500 (too
slow), response time < 100 (too fast, consuming unnecessary
resources) and 100 ≤ response time ≤ 500, and the regions
are therefore 0, 50 and 100, respectively. With reward signals
from the given metrics, the system learns whether different
actions for one state were good or not. As in the other papers,
this work deals with only one SLA parameter and a quite
limited set of actions, and with violations and not with the
avoidance thereof. However, combining the paper with the
idea of threat thresholds (see section IV-A), could enhance
this paper in the latter regard. Yet, the disadvantages of this
approach as described in the same section remain upright.

Hasselmeyer et al. [16] introduce a Conversion Factory,
which on a design level combines the SLA, the system
status, and the Business Level Objectives to create Operational
Level Agreements (OLAs), which govern system configura-
tion. Whereas the idea seems promising, there are no details
on how to achieve these mappings to OLAs. In several
papers Yousif et al. [19], [25] present autonomic resource
management as far as power consumption is concerned by
using fuzzy logic containing IF-THEN rules, for instance.
Heinis et al. [17] experiment with self-configuring thresholds,
but tied to a workflow execution engine.

III. BACKGROUND

As our solution towards knowledge management is an
integral component of the FoSII project [2], in this section
we present an overview of the FoSII infrastructure and its
relation to the knowledge management methods discussed in
this paper. Thereafter, we present a case study used for the
evaluation of different knowledge management approaches.

A. FoSII overview

As shown in Figure 1 the FoSII infrastructure is used to
manage the whole lifecycle of self-adaptable Cloud services



[11]. The management is governed by a Monitor-Analysis-
Plan-Execute (MAPE) cycle, whose components will be ex-
plained in this subsection. Furthermore, each FoSII service
implements three interfaces: (i) negotiation interface necessary
for the establishment of SLA agreements, (ii) application-
management interface necessary to start the application, up-
load data, and similar application management actions, and
(iii) the self-management interface necessary to devise actions
in order to prevent SLA violations.

As part of the Monitor phase of the MAPE cycle, the
host monitor sensors continuously monitor the infrastructure
resource metrics (input sensor values arrow 1 in Figure 1) and
provide the autonomic manager with the current resource sta-
tus. The run-time monitor sensors sense future SLA violation
threats (input sensor values arrow 2 in Figure 1) based on
resource usage experiences and predefined threat thresholds.

Threat thresholds (TT) as explained in [4] are more restric-
tive thresholds than the SLO Values. The generation of TTs
is far from trivial and should be retrieved and updated by the
knowledge management system, and only at the beginning be
configured manually, as described later on in the paper, where
we even investigate a variation of CBR getting rid of TTs at
all.

Next, we describe the mapping between the sensed host
values and the values of the SLA parameters. Resource metrics
– being monitored by the host monitor with the help of
arbitrary monitoring tools (e.g., Ganglia) – include e.g., down-
time, up-time, available incoming and outgoing bandwidth.
Based on the predefined mapping rules stored in a database
monitored metrics are mapped to the SLA parameters. An
example SLA parameter is service availability Av (as shown
in Table I), which is calculated using the resource metrics
downtime and uptime defined by the mapping rule

Av = (1− downtime

uptime
) · 100. (1)

The mapping rules are defined by the provider using appropri-
ate Domain Specific Languages (DSL). Calculated SLA values
are compared with the predefined TT in order to react before
SLA violations happen. As described in [13] we implemented
a highly scalable framework for mapping of resource metrics
to SLA parameter facilitating exchange of large numbers of
messages.

Once an SLA violation threat is detected, reactive action
has to be taken in order to prevent the possible violation. The
actions are chosen in the Analysis phase in correspondence
with the knowledge base, which this paper focuses on. The
next steps are planing the order and timing of the actions (Plan
phase) and finally executing them (Execution phase) with the
help of actuators communicating with the self-management
interface of the resp. services.

B. Use Case

In this section we define a use case for the examination
of the knowledge management methods. An example SLA is
depicted in Table I. We consider four Service Level Objectives

Service Level Objective (SLO) Name SLO Value

Incoming Bandwidth (IB) > 10 Mbit/s
Outgoing Bandwidth (OB) > 12 Mbit/s
Storage (St) > 1024 GB
Availability (Av) ≥ 99%

Table I
SAMPLE SLA

IB OB St Av PMs

t1 12.0 20.0 1200 99.50 20
t2 14.0 18.5 1020 99.47 17
t3 20.0 25.0 1250 99.60 19

Table II
SAMPLE SYSTEM STATES

(SLOs): incoming bandwidth, outgoing bandwidth, storage,
and availability. The corresponding SLO values are shown
on the right hand side in Table I. In order to evaluate the
knowledge management approaches we describe the status of
the system in terms of running physical machines (PMs) and a
specific application running under this SLA at three different
time points t1, t2, t3. We assume that one application runs on
one virtual machine (VM), but one VM can run on (1,*) PMs
for scalability and/or reliability issues, and on one PM, there
can run (1,*) VMs. Table II summarizes the measured system
states.

We define the goals of the knowledge management system
as follows:

1) Continuous generation and improvement of SLA threat
thresholds. Based on historical observations the knowl-
edge management system should generate threat thresh-
olds for the particular SLOs - if necessary distinguishing
between different application domains of the specific SLA
parameter.

2) Identification of reactive actions. In case threat thresholds
do not exist (e.g., if an application from a new domain
is deployed or if we deliberately decided to omit them
as described later), the knowledge management system
should suggest reactive actions based on the historical
system state.

Based on the SLA defined in Table I and on the system
states measured and depicted in Table II we discuss how sys-
tem reactions could be defined. We assume that the knowledge
management system acts in mode Identification of reactive
actions without a particular predefined threat threshold for the
SLA violations. Thus, we define a set of actions the Execute
component of the MAPE cycle (cf. Figure 1) is able to trigger:

1) for individual applications (=VMs1):
a) Increase incoming bandwidth share by x%.
b) Decrease incoming bandwidth share by x%.
c) Increase outgoing bandwidth share by x%.

1Applications can be identified with virtual machines, since we assumed a
one-to-one mapping of applications and virtual machines



d) Decrease outgoing bandwidth share by x%.
e) Increase memory by x%.
f) Decrease memory by x%.
g) Add allocated storage by x%.
h) Remove allocated storage by x%.
i) Increase CPU share by x%.
j) Decrease CPU share by x%.
k) Outsource (move application) to other cloud.
l) Insource (accept application) from other cloud.

m) Add physical machine
n) Remove physical machine

2) for physical machines (computing nodes):
a) Add x computing nodes
b) Remove x computing nodes

3) Do nothing.
Thus, at the specified time points, the knowledge manage-

ment system receives the measurements as inputs and should
output an action that can be executed in order to prevent an
SLA violation.

IV. METHODS OF KNOWLEDGE MANAGEMENT FOR SLA
MANAGEMENT

In this section we present some well known knowledge
management methods and evaluate how they fit to SLA
management in a Cloud-like environments as discussed in
Section III-B.

A. Rule-based system

A rule-based system as Jess [5] or Drools [1] contains rules
in the “IF Condition THEN Action” format, e.g.,

(1) IF IB < TT IB THEN Add physical machine to VM.
(2) IF IB < TT IB THEN Increase IB share by 5% for

VM.
(3) IF Av < TT Av THEN Add 2 comp. nodes to the

cloud.
(4) IF Av < TT Av THEN Outsource app. to other cloud.

As already explained before, we here use threat thresholds
to trigger some action before an SLA is violated. There are
two drawbacks to this mechanism, though:

First, the question of how these TTs are obtained, has to be
answered. They are very different from one SLA parameter
to another, e.g., for SLO Storage > 1024 GB, the TT could
be already at 1300 GB (127% of the original threshold),
whereas for the SLO IB > 10 Mbit/s the TT could be at 11
Mbit/s (110% of the original threshold), as one might say that
reallocating bandwidth shares is a lot quicker than reallocating
storage. They can even differ a lot for the same parameter in a
different domain, e.g., the TT for availability in some medical
domain, where human lives can be at stake, must be much
higher than for a 3D rendering service in the architectural
domain. A way to get around this would be to have the TTs
specified in DSLs or to include them in the SLA document.
However, this would heavily depend on subjective estimations.
Nevertheless, it would be possible to find some experience
values that make sense for the most common parameters.
Furthermore, it has to be specified whether these thresholds

are derived from a constant function of the parameter’s value,
i.e., always add 5 units to the SLA parameter value, a linear
one, i.e., always add 10% to the value, or even an exponential
or any other function. So to solve this in a universally valid
way, one would have to find an appropriate function for every
SLA parameter in every domain.

The second question is how to solve two contradicting rules.
Consider rules (3) and (4) depicted at the begining of this
section. If availability for a certain service drops below the
pre-specified TT, should the rule engine rather add computing
nodes or outsource an application, or both? Using a salience
concept to decide this, leads to a difficultly manageable load of
rules. A good examination of this problem can also be found
in [18].

In our use case from Table II, the rules (1) - (4) above,
and with TTIB = 12.5 for incoming bandwidth and TTAv =
99.48 for availability, the rule engine would fire rules 1 and/or
2 at time t1; at t2 it would fire rules 3 and/or 4, and at t3 it
would do nothing.

B. Default Logic
Default Logic [9] is a version of a rule-based system

whose rules are no longer simple IF-THEN Rules, but can be
described as IF condition - and there are no reasons against it
- THEN action. We write such a rule as δ = φ:ψ1,...,ψn

χ , where
φ represents the condition, and χ is the action to execute,
if the statements ψ1, . . . , ψn are consistent with the current
assumptions we hold of our system. A sample rule considering
our case study can be written as

d1 =
IB < TTIB : IncreaseIBshare

IncreaseIBshare
. (2)

The rule means: If incoming bandwidth is smaller than its
threat threshold, and if there is no reason against increasing
bandwidth share, then increase bandwidth share. Reasons
against could be that the bandwidth share is already at its
maximum or that other (possibly more important) services
issued a request for an increase at the same time. Contrary to
ordinary rules in a rule-based system, it is easy for default rules
to understand that resources cannot be increased indefinitely.
However, default logic does not offer a remedy against the
issues of retrieving TTs and dissolving contradicting rules.

Furthermore, default logic is especially used in fields with
a lot of contradicting information. For Cloud Computing,
however, we are rather interested in determining the reason
of the current measurement information, e.g., why current
incoming bandwidth has decreased. For example, we want to
know whether the current bandwidth problem is caused by
internal problems (e.g., too many service requests but too little
resources provided), which the Cloud is capable of solving on
its own, or by external factors (e.g., a DDoS attack), which
cannot be influenced directly. Thus, we are rather confronted
with more incomplete information than with contradicting one.

C. Situation Calculus
Situation Calculus [21] describes the world we observe in

states, the so called fluents, and situations. Fluents are first-



order logic formulae that can be true or false based on the
situation in which they are observed. Situations themselves are
a finite series of actions. The situation before any action has
been performed - the starting point of the system - is called
the initial situation. The state of a situation s is the set of
all fluents that are valid in s. Predefined actions can advance
situations to new ones in order to work towards achieving a
pre-defined goal by manipulating the fluents in this domain.
For a world of three bricks that can be stacked upon each other
lying on a table, fluents are quite easy to find: First, a brick
can be on the table or not. Second, a brick can have another
brick on it or not. Third, a brick x can lie on a brick y or not.
Two possible actions are: Stack brick x on brick y and unstack
brick y, i.e., put brick y onto the table. Now, a goal could be
to have one pile of all three bricks in a specified order with
an initial situation of them being piled in the reverse order. In
each state of a situation, different fluents are true (e.g., brick
x lies on brick y, brick y does not lie on brick x, brick z
lies on the table), and stacking or unstacking generates a new
situation.

To map this analogy to Cloud Computing is not as easy.
As far as fluents are concerned, in a Cloud we have to
consider the current value of each specific parameter, and
whether the respective SLO is fulfilled or not. Furthermore,
all the states of the Cloud itself like number of running virtual
machines, number of physical machines available, etc., have to
be modeled as fluents as well. Fluents for a specific application
could be the predicate has value(SLAParameter p, Value v)
with v ∈ R2 meaning that the SLAParameter p holds the value
v in the current situation, and fulfills(SLO s) meaning that the
specified application fulfills a certain SLO s. The predicate
has value(SLAParameter p1, x) is valid for only one x ∈ R in
a certain situation. The possible actions are provided by our
use case.

Since we always observe the Cloud with all its states
as a whole, it can be very difficult to derive exactly one
action that could lead to an advancement of achieving a
goal. The solution could be to view applications isolated
from each other and to have one overall view that only
takes into account some higher-level information like ful-
fillsSLA(Application app) meaning an application fulfills all its
current SLOs at the moment. A doable way of defining goals
could be to define utility functions that state the utility of a
service fulfilling its SLA. Parameters of this utility function
can be the importance of the consumer and the penalty that
has to be paid when violating each SLO. The system then tries
to find actions to maximize the utility.

Consider a Cloud servicing 100 applications with five
SLA parameters each. This leads to 100 ∗ (5 + 1) =
600 different fluents, like has value(SLAParameter p1, x),
has value(SLAParameter p2, y), etc. for every application.
Thus, the largest obstacles to this approach are the large
number of fluents and the immense search space for the

2Instead of R one could consider using different sets with an only finite
number of elements, as the set of floating point numbers.
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possible actions as a result thereof.

V. CASE BASED REASONING AND AUTONOMIC SLA
MANAGEMENT

A. Case Based Reasoning (CBR)

Case Based Reasoning is the process of solving problems
based on past experience [7]. In more detail, it tries to solve a
case (a formatted instance of a problem) by looking for similar
cases from the past and reusing the solutions of these cases to
solve the current one. In general, a typical CBR cycle consists
of the following phases assuming that a new case was just
received:

1) Retrieve the most similar case or cases to the new one.
2) Reuse the information and knowledge in the similar

case(s) to solve the problem.
3) Revise the proposed solution.
4) Retain the parts of this experience likely to be useful for

future problem solving.
In step 4, the new case and the found solution is stored in the
knowledge base. In the following section, we will show how
we adopt CBR to the needs of SLA management in the field
of Cloud computing.

B. CBR adapted to SLA Management

In this section we discuss the basic CBR model used for
SLA management and some of its variations.

Following the diagram in Figure 2, the basic idea is to have
rules stored in database 1 that engage the CBR system once a
TT value has been reached for a specific SLA parameter. The
measurements are fed into the CBR system, surrounded by
the frame, as a new case by the monitoring component. Then,
CBR prepared with some initial meaningful cases stored in
database 2, chooses the set of cases which are most similar
to the new case by various means as described in section VI.
From these cases we select the one with the highest utility
measured before. Now we trigger the action that was executed
in the selected case. Finally, we measure the result of this
action in comparison to the initial case some time intervals
later and store it with the calculated utilities as a new case
to CBR. Summing up, we have the following basic process
(cf. Figure 2): New Measurements arrive (Measurements) →
Check whether the TTs reached for some parameter (Rules to
engage CBR). If yes, choose a set of most similar cases in CBR
and from them choose the one with the highest utility (Case
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Based Reasoning) → Execute action of this case (Trigger
1 action) → Calculate utility of this action by measuring
results (Measure results) → Store case in CBR (Feedback).
Doing this, we can constantly learn new cases and evaluate the
usefulness of our triggered actions. By measuring the utility
after more than one time interval, CBR is also able to learn
whether an action was carried out too late (when utilities
improved following the time intervals, but the improvement
was too late in order to prevent an SLA violation) or even
unnecessary. Thus, the TTs, which tell us when to engage the
CBR mechanism, can be constantly ameliorated as well.

Further thoughts on the basis concept lead to the following
variations:
a) Instead of using rules with TTs, CBR continuously receives

new cases by the measurement device. Thus, CBR is not
triggered due to TTs, but constantly active. CBR decides
when to do something (actions 1-2 in use case from section
III-B) and when to do nothing (action 3). This way we can
get rid of TTs, which is especially useful in the early stage
when the system doest not have historical measurements.

b) As in a) and depicted in Figure 3, we divide the system
status into (1) a manual phase, where we create or adapt
cases manually, (2) an active CBR phase as usual, and (3)
a passive rule based phase, where we only do something,
if the TT is attained, which we learned in the active phase.
When in phase 3, we also calculate utilities of our actions
as in phase 2. If the utilities get too low, depending on
the severity, we either reactivate the active phase (phase
2) to learn new cases or even go into the manual phase
(phase 1). When utilities ameliorate, we finally go back to
the passive phase (phase 3).

c) For simple parameters (parameters whose causes are easy
to understand and model), we have simple TTs and actions
using rules instead of using CBR, which helps to relieve
computing resources.

VI. IMPLEMENTATION OF CBR

This section describes implementation details of CBR and
methods we used for learning and reacting, as well as the
utility measurements employed. The implementation follows
variation (a) of the previous section.

We implemented the testbed in Java, based on FreeCBR [3],
a generic implementation of step (1) of the list in subsection
V-A. As can be seen in Figure 4 a complete case consists of:

1. (
2. (SLA, 1),
3. (
4. ((Incoming Bandwidth, 12.0),
5. (Outgoing Bandwidth, 20.0),
6. (Storage, 1200),
7. (Availability, 99.5),
8. (Running on PMs, 1)),
9. (Physical Machines, 20)
10. ),
11. "Increase Incoming Bandwidth share by 5%",
12. (
13. ((Incoming Bandwidth, 12.6),
14. (Outgoing Bandwidth, 20.1),
15. (Storage, 1198),
16. (Availability, 99.5),
17. (Running on PMs, 1)),
18. (Physical Machines, 20)
19. ),
20. 0.002
21. )

Figure 4. CBR case example

(a) the id of the application being concerned (i.e., instance ID)
(line 2), (b) the initial case (measurements by the monitoring
component) consisting of the SLO values of the application
and global Cloud information like number of running virtual
machines (lines 3 – 10), (c) the executed action (line 11),
(d) the resulting case (measured some time interval later (cf.
Section V-B)) as in (b) (lines 12 – 19), and (e) the resulting
utility (line 20).

To evaluate the actual utility a specific action helped in a
specific case, we compare the utility of the initial case to
the utility of the resulting case. Let αold and αnew be the
actual values of some parameter α measured at the initial
and the resulting case, respectively, and αT the specified
SLA parameter threshold. We define the relative utility for
a parameter α ≥ αT . In case that α ≤ αT , the definition has
to be multiplied by -1. We define utility u(α) for αT 6= 0 as

u(α) =
α− αT
αT

(3)

The gain in (or maybe loss of) utility from the initial to the
resulting case for a parameter α can be described as

u(αold, αnew) =
αnew − αT

αT
− αold − αT

αT
=
αnew − αold

αT
.

(4)
As a next step we have to define the utility for parameters

not stated in the SLA of the application, like “running on PMs”
or the global parameter “Physical Machines”. Considering our
use case from section III-B we define that the less PMs the
application runs on, the better it is, since this frees up resources
for other applications. The same is true for the impact of the
number of running physical machines. Shutting down every
physical machine that is not needed to guarantee the SLAs
is seen as a positive effect on our utility. Thus, we also
compare the number of running PMs from the resulting to the
initial case with u(PMsold, PMsnew) = PMsold−PMsnew

PMsold
.

The same principle is true for “running on PMs”.
We now derive the final utility by taking the average of the

utilities u(αold, αnew) for all SLA parameters α, of the utilities
of running PMs, and of the global parameters. Of course, one



could also take into consideration building a weighted average.
Generally speaking, there may be more sophisticated methods
to define utilities than this linear approach, but for simplicity
we decided to start with this one.

For our complete case depicted in Figure 4 and the SLA
from our use case in Table I, the utility is thus calculated as
follows:

u(case) =

( 12.6−12.0
10.0

+ 20.1−20.0
12.0

+ 1198−1200
1024

+ 99.5−99.5
99.0

) + 1−1
1

+ 20−20
20.0

6
= 0.002 (5)

The similarity of the cases is evaluated by the Euclidean
distance, which for two cases takes the square root of the sum
of the squared differences of each of the parameters. Of course,
as for the utility, one could also weigh these parameters, which
we chose to renounce for the beginning.

Furthermore, for the retrieval of similar cases, we imple-
mented two methods. Each method seeks some cases, from
which it chooses the one with the highest utility. The first
method, which we call t-neighborhood method, looks for the
case with the highest match percentage and takes all cases into
consideration that have a distance of t% to the case with the
highest match percentage. The second method, the clustering
method, uses a k-means clustering algorithm [15] to group
the cases into k clusters, from which we choose the one that
includes the case with the highest match percentage. We try
the clustering for several ks, and finally choose the k that has
the lowest variance among all clusters.

VII. EVALUATION

In this section we compare the outcomes of the test case
using CBR with what we had expected a rational administrator
to do. Thus, e.g., if storage for an application is extremely
scarce, but all other values are in normal range, we expect the
administrator to add allocated storage by the highest possible
percentage – we will refer to this as the intensity of an action
–, and not to increase any other parameter, do nothing or even
decrease storage.

After feeding the knowledge base with 9 different cases,
we test it against the SLA defined in our use case with 6 new
cases and evaluate the results. The initial cases are displayed in
Table III, where each column holds one of the cases 1-9. The
upper part of the Table (parameters with subscript b), shows
values as they were measured before any action took place.
The row Action indicates the triggered actions in the specific
cases followed by the measured parameters after the suggested
action (parameters with subscript a). The Row Utility shows
the utilities gained by these actions.

The 6 test cases that are stored one after the other into the
knowledge base are presented in Table IV. The columns depict
the cases 1-6, whereas the rows show the parameters at the
beginning of the CBR cycle.

The result, i.e., what action was triggered, can be seen in
Tables V and VI for the clustering and the neighborhood
method, respectively. In Table V, the expected action column
shows what action one could expect to be triggered in the

1 2 3 4 5 6 7 8 9
IBb 15.0 11.0 10.5 15.0 15.0 15.0 15.0 15.0 15.0
OBb 20.0 20.0 20.0 13.0 12.5 20.0 20.0 20.0 20.0
Stb 1200 1200 1200 1200 1200 1050 1000 1000 1200
Avb 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.45 99.4
RPMsb 1 1 1 1 1 1 1 1 1
PMsb 20 20 20 20 20 20 20 20 20
Action Do

noth-
ing.

IBW
+
5%

IBW
+
10%

OBW
+
5%

OBW
+
10%

St
+
5%

St
+
10%

M
+
5%

M +
10%

IBa 15.0 11.55 11.55 15.0 15.0 15.0 15.0 15.0 15.0
OBa 20.0 20.0 20.0 13.65 13.75 20.0 20.0 20.0 20.0
Sta 1200 1200 1200 1200 1200 1103 1100 1200 1200
Ava 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5
RPMsa 1 1 1 1 1 1 1 1 1
PMsa 20 20 20 20 20 20 20 20 20
Utility 0.0 0.009 0.0175 0.009 0.017 0.009 0.016 8.41·

10−5
1.68·
10−4

Table III
INITIAL CASES FOR CBR

1 2 3 4 5 6
IB 15.0 11.0 10.5 15.0 20.0 10.0
OB 20.0 20.0 20.0 13.0 25.0 18.0
St 1200 1200 1200 1200 1250 1450
Av 99.5 99.5 99.5 99.5 99.6 99.5
RPMs 1 1 1 1 1 1
PMs 20 20 20 20 20 20

Table IV
TEST CASES FOR CBR

test case (the same column is valid for Table VI and is not
repeated therein). The recommended action columns in Tables
V and VI define which action was actually recommended by
the CBR mechanism. The variance column of Table V gives us
an insight on how compact these clusters are. A low variance
signifies high coherence (the points of one cluster have a small
distance to each other), whereas high variance signifies the
opposite. Additionally, in Table VI, where we present results
for t = 3% and t = 5%, we show the number of cases in the
t-neighborhood of the case with the highest match percentage.
This shows how large the set of cases was to choose the one
with the highest utility. The more cases there are, the higher
the chance to catch a case with a higher utility, but at the same
time the smaller the similarity is to the original one.

Based on the evaluation results presented in Table V and
VI we conclude that the actions are pretty much the same
for both algorithms and relate to the expected action. Only
the intensity of the action is always higher than one would
expect to be necessary, because greater improvements always
have higher utility values (cf. Equation (4)). This could be
ameliorated by modifying the utility function to allow for
more moderate actions to have higher utilities. Nevertheless,
the problematic SLA parameter, i.e., the parameter whose
resources were scarce, is always identified correctly. With the
exception of case 5, which has excellent SLA parameter values
and does not require any action to be executed, all methods
recommend an action to trigger except the neighborhood
method for t = 3%. This is explained by the same argument
why higher intensities have always been chosen: Doing more
than is necessary always achieves a higher utility than doing



Case Expected Action Recommended Action Variance
1 IBW + 5% IBW + 10% 23
2 OBW + 5% OBW +10% 18
3 St + 5% St + 10% 208
4 St + 10% St + 10% 14
5 None St + 10% 96
6 IBW + 10% IBW + 10% 40

Table V
EVALUATION RESULTS USING THE CLUSTERING ALGORITHM

t = 5% t = 3%
Case Recomm. Ac-

tion
Cases in t-
neighborhood

Recomm. Ac-
tion

Cases in t-
neighborhood

1 IBW + 10% 2 IBW + 10% 2
2 OBW + 10% 4 OBW +10% 4
3 St + 10% 2 St + 10% 2
4 St + 10% 3 St + 10% 2
5 M + 5% 2 None 1
6 IBW + 10% 8 IBW + 10% 5

Table VI
EVALUATION RESULTS USING THE NEIGHBORHOOD ALGORITHM

less or nothing. Thus, the value of doing nothing could also
be appreciated more in the definition of the utilities.

VIII. CONCLUSION AND OUTLOOK

In this paper we discussed several approaches for knowledge
management in self-adaptable Clouds. We evaluated rule based
systems, default logic, situation calculus, and case based
reasoning. Furthermore, we adopted the case based reasoning
(CBR) method for the interpretation of measurement data with
the goal of preventing SLA violations by triggering appropriate
actions. Additionally, we designed a CBR based mechanism
for the automatic re-configuration or even avoidance of threat
thresholds topped with the introduction of general utility
functions, which we were able to design without any semantic
knowledge of the SLA parameters.

Currently, the CBR approach has been evaluated only
against one SLA. A big issue, however, is that concurring
SLAs may prevent other applications from being executed,
especially if resources are scarce. Also, we have only used
predefined SLA parameters, which in the future we will extend
to the generation of user defined SLA parameters including
the development of appropriate DSLs. Furthermore, we want
to validate this approach by generating an extensive simulation
model of a cloud environment over several time steps - using
that, we will be able to evaluate not only CBR, but also other
knowledge management methods from a hands-on point of
view.

Nevertheless, we provided a means of proactively gearing
the cloud infrastructure against SLA violations regardless of
the SLA parameters in use. We have presented the proof
of concept for the realization of the CBR-based knowledge
management systems for self-adaptable Clouds.
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