Towards Transactional Web Services

Benjamin A. Schmit and Schahram Dustdar
Vienna University of Technology
Information Systems Institute
Distributed Systems Group
Vienna, Austria, Europe
{benjamin, dustdar}@infosys.tuwien.ac.at

Abstract

When Web services are composed, transactions are
needed to maintain the consistency of the distributed data
in all but the most trivial cases. Today’s Web service trans-
action specifications still leave some issues unresolved, e.g.,
the specification of quality of service aspects. Therefore, we
propose a modeling methodology that forces the software
architect to address such issues at an early stage of develop-
ment. The methodology is divided into four layers of UML
diagrams which reference each other: structure, transac-
tions, security, and workflow. This separation of concerns
can also be used to incorporate the knowledge of several
experts into the design.

1. Introduction

In the last few years, Web services have developed from
a novel and unproven concept to a well-defined and com-
monly used technology. A large number of Web services re-
lated specifications — some of them overlapping or defining
similar concepts in another way — has been written. From
the start, an important idea has been Web service composi-
tion, the construction of larger Web services out of simple
ones. Without transactions, however, composite Web ser-
vices would be restricted to most simple applications.

Traditionally, a transaction has been defined by the
ACID properties (Atomicity, Consistency, Isolation, Dura-
bility; [18]). For most Web service use cases, this trans-
actional model alone is no longer sufficient. In addition,
long-running transactions are needed which violate some of
the ACID properties, usually atomicity and isolation. Qual-
ity of service attributes, such as the possibility for compen-
sation, can further differentiate between transaction types.
Several competing specifications for Web services transac-
tions exist, but so far, none of them is widely used. In this

paper, we identify some of the challenges that Web services
transactions face today.

Since transactions and the problems they may introduce
are only one aspect in the creation of a composite Web ser-
vice, we propose that the transactional model should form
one part of a larger modeling methodology for composite
Web services. We present a multi-layer modeling method-
ology based on the Unified Modeling Language (UML). On
the bottom of our metamodel is the structural view, which
shows the state transitions of the composite service. The
next level is dedicated to transactions and forces the archi-
tect to explicitly address transactional issues at design time.
In the future, we will also include security and workflow as
separate design views.

Section 2 shows related work and discusses recent trans-
action specifications. Section 3 introduces a Web services
example that we will use throughout the remainder of the
paper. Section 4 identifies problems and open research
questions that still prevent widespread use of Web services
transactions. Section 5 presents a modeling approach for
Web services which can help software architects around
some commonly discoverd obstacles in Web services de-
sign at an early stage. Section 6 concludes the paper.

2. Related Work

In this section, we present related work. First, we de-
scribe approaches similar to the modeling methodology
that we will introduce in Section 5. Afterwards, we in-
troduce the competing Web service transaction specifica-
tions BTP, WS-AtomicAction and WS-BusinessActivity,
and WS-CAF. We also discuss the process description lan-
guage BPEL4WS in this context. More general related
work can be found in [31].

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 2005 Seventh IEEE International Conference on E-Commerce Technology Workshops (CECW’05)
0-7695-2384-6/05 $20.00 © 2005 IEEE

2.1. Related Modeling Approaches

Our methodology, which is based on the concept of sep-
aration of concerns and on the Unified Modeling Language
(UML, [27]), was first introduced in [31].

Orriéns, Yang, and Papazoglou [28] divide the process
of Web service composition into four phases: definition,
scheduling, construction, and execution. The design should
become more concrete at each step. UML is used as well,
however, the model is founded on the design process and
not on separation of concerns.

Dijkman and Dumas [16] also state the need for a
multi-viewpoint design approach for composite Web ser-
vices. Their paper discusses the views of interface behav-
ior, provider behavior, choreography, and orchestration and
uses Petri nets for the model itself. Distributed transactions
are not mentioned.

Benatallah, Dumas, and Sheng [11] also use statechart
diagrams to model composite Web services. Transactional
behavior is mentioned as future work, but as yet there is no
systematic approach for modeling this.

Karastoyanova and Buchmann [22] propose a template
technique for Web services to ease service composition.
Templates here are parts of a business process description
that can be used for Web service composition. The concept
may prove useful for transforming our model diagrams into
business process specifications in the future.

Loecher [25] discusses properties of transactions in a
distributed middleware setting. Though the author writes
about Enterprise JavaBeans, some of the work can be ap-
plied to Web services as well.

Henkel, Zdravkovic, and Johannesson [19] mention the
difference between technical and business requirements.
Their paper proposes a layered architecture that allows to
transform the business representation into a more technical
representation. Several aspects of process design are de-
scribed, among them also a transactional aspect.

Jablonski, Bohm, and Schulze [21] propose a separation
of concern approach for workflow modeling called work-
flow aspects. They distinguish between a functional, a be-
havioral, an informational, an operational, and an organi-
zational aspect. The book surveys workflow modeling and
also mentions transaction and security issues.

2.2. Transaction Specifications

Standard works on the topic of (database) transactions
are [18, 17]. A more current survey on advanced transaction
models can be found in the PhD thesis of Prochazka [30].
Papazoglou [29] gives a survey on the topic of Web services
and transactions. Because of the ongoing development in
this field, however, the paper is already slightly outdated.

2.2.1. BTP

The Business Transaction Protocol (BTP, [26, 15]) has been
released in 2002 as an OASIS specification, but has gone
through corrections and adaptations ever since. The lat-
est working draft (version 1.0.9.5) is from November 2004.
The protocol separates between application elements (in our
case Web services) and BTP elements, which are responsi-
ble for transaction coordination. BTP elements can be su-
periors (nodes that coordinate a transaction) and inferiors
(nodes that participate in a transaction coordinated by an-
other node). A BTP element can also implement both roles,
which allows the creation of tree structures.

BTP knows two kinds of transactions: With atomic
behavior, all elements contributing to a transaction must
eventually reach the same conclusion about a transaction
(confirm or cancel). Cohesive behavior allows some sub-
elements to cancel while others confirm, which is useful in
the case of different providers offering similar services. The
behavior can be different for different nodes within a BTP
transaction tree, which allows for the construction of com-
plex transaction patterns.

BTP uses a two-phase approach where cancelling a
transaction relies on compensation. Some optimizations to
the protocol are mentioned, especially for the case of a de-
generated tree. Timeouts allow nodes to reach an indepen-
dent decision if they get no response, but this feature also
introduces a potential for conflicts. In the case of a con-
tradiction, manual intervention may be necessary. BTP has
not been specified explicitly for Web services, but uses an
XML syntax. The “carrier protocol” is undefined, but BTP
can be embedded within a SOAP message.

2.2.2. WS-AtomicTransaction and WS-BusinessA ctivity

Originally named WS-Transaction, this specification has
been split into two parts: WS-AtomicTransaction [5] covers
ACID transactions while WS-BusinessActivity [6] defines
long-running transactions. These specifications are based
on WS-Coordination [7], a framework that allows the cre-
ation of a distributed context in a Web services environment.
All specifications have been updated several times, but do
not contain version numbers. An overview on these specifi-
cations is given in [14].

WS-AtomicTransaction defines three coordination pro-
tocols: Completion is used by a participant to initiates a
commit or a rollback, Volatile 2PC is used for volatile, e.g.
cache data, and Durable 2PC implements the standard 2-
phase commit protocol.

A Business Activity is built out of a number of atomic
transactions and relies on compensation for transaction roll-
back. Business activities may be used to form (possibly hi-
erarchical) Scopes. The protocols provided are Business-
AgreementWithParticipantCompletion, which forces the

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 2005 Seventh IEEE International Conference on E-Commerce Technology Workshops (CECW’05)
0-7695-2384-6/05 $20.00 © 2005 IEEE

participant that initiated the transaction to specify when the
transaction should be completed, and BusinessAgreement-
WithCoordinatorCompletion, in which completion is man-
aged by a coordinator.

2.2.3. WS-CAF

The Web Services Composite Application Framework (WS-
CAF, [1, 24]) has been proposed in July 2003. It consists of
three parts: Web Services Context (WS-CTX, [2]), like WS-
Coordination, describes sharing a common context between
Web services. The Web Services Coordination Framework
(WS-CF, [3]) focuses on information flow among a num-
ber of participating web services. Finally, Web Services
Transaction Management (WS-TXM, [4]) defines the trans-
actional models supported by WS-CAF. At the time of writ-
ing, no updates for WS-CAF have been released, but work
on the specifications continues within an OASIS technical
comitee.

WS-CAF supports three types of transactions: Tradi-
tional ACID transactions, long-running actions (which may
be implemented without isolation), and business process
transactions, which consist of one or several transactions
of the other two types. To be included in a business process
transaction, a transaction needs to define a compensator. If
a sub-transaction fails, the compensators for all previously
executed sub-transactions are run in reverse order.

2.2.4. BPEL4WS

The Business Process Execution Language for Web Ser-
vices (BPELAWS or short BPEL, [8, 32]) does not really
fit here. It can be seen as a description language for busi-
ness processes in which transactions are only one aspect.
BPEL can be used in conjunction with WS-Transaction,
which has been superceded by WS-AtomicTransaction and
WS-BusinessActivity. It defines the high-level concepts se-
quence, switch, while, pick, flow, and scope to express the
control flow of a business process.

Business Processes are divided into two groups: Abstract
business protocols define only business process schemas
that are not directly executable. Executable business pro-
cesses, on the other hand, need to be defined completely,
with their port types defined by an underlying WSDL de-
scription. In a suitable environment, they can be executed
without further parameterization.

3. Case Study

In this paper, we will deviate from the usual Web ser-
vices examples of supply chains and flight reservations and
try to deduce how the production of a movie may be done
in tomorrow’s world of Web services — a rich example of

possible future applications. Figure 1 shows the participat-
ing people as well as necessary resources in a UML class
diagram.! We have simplified this case study somewhat,
and we will reference parts of it throughout this paper.

Producing a movie is a complex task that requires the
coordination of many film teams (camera teams, makeup
teams, stunt teams, etc.). Most film teams need some
equipment, and some depend on other teams. A film team
provides a certain service, e.g. stunts. Together, the film
teams form a film crew. A film crew is assigned to a
location where filming is done, and to a production task.
The task is managed by one or more directors, who also
hire and assign the film crews. Directors may also hire
external experts whenever expert knowledge is required in
the film’s production.

The following entities from Figure 1 provide Web services:

Director: A Web service in the director’s office provides
functionality for hiring film crews as well as external
experts. The service also provides an overview on the
persons currently assigned to the director’s production
task. The service implements the Person interface,
which supports other directors in finding candidates
for cooperative film projects.

ExternalExpert, CrewMember: Like the director’s Web
service, freelance experts’s and out-of-work crew
members’s Web services both implement the Person
interface. That way, the director can look for suitable
experts and film crews can hire new members. The
ExternalExpertContract is located on the expert’s site.
The presence of a contract tells a director that the ex-
pert is currently employed.

Team: The services provided by a film team are queried
through the Service interface. Through this interface
film crews find new teams to round off their services.
The service provided by a team can be more than the
sum of the services provided by its members: a single
stuntman provides only simple stunts; a team of stunt-
men can perform more complicated stunts by working
together.

Crew: A crew is formed by several teams that, taken to-
gether, provide the services needed for a production
task. The CrewContract is also located on the crew’s
site. (Contracts of individual crew members are not
covered by the example.)

Location: The location Web service assists the director in
choosing suitable locations for a production task.

'We acknowledge the work done by Martin Treiber on a preliminary
version of this class diagram.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 2005 Seventh IEEE International Conference on E-Commerce Technology Workshops (CECW’05)
0-7695-2384-6/05 $20.00 © 2005 IEEE

uononpoid

Aﬁ '

i

1sImalD:()1siimalniaeb +
(sisey)yse Luononpoidppe +
(Uo1}B007:0} ‘UOIEOOT: WO} ‘}SITMBIO)SMBIDBAOW +

Bumg:()uonduosequoneoomieb +

Buig:eweNyse; —

Buuig:ssaippe —
areq:|nun —
ajeq:wol) —

YSDLUOINPOL]

*
*

uonedo]

sjeq:|nunplea -
aleq:woi4pljen —

10BIUODMIID)

V I

1swes :()1sIwes 106 +
1simuawdinb3:()isimuswdinb33eb +
1sIuaquisiymal:()isiiequismalleb +

*

BuLlS:UIBWOIORIU0D —

JoenuoDedXHeuIdIXg

Buins:()uonduosaqioesuoDiab +

L

Bumg:()eweNiuswdinb3ieb + . L 1oD4JU0))
bus:(Juonduosaqiuswdinb3iab +
M) A
juowdmbg L A *
A " e 1sIuadx3reuwsax3:()isuadx3eusaix3ieb +
1smaI:()ismalieb +
" . (urewop ‘pedx3jeuwssixe)uedx3eulelxgeny + | F L .
1siuaquisymal:()isiequisywes 1106 + (e1e@:|nun ‘eyeq:wol} ‘Maid)maiDaily +
wed], L — > JOqUIDIANMAID 1030211 - = > yadxgreuraxg

Buuis:()urewoqaoiniegieb +
Bus:()oweNao1nIeS1eb +
1simuswdinb3;:()uswdinb3eoiniegieb +
Bumis:()uonduosegaoiniasieb +

Buis:uonduosegedines —

Bug:(eo1n1es)aoin8gaA0WSB) +
Buis:(eo1n18s)001MIBSPPE +
1sI7@01M8S:()isIeoInesIeb +

Bug:aweu —

2014425

BulS:SSBIPYIOBIU0D —
Buug:ssaippe —
Buus:eweu —

u0Ss12J

Figure 1. Film Production Case Study

Proceedings of the 2005 Seventh IEEE International Conference on E-Commerce Technology Workshops (CECW’05)

0-7695-2384-6/05 $20.00 © 2005 IEEE

COMPUTER

SOCIETY

Production, ProductionTask: A film production may
contain several production tasks. A task’s Web in-
terface provides services for e.g. managing associated
film crews.

Equipment: The equipment needed by a film team can be
allocated through a Web service. This reduces the av-
erage equipment costs if tools can be used by several
teams.

4. Challenges and Future Work

Now that we have described current Web services trans-
action specifications and introduced an example, we will
identify some of the problems and open research questions
on the use of transactions in Web services, especially in a
distributed environment:

Different Transaction Types. The need for different types
of transactions (ACID and long-running) has been ad-
dressed by all recent specifications. Unfortunately, the
concrete implementation differs, so that it may be a
difficult task to unify transactions written for differ-
ent specifications. In a Web services environment, es-
pecially when using dynamic service discovery, it is
unlikely that every participating service uses the same
type of long-running transaction. In our example, this
affects e.g., employment of new experts for a produc-
tion task.

Quality of Service. The problem of different transaction
types could at least partly be solved by introducing
quality of service parameters. Parameters that qualify
for inclusion in a QoS model could be the adherence to
the ACID properties, a timeout after which the trans-
action should be aborted, whether transactions can be
nested in a hierarchical structure, or whether only se-
cure channels must be used to transmit data regarding
the transaction. A combination of Web service trans-
action specifications with WS-Policy [9] may be used
to express the QoS parameters.

Incompatible Message Format. Though XML has been
accepted as the format for coordination messages be-
tween transaction participants, a uniform XML dialect
for all transaction specifications has not yet been de-
signed. (Semi-)automatic bridging between the vari-
ous formats, which would allow interaction between
transactional Web services using different specifica-
tions, can only work in a subset of all possible mes-
sages, because of the above mentioned difference in
transaction types.

Compensation. Technically, all important transaction
specifications support compensation. Since long-run-

ning transactions for Web services are usually per-
formed without full atomicity, partly successful trans-
actions need to be compensated if the transaction needs
to be aborted. When only a database is affected, e.g.,
when reserving a location, compensation is relatively
easy. When a transaction’s results have been used by
other transactions in the meantime (when the isola-
tion property is weakened), compensation is tougher
because many different Web services or other applica-
tions using the database may have been processing in-
valid data. This case is best handled by a well-reasoned
design that considers compensation issues. We will
further look into this question when we design the
workflow layer of our modeling approach (see below).
The hardest case, however, is compensation of real-
world processes. Some of these processes, like can-
celling the contract of a film crew, cannot be compen-
sated without unwanted side effects, which in this case
might be paying a cancellation fee. [12] discusses this
problem in depth, and [23] proposes tentative holds as
a way to ease the situation.

Scope Size. When transactions are organized hierarchi-
cally, with potentially many different Web services co-
operating to reach a common outcome, the question of
transaction scope size needs to be considered. Scope
size here refers to the question whether we want to use
a large number of small transactions or a smaller num-
ber of larger transactions. Smaller transactions may
ease compensation, because they encapsulate fewer
state changes in a business process. The use of larger
transactions, on the other hand, may lead to a simpler
Web service design and a smaller overhead in trans-
action processing. A yet unsolved problem is whether
well-sized transaction scopes can be generated auto-
matically, which is an interesting question when au-
tomatic service discovery is invoked — e.g., when an
expert is sought for a film production task.

Service Location. When Web services for a composite ser-
vice are chosen at run-time, a number of questions
arise. We have just mentioned the problem of deter-
mining the right scope size. Also, the transaction type
used by a dynamically located Web service needs to be
compatible to the one the composite service intends to
use, which overlaps with the quality of service ques-
tion above. Finally, dynamic composition of transac-
tional Web services will only be possible when all can-
didate services understand these problems and imple-
ment compatible solutions. In practice, this criterion
can be satisfied best if all participants follow the same
transaction specification, which is hard to enforce.

Security. Within the Web services protocol stack, security
is covered by an own specification, WS-Security [20].

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 2005 Seventh IEEE International Conference on E-Commerce Technology Workshops (CECW’05)
0-7695-2384-6/05 $20.00 © 2005 IEEE

However, we believe that security cannot be an add-on
feature, it has to be built in. If business critical opera-
tions, like the establishment of mutual contracts, are to
be performed using Web services, minimum security
requirements for transactions must be defined during
the design phase. In Section 5, we will give an out-
look on how security can be integrated into a modeling
methodology.

Workflows. The BPEL specification can also be used to
define workflows that may span several transactions.
As for security considerations, we also believe that
workflows need to be defined early in the design phase,
as will also be outlined in Section 5.

5. A Web Services Modeling Approach

We will now present a methodology for composite
Web services design using the Unified Modeling Language
(UML, [27]). Then, we will explain how transactions can be
modeled in this methodology. Note: The order of the layers
is not yet final, because we have not yet decided at which
points references between the diagrams are necessary. Fig-
ure 4 shows a different order than discussed below because
this order is better suited for presentation in this paper.

: o AtomicTransaction
BusinessActivity

Properties: ... @
Start End I
TV \
[\\ \
\ .
LA Transactional Model
()
T Security Model /" /°
T
\
' Workflow Model

5
[/

Structural Model

Figure 4. Layered Web Services Design

Our approach consists of a separation of concerns dur-
ing the design phase. A more elaborate description can be
found in [31]. As shown in Figure 4, we separate between
structural, transactional, security, and workflow issues:

Structure. Our methodology starts with the design of the
basic functionality of a composite Web service. We
use a UML statechart diagram for designing service
hierarchies and cooperations. Only functional aspects

are defined in this diagram, other aspects have been
moved into other views. The elements of the structural
diagram can be referenced from higher-level diagrams
using the Object Constraint Language (OCL; part of
the UML specification). More information as well as
an example can be found in [31].

Transactions. The second layer defines the transactions
used in a composite Web service. We use a UML class
diagram to represent this information. The semantics
of this diagram type will be described below.

Security. We have already stated the importance of se-
curity considerations in Web services compositions.
Therefore, we propose the inclusion of security param-
eters (e.g., which Web service calls/transactions need
to be encrypted or signed) in the design phase. We do
not have developed a model for security yet. We intend
to use OCL for references to entities in both the struc-
tural and the transactional design diagram, but this is
still subject to future work.

Workflow. The workflow layer will offer a high-level view
on the composite Web service. This design view will
cover issues that cannot be addressed by the structural
and transactional layer alone, such as the problem of
concurrent access to the same data we mentioned in
Section 4. This layer will reference elements of the
structural and the transactional view, and may refer-
ence some standard patterns typical for Web services.
Currently, some of the information that should belong
to the workflow layer is still in the structural layer, a
clear separation between these layers is one of our next
goals.

A modeling methodology can help the software architect to
identify some commonly-made problems early in the de-
velopment process. In our case, the methodology forces
the architect to think about the four concerns that we are
addressing independently, which also helps to introduce ex-
pert knowledge: The structural design diagram can be de-
veloped by a software architect, the transactional view by an
expert on transactions, and so on. References in the higher-
level diagrams help to keep the complexity of the different
design issues at bay, since only a single aspect of a dis-
tributed Web application needs to be addressed at a time. A
single diagram would contain too much information to be
useful, which was another reason why a layered approach
was chosen.

For our methodology, UML was chosen for three main
reasons: It provides the descriptive power that allows us
to express information about all views in the model, it in-
cludes the Object Constraint Language for references into
the model diagrams, and it is widely accepted as a model-
ing language. In theory, any other modeling language that

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 2005 Seventh IEEE International Conference on E-Commerce Technology Workshops (CECW’05)
0-7695-2384-6/05 $20.00 © 2005 IEEE

a Hire)
4 Hire External Expert
e OFf :
Start Get Offer 4 Hire Crew
. art Query next [else, failure] _ _

expert Hire Expert " Get Crew N Hire Crew

\ /) Oi ire
[experts left] next Locate. crew
final according to retry
ina requirements ; AN
Choose Expert . / [failure] q;—/ fiailure, crows lef]
hire _ [failure] [failure, no crews!
Evaluate best
offer fallback
— fail fail ok
_ [failure]
N J
fail J)/’/
— ® ®
Failure Success

Figure 2. Example for the Structural View

<<BusinessActivity>>
HireTransaction
{compensation=false,
timeout=14d}

expert: HireExternalExpert
crew: HireCrew

<<constructor>>
Start.start
<<destructor>>
HireCrew.ok
ChooseExpert.fail
GetCrew.fail
HireCrew.fail

<<BusinessActivity>>
HireExpertTransaction
{compensation=true,
timeout=3d,
compensationTimeout=7d}

<<BusinessActivity>>
HireCrewTransaction
{compensation=true,
timeout=3d,
compensationTimeout=7d}

expert: dynamic

crew: dynamic
getCrew: CrewService

<<AtomicTransaction>>

LocateCrewTransaction

{compensation=true,
timeout=10m}

<<constructor>>

Start.start <<constructor>>

<<destructor>> HireExpert.ok

HireExpert.ok <<destructor>>

ChooseExpert.fail HireCrew.ok
GetCrew.fail
HireCrew.fall
<<invocation>>
locateCrew

<<constructor>>

HireCrewTransaction.locateCrew

<<destructor>>
GetCrew.hire
GetCrew.fail

Figure 3. Example for the Transactional View

Proceedings of the 2005 Seventh IEEE International Conference on E-Commerce Technology Workshops (CECW’05)

0-7695-2384-6/05 $20.00 © 2005

YF]',F.

COMPUTER

SOCIETY

fulfills the first two criteria could be used as well, and dif-
ferent modeling languages can be used for different views.

5.1. The Transactional View

For this paper, we have modeled a structural and a trans-
actional diagram for a part of our case study. In this ex-
ample, the director is looking for crews and experts for a
producation task.

Figure 2 shows the structural diagram for the selected
example. The overall process consists of hiring both crews
and experts. For the experts, we query all available Web
services of known experts, using some Web service registry
for the lookup. From the results, we choose the one that
best fits the task and ask if he wants to join the project. For
the crews, we have chosen a different approach to be able
to illustrate other types of transactions as well: We use a
locator service offered by an umbrella association of film
crews to get an ordered list of fitting film crews, and again
try to hire the best suited.

Figure 3 shows the transactional view of this example.
Each transaction is modeled as a UML class. The main state
from Figure 2 is easily recognizable as a top-level trans-
action, and the level below can also be mapped directly.
However, the “LocateCrewTransaction” is not directly visi-
ble in the structural diagram, it has been introduced during
the transaction design phase.

The distinction between ACID and long-running transac-
tions is made by the use of stereotypes (here AtomicTrans-
action and BusinessActivity). Quality of Service aspects are
introduced as tagged values. In the example, we have used
the attributes “compensation” (a boolean value that states
whether there is a compensating transaction) and “timeout”
and “compensationTimeout”, which specify the timespan
during which a transaction or a compensating transaction
can be active.

In our example, the overall transaction may last up to
two weeks, and when it has finished, the outcome is def-
inite. A crew or an expert must react to the offer within
three days, and such a contract can be revoked for one week
after it has been made. The transaction that locates a crew
is atomic, and since in itself it does not affect the state of
the process, compensation does not involve additional work
and can, therefore, be done without a time limit.

The role of the attributes in a software class is fulfilled
by the participating Web services, where the keyword “dy-
namic” is used when a Web service is bound only at run-
time, either by querying a registry or by accessing another
Web service. The constructors of a transaction are OCL ref-
erences to the transitions in the structural diagram at which
a transaction needs to be started. In the same way, the de-
structors refer to the transitions where a transaction should
be committed or aborted. Finally, methods stereotyped

“invocation” refer to constructors of subtransactions which
cannot be mapped to transitions in the structural model.

6. Summary and Conclusion

In this paper, we have presented a modeling approach
for Web services using UML. We have introduced the four
layers of structure, transaction, security, and workflow, of
which the first two already have been defined. For the struc-
tural view, we use a UML statechart diagram with which we
model the basic aspects of a composite Web service. The
transactional view consists of a UML class diagram which
shows how the transactions cooperate, and which quality of
service aspects they need to fulfill.

To show the applicability of our model, we have intro-
duced an example scenario of distributed Web services. We
have described a process in this scenario using our method-
ology and created a structural and a transactional design di-
agram which supplement each other. Related work as well
as recent transaction specifications have been discussed.

We have also discussed a number of challenges that
will need to be addressed before Web services transactions
can become widespread. Among the most important are
quality of service parameters, a uniform message format for
transactions, resolving compensation issues, determining
the right transaction scope size, and locating transaction-
enabled Web services. The security and workflow layer of
our model are our future work, and considered important
parts of the final model. In order to efficiently use the
final model, we plan to develop a tool based on the Eclipse
platform [10, 13] that guides the developer through the
design and transforms the model into basic description
documents (e.g. using BPEL).

To conclude, we must state that current Web services
transaction specifications do not yet address all the prob-
lems that we have identified. More research in the field of
business transactions on the one hand and their application
to Web services on the other hand is needed before they
can be commonly used, especially if Web services are to be
composed at least semi-autmatically. In this case, a major-
ity of transactional Web services need to support mutually
compatible standards.

As a systematic approach to Web service development,
our modeling methodology — though not yet complete —
can help to detect design weaknesses at an early stage in
the development process. It forces architects to think about
several design issues and supports a distributed design ap-
proach which is able to introduce the respective knowledge
of several experts. The additional views of security and
workflow issues will eventually make a unified approach to
Web service design a reality.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 2005 Seventh IEEE International Conference on E-Commerce Technology Workshops (CECW’05)
0-7695-2384-6/05 $20.00 © 2005 IEEE

References [20] IBM, Microsoft, and VeriSign. Web services security (WS-
Security). Specification, Apr. 2002.

[1] Arjuna, Fujitsu, IONA, Oracle, and Sun. Web services com- [21] S. Jablonski, M. Béh@, and W. Schulze, editors. Workflow-
posite application framework (WS-CAF), version 1.0. Spec- Management: Entwicklung von Anwendungen und Syste-
ification, July 2003. men. Dpunkt Verlag, July 1997. -

[2] Arjuna, Fujitsu, IONA, Oracle, and Sun. Web services con- [22] D. Karastoyanova and A. Buchmann. Automating the de-
text (WS-Context), version 1.0. Specification, July 2003. velopment of web service compositions using templates. In

[3] Arjuna, Fujitsu, IONA, Oracle, and Sun. Web services co- Proceedings of the Workshop “Geschdftsprozessorientierte
ordination framework (WS-CF), version 1.0. Specification, Architekturen” at Informatik 2004. Gesellschaft fiir Infor-
July 2003. matik, Sept. 2004.

[4] Arjuna, Fujitsu, IONA, Oracle, and Sun. Web services trans- [23] B. Limthanmaphon and Y. Zhang. Web service composition
action management (WS-TXM), version 1.0. Specification, transaction management. In Proceedings of the Fifteenth
July 2003. Australian Database Conference, volume 27 of Conferences

[S] BEA,IBM, and Microsoft. Web services atomic transactions in Research and Practice in Information Technology, pages
(WS-AtomicTransaction). Specification, Nov. 2004. 171-179. Australian Computer Society, Jan. 2004.

[6] BEA, IBM, and Microsoft. Web services business activ- [24] M. Little. An open standards approach to web services busi-
ity framework (WS-BusinessActivity). Specification, Nov. ness transactions. In Proceedings of the XMLOpen Confer-
2004. _) o ence 2004, Sept. 2004.

[7] BEA, ¥BM3 and MICFOSOfF' Web services coordination (WS- [25] S. Loecher. A common basis for analyzing transaction ser-
Coordination). Specification, Nov. 2004.) vice configurations. In Proceedings of the Software Engi-

(8] BEA, ¥BM’ Microsoft, SAP, anc_l Siebel.) Business pr(?cess neering and Middleware Workshop 2004, Lecture Notes in
execution language for web services, version 1.1. Specifica- Computer Science. Springer-Verlag, Sept. 2004. To be pub-
tion, May 2003. lished.

o1 B.EA’ IBM’ Microsoft, SAP, SOHI-C, and VenSlgn._Web ser- [26] OASIS. Business transaction protocol, version 1.0. Specifi-
vices policy framework (WS-Policy). Specification, Sept. cation. June 2002.

2004. oo . Lo [27] OMG. OMG unified modeling language specification. Spec-
[10] 5 Beck anddEblGan;ma. fggtrlbu\t;;zglto E(c)llfs;.ol(‘)’;mctples, ification, Mar. 2003.
atterns, and Plug-Ins. ison-Wesley, Oct. . 281 B. Orriéns. J. Y: dM. P P lou. Model dri
[11] B. Benatallah, M. Dumas, and Q. Z. Sheng. Facilitating the (28] rens, ang, an apazog ou. v.oce drven
. > . service composition. In Proceedings of the First Interna-
rapid development and scalable orchestration of composite
. L tional Conference on Service Oriented Computing, volume
web services. Distributed and Parallel Databases, 17(1):5— . .
2910 of Lecture Notes in Computer Science, pages 75-90.
37, Jan. 2005. .
. Lo . Springer-Verlag, Dec. 2003.
[12] D.Biswas. Compensation in the world of web services com- . . .
. . . . [29] M. P. Papazoglou. Web services and business transactions.
position. In Proceedings of the First International Work- World Wide Web, 6(1):49-91, Mar. 2003
shop on Semantic Web Services and Web Process Composi- p ’) ’ LT
. : [30] M. Prochdzka. Advanced Transactions in Component-Based
tion, Revised Selected Papers,volume 3387 of Lecture Notes
n C. Sci 69-80. Spri Verlag. Jul Software Architectures. PhD thesis, Charles University, Fac-
%O 40mp uter Science, pages 63-60. Springer-veriag, July ulty of Mathematics and Physics, Department of Software
L . . Engineering, Feb. 2002.
13] EB sky, D. , E. Merks, R. Ellersick, T. J. . .
[13] udins y. Stelnbe?g eres ersie and T.J [31] B. A. Schmit and S. Dustdar. Model-driven development
Grose. Eclipse Modeling Framework. Addison-Wesley, . . .
Aug. 2003 of web service transactions. In Proceedings of the Second
[14] F. Curbera, R. Khalaf, N. Mukhi, S. Tai, and S. Weer- GI-Workshop XML for Business Process Management, Mar.
awarana. The next step in web services. Communications of 2005. To be published. -
[32] S. Tai, R. Khalaf, and T. Mikalsen. Composition

(15]

(16]

(17]

(18]

(19]

the ACM, 46(10):29-34, Oct. 2003.

S. Dalal, S. Temel, M. Little, M. Potts, and J. Webber. Co-
ordinating business transactions on the web. IEEE Internet
Computing, 7(1):30-39, Jan. 2003.

R. Dijkman and M. Dumas. Service-oriented design: A
multi-viewpoint approach. International Journal of Coop-
erative Information Systems, 13(4):337-368, Dec. 2004.

A. K. Elmagarmid, editor. Database Transaction Models for
Advanced Applications. Morgan Kaufmann Series in Data
Management Systems. Morgan Kaufmann, Apr. 1992.

J. Gray and A. Reuter. Transaction Processing: Concepts
and Techniques. Morgan Kaufmann Series in Data Manage-
ment Systems. Morgan Kaufmann, 1993.

M. Henkel, J. Zdravkovic, and P. Johannesson. Service-
based processes — design for business and technology. In
Proceedings of the Second International Conference on Ser-
vice Oriented Computing, pages 21-29, Nov. 2004.

of coordinated web services. In Middleware 2004:
ACM/IFIP/USENIX International Middleware Conference.
Proceedings, volume 3231 of Lecture Notes in Computer
Science, pages 294-310. Springer-Verlag, Oct. 2004.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 2005 Seventh IEEE International Conference on E-Commerce Technology Workshops (CECW’05)
0-7695-2384-6/05 $20.00 © 2005 IEEE

