World Wide Web (2006) 9: 457-483
DOI 10.1007/s11280-006-8561-3

View Based Integration of Heterogeneous Web
Service Registries—the Case of VISR

Schahram Dustdar - Martin Treiber

Received: 8 September 2004 / Revised: 5 January 2006 /
Accepted: 22 March 2006 / Published online: 8 June 2006
© Springer Science + Business Media, LLC 2006

Abstract Despite all standardization efforts in the Web service area, several dif-
ferent incompatible Web service registry implementations exist. The initial focus of
these implementations was geared towards working with a centralized Universal
Business Registry (UBR). However, these centralized approaches tend to be
bottlenecks regarding performance and fault tolerance. A proposed solution is the
replication of registry information among multiple distributed Web service
registries. In addition, the creation of specialized Web service registries leads to a
large number of different Web service registries. This leads to a situation where the
search for a particular Web service becomes a very complex task. Besides, Web
service provisioning includes a considerable administrative overhead when dealing
with transient Web services. Transient Web services exist only for a limited lifetime
and in a certain context. In this paper, we propose the VISR (View based
Integration of Web Service Registries) peer to peer architecture for the transparent
integration of multiple Web service registries and transient Web service providers.
This work focuses on the integration concept of multiple Web service registries and
transient Web service providers. The integration concept relies on so-called views.
Views provide the needed abstractions for the seamless integration on the different
registries. Views use common lightweight Web service profiles that serve as unified
global data model. VISR Web service profiles allow the flexible extension of registry
entries with value added information without changing the original Web service
registry entries. To illustrate the view concept, we introduce a simple grammar
(View Description Language) for view descriptions that is used in the working
example throughout the paper. We present Web service communities as a possible
application of the view concept and show how different types of Web services
providers, respectively, their registries are integrated into a unified global data
model.

S. Dustdar (P<) - M. Treiber

Distributed Systems Group Institute of Information Systems,
Vienna University of Technology, Vienna, Austria

e-mail: dustdar@infosys.tuwien.ac.at

M. Treiber
e-mail: m.teiber@infosys.tuwien.ac.at

@ Springer

458 World Wide Web (2006) 9: 457-483

Keywords Web service discovery- Web service registry integration - Distributed
web service registry

1. Introduction

Current Web service registries [22] like UDDI [23, 24] and ebXML [14-16] provide
no means for the integration of different Web service registries. UDDI and ebXML
registries have similar intensions, i.e., the publishing and discovery of Web services,
but their data models differ and they provide different mechanism for the discovery,
respectively, publishing of Web services. Especially ebXML offers—in comparison
to UDDI—a much broader approach in terms of Web service description since
ebXML registries support business coordination protocols [3, 9]. These Web service
registry implementations usually follow a centralized approach, with a single central
Universal Business Registry (UBR). As the number of services grows, a single UBR
might prove as a bottleneck. To avoid this potential bottleneck UBR registries are
distributed among several servers. To ensure that every registry provides the same
registry information, these registries are synchronized periodically and provide
several distributed access points.

However, as Web services become more dynamic, consistency between distrib-
uted registries cannot be guaranteed any more.

Consider a transient Web service S that registers itself in a registry A. If this
registry is replicated before the transient Web service S is deleted, every replication
copy of registry A contains the registry entry of the Web service S. After Web
service S is deleted, every replication copy contains a registry entry that is
inconsistent with the original registry until another replication round has taken
place. In addition, a trend to Web service communities [2] can be expected. Web
service communities are groups of related Web services that are published in a
single Web service registry and share common interests.

We presented an application scenario concerning a movie production company in
our previous work [8]. We now focus on the coordination activities of a movie
director, which can roughly divided into two phases, (i) the project planning phase
and (ii) the coordination of the movie teams during the actual project. During the
first phase a movie director needs information about available services of the
different movie crews, for example about stuntmen crews, makeup artists, etc. In
order to find the services, the movie director must browse through available registries
to find adequate movie teams that provide the needed services (see Figure 1). Be-
cause of potential different registry implementations, this activity involves consid-
erable overhead and needs different registry browser implementations.

During the second phase, the execution phase, a movie director must coordinate
the activities of the different movie crews. The coordination effort needs the support
of different registries in order to restructure Web service registry content into Web
service communities. For example, it may be necessary to organize a Web service
community that provides services for controlling costs of certain activities (charting
of trucks for transport of equipment, etc.). Therefore, every movie crew must
provide a cost control Web service that is a member of the cost management
community. It may also be necessary to reorganize existing communities for a short
time, for instance during joint meetings of film crews. During the meeting it may be
necessary to share data (presentations, pictures, documents, etc.). To accomplish

@ Springer

World Wide Web (2006) 9: 457-483 459

Registry 1 Registry 2 "R Registry n-1 Registry n

Web service
discovery

Figure 1 Web service discovery in distributed registries.

this, a file sharing Web service may be offered where community members can share
their files.

Another example that illustrates the problems of distributed heterogeneous Web
service registries are companies that offer business information (company reporting,
company ratings, etc.) about companies in different countries. These companies pro-
vide (private) Web service registries where they register their business information
services. If a Web service requestor wants to search for business information about
companies of different countries, a search pattern as depicted in Figure 1 emerges—
leading to several lookups in different often heterogenecous Web service registries.

To avoid these limitations, we propose a distributed Web service registry solution.
The VISR (View based Web service registry integration) architecture provides a
peer to peer network of interconnected Web service registries and transient Web
service providers (see Figure 2). The VISR peer to peer architecture offers a meta
data model that provides an integration concept that unifies these different Web
service registries and transient Web service providers in a transparent manner. The
integration concept (regarded as view concept in the rest of the paper) supports the
integration of registries and transient Web service providers. It includes an
extension mechanism for future extensions regarding the registry data model. The
view concept also provides the means for the building of Web service communities.

@ Springer

460 World Wide Web (2006) 9: 457-483

Registry 1 Registry 2 EEE Transient Peer
A A A
\ 4 \ v
VISR Service Profiles VISR Service Profiles VISR Service Profiles
A A y
\ 4 Y \4

Ve ™ /”7
\ VISR View \ \ VISR View
o J N

3 t / -
| VISR Peer « > VISR Peer “« > mEmE < » VISR Peer |

Figure 2 VISR overview.

The remainder of the paper is organized as follows. Section 2 discusses the VISR
View concept in detail. Section 3 presents the VISR peer to peer architecture.
Section 4 presents related work. Section 5 concludes the paper.

2. VISR view concept

One of the main goals of our work is to create an abstract context that allows the
integration of heterogeneous Web service registries and transient Web service
provider into a common distributed virtual Web service registry [13]. Our approach
uses a peer to peer architecture that provides for unified Web service registry access
(see Section 4 for a detailed discussion of the VISR architecture) of distributed Web
service registries.

We consider VISR views as cornerstone for the integration concept. VISR views
specify how Web services are published, discovered and invoked by peers of the
VISR peer to peer network. In particular, the VISR view concept addresses the
following issues:

* Web service communities. VISR views provide the means for a logical
integration of heterogeneous Web Service registries and transient Web
service providers.

* Additional meta data. VISR views add meta information to existing Web
service registries without changing the data model of the existing Web
service registry.

*+ Common Web service definition. VISR views provide a common abstract
lightweight Web service definition (VISR service profiles) in order to
integrate heterogeneous Web service descriptions and to provide the means
for the integration of transient Web service providers.

@ Springer

World Wide Web (2006) 9: 457-483 461

+ Common Web service invocation. Along with a common Web service
definition, VISR views provide the means for unified Web service invocation
using views as abstraction layer.

2.1. VISR communities

The view concept allows the definition of Web service communities [2] that inte-
grate similar Web service registry entries to a community. A VISR community is
essentially a group of Web services that share common interests. VISR views pro-
vide abstract descriptions, i.e., the view description and offer identical service in-
terfaces. This allows an abstract specification of services without regarding to the
actual Web service provider and the actual Web service. In order to become a
community member, the Web service provider must implement these interfaces with
the help of local mappings and filters.

Consider the working example with a community concerning the movie project,
defined by the director of the movie. A Web service provider that publishes com-
munity adequate Web services does not need to enrich its Web service description
with additional context information about the movie project. The Web service pro-
vider can rely on context information provided by the community, in this case on
information provided by the movie director. This enables Web services to be part of
several views at the same time without the need of any change in the original Web
service description.

Another aspect of VISR communities concerns the peer to peer communication.
Every VISR community defines a logical communication space that is available
exclusively to community members. The communication space is based on the Black-
board architectural pattern that provides concepts for decoupled peer to peer
communication. This pattern enables the implicit integration of transient Web service
providers, since the communication between transient peers is decoupled in space and
time.

Our working example illustrates this behavior regarding decoupled message ex-
change between members of nimble project teams, like for example makeup artist
teams. These teams, respectively, their members, operate all-over the movie set. This
may lead to frequent disconnections from the communication network. A dedicated
(transient) VISR makeup artist community can provide a communication space that
supports decoupled communication among its members based on message tuples.

2.1.1. Transient vs. stable communities

VISR distinguishes between two types of communities: transient communities and
stable communities. We discuss the different communities in detail in the following
sections.

Every view description defines a Web service community. Depending on the type
of the view, a view can either be of (1) transient or (2) stable character. A VISR peer
can join and leave a community at any time. When joining a VISR community, a
VISR peer must provide Web services that meet the requirements of the community.
When a community defines certain interfaces and data fields then the VISR peer must
assure that these interfaces are also available at the peer.

@ Springer

462 World Wide Web (2006) 9: 457-483

2.1.2. Transient communities

A transient community (view) is a loosely coupled group of Web services providers
that temporarily meet the requirements of a view description and may exist only
for a certain time. In order to join a transient community, a Web service provider
must contact the community creator and provide the Web services defined by the
community. The community creator then stores a reference to the peer in a local
peer list. The peer list is used for peer to peer communication among community
members. A transient Web service provider may also join and leave a transient com-
munity at arbitrary times and later return to the community, provided that during the
offline time the community creator is still online (see Figure 3). Transient com-
munities only exist as long as there are members online that provide the specified
services.

2.1.3. Transient community example

Consider the working example with extras that are needed for a mass scene. The
movie director defines an adequate view/community and publishes it. Every member
of the movie crew who is able to provide the service can join the view at any time
before the actual shooting. After the scene is completed the view is implicitly inval-
idated either by a temporal or a prior defined event. Thus, a transient community
provides the necessary features for the building of ad hoc communities.

User/
Community
—Co— :
‘ A A
| -y
—U;— :
7U17 :_
| v
7U07
| } | > Time
to 4 tz t3 t ts
. . Join Leave
Time online ——#» community - Community

Figure 3 Timelines of VISR peers and a VISR community. At time #; a community ¢ is created and
joined by user u. At t, user u, joins the community c,. At t3 user uz joins the community c¢o. At 4
user uy (the view creator) and user us leave the community co. At #, user u,; tries to join the
community ¢, but since that it is not possible without the view creator online the peer cannot join
the community c,. At ts5 user u, leaves the network and the community ¢, ceases to exist.

@ Springer

World Wide Web (2006) 9: 457-483 463

2.1.4. Stable communities

In contrast to transient communities, a stable Web service community is a long-term
relationship among related Web services and their providers. A stable community
exists either for a previously defined amount of time or the Web service community
creator removes the community (see Figure 4). A stable view is also replicated among
its members. In contrast to transient communities, a peer that wishes to join the com-
munity does not need to contact the community originator, it is sufficient to contact an
arbitrary member of the community to join the community. A stable membership is
defined by the explicit termination, i.e., the creator of the community removes the
community. Every registered peer is removed from the peer list and every peer is notified
by the occurrence of this event. Registered peers remove their view description replica.

2.1.5. Stable Community Example

Consider our working example with the relationship between the movie director and
his assistance team. The assistance team works throughout the movie project for the
director. If the movie project ends the assistance team member receive a notification
and leave the community. Note, that in contrast to transient communities, stable
communities also exist if no member is online, because every member holds a repli-
cation of the community description.

2.2. VISR view profiles

VISR view profiles represent VISR views. The main objective of VISR view profiles
is to structure Web service registry data in a logical manner without regard to the

User/
Community

Co .

‘ A f

U \J
—Uo— _v

> Time

to t to ta Y 5

i i Join Leave

= Time online ——p community | Community

Figure 4 Timelines of VISR peers and a stable VISR community. At time #; a community cy is
created and joined by user u, with a pre-defined lifespan At = 4. At £, user u, joins the community ¢,
and user uy, the view creator leaves the network. At #; user u, leaves the community ¢, leaving an
empty community ¢y behind. At #4 user u; joins the community c¢o. At ts user u; leaves the com-
munity ¢y and ¢, is removed from the network.

@ Springer

464 World Wide Web (2006) 9: 457-483

Registry

Interface | Internal part | Interface
’ I VISR View Description I ‘
i I
\ 4 I \ 4 I h 4
. 2 » View Registry Mapping +» o
Request | & | | | =
— £ 5 —» VeR
3 I I a Service
5)
<] Profile
! !

Figure 5 VISR View overview.

actual physical distribution of Web service registry entries. VISR view profiles in-
clude descriptions of the functionality of sets of Web services in an arbitrary context.
VISR view profiles model meta data about views. In addition, VISR views provide
external visible abstract descriptions of Web services. These descriptions are inter-
face specifications.

From a logical point of view, VISR View profiles consist of three parts (see
Figure 5). Views provide two abstract interface specifications (Input and Output
filter) and a mapping component (View-Registry Mapping).

The interface specification consists of the input and output filter. The input filter
has two purposes. The input filter receives all incoming requests and transforms
the requests according to the view specification. In addition, input filter allow the
definition of search criteria that pre select all underlying registry entries. The
corresponding counterpart of the input filter is the output filter. The output filter
specifies the externally visible method signatures and data fields. The actual
mapping of these interfaces to the underlying registry data model is specified by
the mapping component. Mappings are declared with the help of rules that define
which elements of the registry data model are mapped onto the view elements. The
results of the transformation process are VISR service profiles that provide registry
information.

These three logical categories are modeled into four different classes:

2.2.1. View class

The View class encapsulates general information about the view. It consists of
seven attributes that provide information about the view. It includes a Creator
attribute to identify the creator of the view. The objective of the creator attribute is
to define a VISR peer that is responsible for the administration of the view. The
Originator maintains lists of all peers that are members of the view, to propagate
messages efficiently. Table 1 summarizes all available fields of the view class.

@ Springer

World Wide Web (2006) 9: 457-483 465

Table 1 Available fields in the

view class. Property Description
Name A brief, human readable name of the view
1D The identifier of the view

CreateDate Date, when the view was created

ExpireDate Date, when the view expires

Type Type of the view (transient or stable)

Originator Creator of the view

Description A brief, human readable description of the view.

2.2.2. Filter class

The Filter class provides interfaces for the input and output filter of views. The
output filer describes the ‘public face’ of views, or, in other words, what functionality
view conform Web services provide. The input filter is the logical counterpart of
output filters. It transforms incoming requests according to view descriptions, and
forwards the result of these transformations to the registry. Table 2 summarizes the
data format of filters.

VISR filter rules are implemented using XSLT expressions. If the registry provides
matching entries, a set of matching entities is returned, otherwise an empty set is
returned. To illustrate the function of VISR filter rules, consider the input filter of the
following example. The filter rule filters all incoming service requests for the occurrence
of a parameter with the name Member and renames the parameter to Crewmember.

<Filter type=“Input” >

<Expression>
<xsl: for-each select=“Method/Parameters/Parameter/”” >
<xsl:if test=“@type=‘Input’” >
<Crewmember><xsl: value-of select=“Member” />
</Crewmember>
</xsl:if>
</xsl: for-each>
</Expression>

</Filter>
2.2.3. Mapping class

The Mapping class models declarative descriptions of view-registry mappings. These
mappings are used to transform registry information into view based Web service

Table 2 Available fields in the

filter class. Property Description
Description A brief, human readable name of the filter
Type Type of filter (input or output)
Expression XSL Transformation

@ Springer

466 World Wide Web (2006) 9: 457-483

descriptions or into VISR service profiles, respectively. Mappings are implemented
with XPath expressions. The mapping specification defines declarative mappings of
different elements to the underlying registry data model. Table 3 summarizes the
fields of the mapping class.

The view-registry mapping consists of two parts: (a) a generic mapping, based on
XPath expressions, that specifies an abstract description and (b) a concrete instance
based mapping of registry entries to VISR Web service profiles. The generic mapping
can be considered as mapping that specifies classes of entries. The instance based
mapping augments registry information with additional Web service profile infor-
mation that is not available in the registry. In the example below, we use all available
types of mappings. The first portion of the example defines a generic mapping of the
attribute Name. The second example shows the usage of default values. The third
mapping example illustrates an instance mapping that augments a single instance of
VISR service profile with information provided by an external resource. External
resources are denoted by the Link element. This element identifies external accessible
resources and acts as entry point for external resources.

<Mapping type= “generic” >
<Element>
<Name>Parameter</Name>
<!—select parameter name of service profile->
<Expression>
//Parameters/Parameter/Name
</Expression>
</Element>
</Mapping>

<Mapping type=“default” >
<!—provide default value for element name->
<Element>
<Name>Description</Name>
<Expression>
<Value>This is a service description</Value>
</Expression>
</Element>
</Mapping>

<!—augment service description with existing text->
<Mapping type=“instance” >
<Element>Description</Element>

Table 3 Available fields in the

mapping class. Property Description
Element Name of the view element that is mapped
Type Type of mapping (generic or instance)
Link Optional field containing link to external (XML)
document

Expression ~ XPath Expression

@ Springer

World Wide Web (2006) 9: 457-483 467

Table 4 Available fields of the

extension class. Property Description
Name Name of the element
Value Assigned element value

<ID>infosys. tuwien. ac.at: 8000: VSP: 1</ID>
<Link> http: //www. infosys. tuwien. ac.at/treiber/service. xml
</Link>
<Expression>
<!—select Description of legacy service description->
//Service[@description=‘new’]
</Expression>
</Mapping>

2.2.4. Extension class

The Extension class acts as container for name-value pairs. These pairs model
additional information that is not specified by the categories of VISR View profiles.
This additional information is stored as name-value pairs. These pairs are assigned
to the original registry entry and stored in the local repository. Extension instances
provide a dynamic way to add arbitrary attributes to provider or Web service
instances. For example, if a Web service provider wants to add a ‘copyright’ attribute
to its profile, it can do so by adding an extension with name ‘copyright’ and value
containing the copyright statement. The example below shows the use of the extension
mechanism for the example above. Table 4 summarizes the fields if the extension
class.

<Extension>
<Element>
<Name>Copyright</Name>
<Value>2005 by Peter Pan Inc. </Value>

</Element>
<Extension>
Figure 6 VISR service profile))
overview. VISR Service Profile
UDD‘I‘entry WSDL

uUDDiI
Registry

LIWSDL

@ Springer

468 World Wide Web (2006) 9: 457-483

Table 5 VISR provider profile.

Property Description

Name The name of the Web service provider.

Phone The telephone number of the Web service provider.

E-mail The email address of the Web service provider.

Fax The fax number of the Web service provider.

Address The postal address of the Web service provider.

URL A URL where information about the Web service provider can be found.
Description A brief, human readable description of the Web service provider.

2.3. VISR service profiles

Although related, VISR service profiles and VISR view profiles represent different
problems and require different abstractions. Generally speaking, VISR service pro-
files provide a base for VISR views. VISR views depend on a common Web service
description for the provision of Web service communities. Therefore, the main task
of VISR service profiles is the integration of information from different Web service
registries to a common lightweight Web service description. Figure 6 shows an
example of the integration of UDDI registry entries and WSDL descriptions into
VISR service profiles. Section 8 provides two examples for the integration of UDDI/
WDSL and ebXML/WDSL Web service descriptions into VISR service profiles. Fur-
thermore, the design of VISR service profiles is tailored to lightweight VISR peers,
which offer limitations concerning memory and processing power (see Section 3).
VISR service profiles consist of five categories:

2.3.1. Povider class

The Provider class contains information about the provider of the Web service. The
provider class identifies the type of VISR peer and stores additional data about the
Web service provider like name, address, description and URL. Table 5 summarizes
the available fields of the provider class.

2.3.2. Service class

The Service class contains information about the Web services a provider provides.
The Service profile contains the name of the Service, the invocation URL, a link to
an external description files and the included methods with their parameters and
corresponding descriptions (see Table 6).

Table 6 General web service

data provided by VISR service ~PToperty Description
profiles. -
Name The name of the Web service.
URL A URL where the Web service can be invoked.

Description A brief, human readable description of the Web
service summarizing what the Web service
offers.

@ Springer

World Wide Web (2006) 9: 457-483 469

Table 7 Abstract method description of Web service methods.

Property Description

Name The name of the method to invoke.

URL A URL where the method can be invoked.

Description A brief, human readable description of the method, summarizing what the method
does.

Input The input of the method specified as parameter name list

Output The output of the method specified as parameter name list

2.3.3. Method class

The Method class encapsulates information regarding the methods a Web service
provides. Method descriptions provide abstract descriptions of methods a Web ser-
vice requestor invokes. These descriptions do not contain typing information for
actual parameters, but provide the names of input and output parameters. Typing
information is hidden from Web service requestors. Web service requestors only need
to consider the abstract service descriptions to invoke the service. VISR Table 7
summarizes the available fields of the method class.

2.3.4. Usage class

The Usage class is closely related to the method class. It provides how-to-use infor-
mation about the service. This information includes an informal description and a
formal description of the actual use of the Web service. The formal description pro-
vides information about the actual Web service invocation, the input and output pa-
rameters and an example of the usage. Consider our working example that illustrates
the use of the usage class. The example shows the intended use of the hire method.
The method hire has three input parameters, the name of the movie crew, and two
dates. The abstract definition of the method is a follows:

hire(name, from, until)
A concrete example is the hiring of a movie crew with the name ‘Peter’:

hire(Peter, 26.04.04, 27.04.04)
The example below shows a concrete usage description of the hire method.

<Usage>
<Invocation>
<Description>
The hiring of movie crews needs three parameters, the name of
the Movie crew and two dates. The result is OKif the movie
crew is hired or NOK if the movie crew is not hired.
</Description>
<Method>
<Name>hire</Name>

@ Springer

470

World Wide Web (2006) 9: 457-483

<Parameters>
<Parameter type=“input” >
<Name>from</Name>
<Value>01.01.2004</Value>
</Parameter>
<Parameter type= “input” >
<Name>until</Name>
<Value>31.12.2004</Value>
</Parameter>
</Parameters>
</Method>
</Invocation>
<Result>
<Method>
<Name>hire</Name>
<Parameters>
<Parameter type=“output” >
<Name>result</Name>
<Value>0K</Value>
</Parameter>
</Parameters>
</Method>
</Result>
</Usage>

3. VISR architecture

The VISR Architecture is based on a peer to peer network that provides the in-
frastructure for the distributed nodes of the VISR network. Each node in the VISR
peer to peer network plays a particular role. VISR distinguishes between three types
of peers, (1) small scale or lightweight peers, (2) standard peers and (3) registry

peers.

3.1. Lightweight peer

The Lightweight peer is usually a peer with limited memory and storage capacity,
such as PDAs or Sub-notebooks. Lightweight peers are the typical transient mem-

Table 8 VISR peer type features

Lightweight peer

Standard peer

Registry peer

Web service publishing Yes
Web service discovery Yes
Membership Transient
View publishing No
Peer naming No
Number of services 1-5

Yes
Transient, Stable

Yes
Stable
Yes
Yes
Many

@ Springer

World Wide Web (2006) 9: 457-483 471

bers of the VISR network. A Lightweight peer joins and leaves the network at
arbitrary points in time and provides usually a small number of Web services that
are published at well known local addresses and are available only when the peer is
part of the network. This type of peer can be considered as an anonymous peer in
the network.

3.2. Standard peer

The Standard peer offers more memory and processing power than a lightweight
peer. Usually a standard peer is a laptop or a typical desktop PC. This type of peer
provides additional services, like notification and view services and hosts more Web
services than a lightweight peer. The standard peer allows the user to name the peer.
The name/URL combination of the peer serves as logical identification in the VISR
peer network. The identification is needed when a view is published, because every
stable public view acts as community and the publisher view maintains a list of all
view members. In addition every member stores the name of the view originator and
the identification of the view.

3.3. Registry peer

A registry peer is usually a gateway to a business registry with many Web service
registry entries based for example on UDDI or ebXML. Registry peers transform
requests of VISR peers into registry compliant requests and perform Web service
registry data transformations into VISR service profile.

Table 8 summarizes the functionality of the different peer types.

3.4. VISR peer architecture

The VISR architecture is organized into three layers (see Figure 7). The registry
layer integrates existing Web service registries using VISR service profiles. The view
layer provides the means for the administration of views and the service layer
provides the functionality for Web service publishing, Web service discovery and
Web service provisioning.

3.4.1. Registry layer

The registry layer coordinates the integration of the different registries providing
adapters for registry implementations and transient or transient Web service

Figure 7 YISR peer architec- Service Layer Web Service Registry Operations
ture overview.
View Layer Web Service Context
Registry Layer Registry/P2P Environment

@ Springer

472 World Wide Web (2006) 9: 457-483

providers. The registry layer provides access to the underlying registry and acts as
the lowest abstraction layer of the registry. It provides interfaces for the standard
features (Web service discovery and Web service publishing) of the Web service
registry. The registry layer distinguishes between two types of registry entries:

« Stable registry entries. A stable registry entry is a long-living registry entry
that is created or deleted explicitly by a VISR peer or by the underlying
registry. A VISR peer that publishes a stable Web service is also a stable
peer that is a long term member of the network. The registry entry (i.e., the
VISR service profile) is replicated among other stable peers to guarantee
that the Web service description is available even when the Web service
provider goes offline. If the VISR service profile augments a legacy registry
entry then this data is replicated as well and stored into the local repository.
Note that lightweight peers are not capable of publishing stable VISR
registry entries, because lightweight peers are considered as transient
members of the network. The other two types of peers, the standard and
the registry peer are capable of creating stable registry entries.

» Transient registry entries. A transient registry entry is entirely specified by
the VISR peer. A lightweight peer provides per default transient registry
entries, the other two peer types may also provide stable registry entries. A
transient registry entry is published implicitly as soon as the peer joins the
network. If a peer leaves the network, the registry entry is not available any
more. Note that all VISR core services are specified as transient Web
services with corresponding VISR service profiles. The only difference to
common transient registry entries is that a core VISR service cannot be
deleted.

The registry layer (see Figure 8) maintains a repository that stores meta data
about the registry and contains information about registry mappings that define the

1. Receive request 7. Return VISR service profiles

Coodinator

2. Forward request V
Mapper

s 5. Retrieve registry data
.

////

.

4. Provide registry
mapping information
Mapper/Repository Registry Wrapper

A

3. Retrieve registry 6. Retrieve registry entries

mapping information

Registry

Figure 8 VISR registry layer architecture of gateway peers.

@ Springer

World Wide Web (2006) 9: 457-483 473

actual transformations of registry entries. Note, that Standard and Lightweight peers
provide only provide a local repository with VISR Service Profiles without actual
mapping information. Mapping information is needed by Registry peers for the
transformation of existing registries. In this case the VISR Coordinator retrieves
repository information from the Registry Wrapper directly and returns the result to
the requestor.

3.4.2. Mapper/Repository

The role of Mapper/Repository depends on the type of VISR peer. If the peer acts
as gateway to a Web service registry, the Mapper/Repository maintains information
about the data format of the underlying Web service registry and the necessary
transformations for the creation of VISR service profiles. Otherwise, the Mapper/
Repository maintains a repository of VISR service profiles that are available on the
corresponding VISR peer.

3.4.3. Registry Wrapper

The Registry Wrapper provides a standard interface for actual Web service registry
implementations. It hides the ‘legacy’ registry API behind the VISR registry API.
Upon receiving a request, the registry wrapper maps the request onto a corre-
sponding registry API call. For example, a registry wrapper may generate SOAP
messages in order to query a public UDDI based Web service registry as depicted
in Figure 9.

3.4.4. Coordinator

The coordinator provides the actual Web service registry interface of VISR peers. It
offers basic registry operations (publish, discover, etc.) and controls the actual Web
service registry access. Depending on the type of VISR peer (gateway, standard,
lightweight) the coordinator has two functions:

+ Coordination of legacy Web service registry access. In order to access the
‘legacy’ Web service registries and to the coordinator obtains information of

Figure 9 VISR Web service reg-
istry wrapper. The VISR Web VISR request
service API wrapper transforms
requests (search service, etc.)

Web service
registry data

VISR Registry

into SOAP messages to access a Wrapper API
public UDDI Web service A
registry. \ SOAP messages

Registry API

uDDI
Registry

@ Springer

474 World Wide Web (2006) 9: 457-483

the Mapper/Repository-component to access corresponding Web service
registries. This information contains transformation/mapping instructions
such as XSLT transformations or XPath expressions for the selection of
Web registry entries.

* Generation of VISR service profiles. VISR service profiles are either gen-
erated by transformations of existing Web service registry content or
accessing the VISR service profile repository.

3.4.5. View layer

The VISR View layer provides the means necessary for the view concept. The View
layer provides access to a repository that stores VISR view descriptions. The View
layer has two related tasks. It transforms registry content that is provided as VISR
service profile according to view definitions and provides view based Web service
access. The view based service access transforms the result of the service invocation
into the view defined format (see Figure 10).

A View based Registry access

1. Receive request 4. Return view compliant
registry data

View

\

3. Transform Registry
data according to View

2. Retrieve View
Profile

profile
B View based Service access
1. Receive request 7. Return view compliant
: ve requ Service result
Web Service Adaptor « View
4. Call Web 2. Retrieve View
Profile

Service
Adaptor \/

5. Execute 3. + 6. Transform
external Web Service Request/
Service

Result according to
View profile

Figure 10 VISR view layer.
@ Springer

World Wide Web (2006) 9: 457-483 475

3.4.6. View based Web service discovery

The view based Web service discovery process operates in a view defined environ-
ment. A VISR view limits the search space of to view compliant Web services.
Depending on the actual view specification, a view compliant Web service provides
VISR service profiles and additional Web service information like for example
quality of service attributes. Thus, a VISR view unifies two aspects of a Web service
description. It provides both, high level Web service information like Web service
provider name, address, etc., and concrete information about a Web service, like for
example invocation URL or methods that can be invoked by Web service requestors.

Consider for example movie crews that possess (private) registries containing their
service descriptions. A movie director that needs an overview about available services
defines a view. Every movie crew is a member of the view is capable of serving search
requests simultaneously and provides the director with corresponding VISR service
profiles. Thus, using the view, a movie director does not to be aware of different registries.

3.4.7. View based Web service invocation

The view based Web service invocation under a view context leads to a unified and
transparent Web service access. VISR Views define interfaces of the provisioned Web
services. VISR Views use an abstraction that is similar to the WSIF [7] approach.
WSIF introduces an abstraction layer over existing Web services thus providing
Web service access that is not binding-dependent. WSIF uses an invocation strategy
that allows invoking Web services directly using information provided by WSDL
files. VISR also provides direct binding-independent access to Web services. VISR

VISR Peer View Tuple Space VISR Service Provider Service

: Request Service : :

W L Get Service Request

Transform Request

Call Service

T
|
|
|
|
|
Check Service Status :

Check Service Status Return Service Result

> Transform Result

Check Service Status Return Service Result

T
|
|
|
1
|
|
| > Execute Service
|
|
1
|
|
|
|
|

Return Service Result

T T
| | |

Figure 11 View based service execution. The service requestor places a tuple in the view defined
tuple space. Afterwards, the service requestor checks the tuple space periodically for the service
result. Meanwhile, the service provider transforms the service request according to the view
specification and executes the service. After service completion, the service provider places a tuple
containing the result of the service invocation into the view defined tuple space that is finally
retrieved by the service requestor.

@ Springer

476 World Wide Web (2006) 9: 457-483

uses service profiles that provide definitions of the input and output parameters on
an abstract level. Web service requestors do not need to be aware of the actual Web
service binding and send Web service invocation messages with the parameters to
Web service provider.

The service execution model follows a polling based approach. After the initial
service request, the service requestor polls periodically for the service request, the
service requestor polls periodically for the service result (see Figure 11). To illus-
trate this approach, consider the working example with a view that defines a de-
scription for a salary interface. The view defines a membership for all movie crew
members that are able to provide such a service, respectively, are able to build a
view conform wrapper for a salary service. A movie director who wants to control
the costs of a stuntmen crew needs to invoke the salary service of every crew member
and summarize the results. He does not need to take care of different Web service
implementations or invocation protocols, because every VISR peer that provides a
corresponding service performs the needed transformations.

3.4.8. Service layer

The VISR Service Layer provides the core functionality for the basic operations of
Web service registries. These services include a Web service Publishing Service, a
Web service Discovery Service and a VISR view information service. These core
services are available at every type of VISR peer. These services provide the basic
functionality for the peer to peer registry and their descriptions are stored in the local
repository of every peer. Table 9 summarizes all basic functions of the VISR peers.

Table 9 VISR core functions.

Function Description

create View(view) Creates a view and publishes the view description. The description is
stored in the local repository. This is function is not available on
lightweight peers.

getViewDescription(id) Returns the view description that is associated with the view identifier.

getUserProfile(id) Returns the user profile of the VISR peer that is associated with the
peer identifier.

getProviderProfile(id) Returns the provider profile of the VISR peer that is associated with
the peer identifier.

joinView(id) Performs the login procedure of a view.

leaveView(id) Performs the logout procedure of a view.

search (criteria) Searches globally for the given criteria based on the VISR Service

Profile and returns a list of adequate Web services.
publishService(id, service) ~ Publishes a service in a view.

unpublishService(id, Removes a service from a view.
service)

searchView(id, type, Searches for the given criteria within a view and returns a list of
criteria) adequate Web services.

matchService(service, Checks if a service description is compatible with the view.
view)

getMethodProfiles(id) Returns all method profiles of a given Web service.

getServiceUsage(id) Returns the usage description of a Web service.

@ Springer

World Wide Web (2006) 9: 457-483 477

4. Related work

The ebXML standard introduces the concept of Web service registry federation.
Federated Web service registries form loosely coupled unions of related Web ser-
vices. These federations appear as a single logical registry to clients. This approach
shares some of the objectives of our work. VISR views are similar to federations
whereby ebXML federations focus on the lifecycle of registry objects and replication
issues, whereas our work provides a more flexible approach, because it allows the
creation of long lasting stable views and also transient views. Transient views, i.e., ad
hoc federations are not covered by ebXML federations. ebXML federations also do
not cover the issue of transient registry entries provided by transient Web service
providers. VISR offers lightweight clients to present a fully distributed non-replicated
Web service registry without the need of additional administrative overhead.

The UDDI standard also acknowledges the need for a distributed registry struc-
ture. It introduces replication among distributed registries but focuses mainly on the
actual distribution of registry entries. In favor of a flexible integration of lightweight
VISR peers VISR does not include a replication model, because replication increases
the administrative overhead. UDDI allows the creation of private registries that are
physically separated from other registries. In comparison, VISR offers a more flexible
approach. VISR uses views to create logical separations of registry data and controls
registry access with the help of a membership service.

The METEOR-S [25] project uses an upper ontology for the integration of distrib-
uted registries. VISR also provides the means of integrating Web service registries
into a common Web service registry, but does not provide an ontology based ap-
proach. VISR uses common Web service descriptions (VISR service profiles) to
create uniform accessible Web service registries. Furthermore, METEOR-S proposes
a lightweight Web service description language (WSDL-S) that extends WSDL 2.0
service descriptions with semantic annotations. VISR is also capable of extending
current Web service descriptions with additional data, but in comparison with
METEOR-S, VISR does not focus on semantic issues. VISR omits semantics concern-
ing Web service description in favor of implementation issues concerning lightweight
peers with limited processing power and memory capabilities.

The work presented in [17] uses DAML-S [6] profiles to represent semantic meta
data of UDDI registry entries. This approach uses UDDI registries with tModels to
link to DAML-S profiles that are stored separately. VISR does not store informa-
tion in the existing registry. It leaves the original information unchanged and provides
gateways to distributed registries. Like in [17] additional data is stored separately
from the original Web service registry entries in repositories that are no part of the
original Web service registry. The semantic meta data is used for Web service re-
trieval but does not cover the issue of different web service registry implementa-
tions. IBM [17] focuses on UDDI and implements a centralized approach and does
not consider distributed registries like VISR.

In contrast to OWL-S [21], which superseded DAML-S, VISR service profiles take
a ‘pragmatic’ approach without following workflow issues—like, for example, Web
service orchestration or Web service composition. VISR service profiles offer a light-
weight Web service description that focuses on interface descriptions of Web services.

The Webtransact framework [19] presents an infrastructure for the integration of
heterogeneous Web services. Our work encompasses contributions from this work,

@ Springer

478 World Wide Web (2006) 9: 457-483

since VISR provides unified Web service invocation, similar to the concept presented
in [19]. Webtransact uses Web service mediators to invoke different Web services.
In VISR, the notion of the registry peer is similar to the Web service mediator of the
Webtransact infrastructure. In contrast to VISR, the Webtransact framework does
not consider distributed registries or different Web service registry implementations.

The WSDA [10] grid architecture provides a semitransparent umbrella for dis-
tributed data. WSDA does not focus explicitly on Web service registry but provides
discovery functions for distributed information. WSDA uses a tuple space model to
store information among nodes of the network. In comparison with VISR, WSDA
registry information can be of any format, WSDA only provides data tuples that are
capable to store Web service descriptions. WSDA proposes WSIL [1] containers for
the actual service description. VISR borrows the idea of tuple spaces from WSDA.
Tuples are used to represent VISR service profiles of transient clients. In comparison
with VISR, WSDA does not consider Web service communities or different Web
service registry implementations.

VISR encompasses contributions of the SELF-SERYV [2, 20] project. SELF-SERV
exploits the concept of communities. Communities offer a well defined class of ser-
vices with common capabilities. A community delegates the execution of a service
to a member according to a selection policy. VISR follows a similar idea, regarding
the structuring of communities, respectively, views, but VISR does not provide tran-
sient provider selection as SELF-SERYV does.

VISR proposes a community concept similar to the WebBis [13] communities.
WebBis offers two types of communities, push and pull communities. These com-
munities correspond roughly to transient respective stable views of VISR. In com-
parison, VISR focuses on the actual data models of registries and their declarative
integration. WebBis follows a more abstract approach by using an ontological based
approach to structure push, respectively, pull communities. In addition, WebBis pro-
poses service wrappers that are used to provide a common service description. VISR
also provides common Web service descriptions that are specified by VISR service
profiles. VISR service profiles expose some similarities to WebBis service wrappers
but operate on a different level. VISR service profiles offer a common declarative
service description whereas WebBis offers an object oriented approach. WebBis also
handles Web service composition and provides an event handling system to monitor
changes. Web service and composition and change monitoring are not covered by our
work.

Pilioura et al. [18] propose an integration concept of distributed Web service re-
gistries based on semantic meta data. In comparison with VISR, the PYRAMID-S
architecture operates on a higher abstraction level, using gateways as entry points for
Web service registries. In contrast to our work, PYRAMID-S does not consider tran-
sient Web service providers. VISR provides explicit support for transient Web service
provider, by the provision of decoupled communication means based on tuple spaces.

5. Conclusion and further work
We present concepts for the integration of heterogeneous Web service registries and
transient Web service providers. In our approach we consider a peer to peer network

as a feasible solution for the integration of different Web service registries. We dis-

@ Springer

World Wide Web (2006) 9: 457-483 479

tinguish between three types of peers, depending on their availability and processing
power. Lightweight peers are considered as transient members of the VISR peer to
peer network which join and leave the network dynamically. They are devices that
offer limited processing power and memory capacity. This type of peer provides a
small number of Web services and stores Web service descriptions locally. Standard
peers offer more Web services and more processing capabilities. Standard peers pro-
vide the means for the creation of abstract contexts for Web service registry entries
(views). They are considered as stable members of the network with high availability.
Like lightweight peers, Standard peers also store registry information locally. Re-
gistry peers act as gateways to different registry implementations and provide a
mediation service for the invocation of Web services through the VISR peer to peer
network. They are considered as building blocks of the VISR network and provide
high availability and processing power.

A significant part of this paper discusses the view concept of VISR. Views are
abstract contexts in which Web services are published and can be regarded as virtual
registries. Views allow the creation of Web service communities that provide related
Web services with similar or equal service invocation. In addition, Views provide
the means for invocating Web services in a unified way using the VISR communi-
cation system. In out approach, views include information that is out of the scope of
common Web service registry entries. A view consists of abstract input and output
descriptions and internal mappings to registry information. The underlying registry
data model remains, all references to additional information are stored outside the
original registry. Views involve VISR service profiles that act as wrapper for existing
registry entries. VISR service profiles expand available registry information with ab-
stract descriptions of Web service operations. The operational information consists of
two parts, abstract method specifications and actual usage descriptions. Usage des-
criptions serve as real world examples for the use of Web services. These descriptions
include method sequences with concrete parameters and examples of corresponding
results. In this context, we generally treat Web services as black boxes that provide
input and output data. Our focus lies on the extraction of relevant information from
Web service descriptions to provide a structural description of the operations a Web
service provides. Our work transforms WDSL descriptions into the operational part
of VISR service profiles. This abstract description is used for our simple matching
algorithm that uses structural information for the matching of relevant Web service
descriptions. Another aspect of views is the seamless integration of differing registry
data models. The integration provides a unified and simultaneous access of distrib-
uted registries. We use declarative descriptions to create mappings from views, res-
pectively, VISR service profiles to existing registry entries. If declarative mappings
are not possible we use a programmatic solution based on a plug-in model to create
the appropriate transformations. So far, this technique does not involve the use of
semantic information, because this is considered to complicate the design and imple-
mentation of lightweight peers.

A prototype implementation of VISR in Java is under way. We are using IBM’s
tuple space implementation TSpaces as primary communication and storage means.
The tuple space concept provides the means for decoupled operation in time and
space.

The implementation of a matching algorithm of VISR service profiles is also in
development. We are considering an algorithm that uses structural matching for the

@ Springer

480 World Wide Web (2006) 9: 457-483

candidate selection of VISR service profiles. After the completion and the perfor-
mance analysis of the prototype we are going to extend the functionality of the pro-
totype. We consider (semi-) automated provider and Web service selection based on
structural similarity of VISR service profiles. Since the current tuple space imple-
mentation is centralized, we intend to use a distributed version tuple spaces for our
implementation of the registry layer to improve the flexibility of our approach.

Appendix

1. Figure 12 shows the UML diagram of the VISR view profile
2. Figure 13 shows the UML diagram of the VISR service profile
3. Registry mappings

This section contains examples for generic mappings of ebXML and UDDI registry
entries of VISR service profiles. Our prototype implementation uses XPath [26] and
XSL transformations to specify the mappings between the elements of VISR service
profiles and UDDI/ebXML/WSDL elements.

3.1. UDDI

Figure 14 illustrates the generic mapping to UDDI entries and their corresponding
WDSL files. Note, that the detailed description is retrieved with the tModel struc-
ture as proposed in [5]. The BusinessEntity structure provides the basic information
needed by the VISR Web service provider and is mapped directly on the VISR Web
service provider class. Web service information (name, URL, description) is avail-
able in the BusinessService structure and is mapped to the VISR Web service class.
The link provided by the BusinessTemplate structure points to the external WSDL
file. The operation, input and output descriptions of the WSDL file are mapped to
the description of the methods in the VISR service profile.

Extension View
-Name -1D Filter
- -Name —
Value 0.1 |Description -Description
-Originator -Type
- . |CreateDate -Expression
Mapping |, | | ExpireDate
-Type ———1-Type A
-Link -Status
-Description
-Expression
-Element Input Output
1

]

*

Figure 12 UML diagram of VISR view profile.

@ Springer

World Wide Web (2006) 9: 457-483

481

0..1
Provider *
_Name - Method
_Address Service “Name
-Telephone -Name -Description Usage
-FAX -Description -URL -Description
-EMail 1 « |FURL 0.1 * [Input 1 1
-URL ” -Output
-Description
0..1
0.1 Extension *
-Key
-Value

Figure 13 UML diagram of VISR service profile.

VISR uses XSL transformations to generate VISR service profiles from UDDI
information. The example below shows the transformation of the operational part of
WSDL files to VISR interface description of VISR service profiles.

3.2. ebXML

The mapping of the VISR service profile and the ebXML data model is similar to
the UDDI registry mapping. The difference lies in the different data model. The
ebXML data model is different, Web service information is stored in a different
format. We assume that a Web service is stored in the ebXML registry as specified in
[4], where actual Web service description is stored as external WSDL file. Figure 15
illustrates the VISR Service Profile mapping of the ebXML registry model. The

Figure 14 VISR service profile to UDDI mapping.

BusinessEntity
VISR Service Profile /‘ Name
Phone
Web Service Providero/% EMail
¢ Name FAX
e« Phone g?/" Address
. E-Mail o// DiscoveryURL
e FAX O/ / Description
. Address o/
- URL L o/ BusinessService
. Description v Name
7° Description
Web Service o//‘ p
. Name
. Description o BindingTemplate
. URL o » accessPoint
Method
« Name O
o Input O
o Output SNy
WSDL File
operation
input
output

tModel
overviewDOC ©

@ Springer

482 World Wide Web (2006) 9: 457-483

Figure 15 VISR serv.ice Organization
profile to ebXML mapping. VISR Service Profile y> Name
y* Phone
Web Service Providero/ y° EMail
e Name y° FAX
e Phone o/ y* Address
o E-Mail g? y> DiscoveryURL
e FAX o/ v* Description
e Address O/
e URL o/ Service
e Description Lo Name
. /,. Description
Web Service O//p ServiceBinding
e Name /. SpecificationLink 0
. Descriptiono/
e URL ol
Method
e Name O |
e Input O
e Output O
Y
WSDL File
e operation
P input
b output

ebXML Organization class provides the same basic information as provided by the
VISR Web service provider and is mapped directly on the VISR Web service pro-
vider class. Web service information (name, URL, description) is available in the
Service class of the ebXML data model. The Service class also contains a link to the
external WSDL file. The Service class is mapped to the VISR Web service class. The
link provided by the attribute SpecificationLink points to the external WSDL file, its
method descriptions are mapped as in the UDDI example, using the operation,
input and output descriptions of the WSDL file for the description of the methods in
the VISR service profile. Note that the associations between the registry objects are
not explicitly shown.

References

1. Ballinger, K., Brittenham, P., Malhotra, A., Nagy, W.A., Pharies, S.: Web services inspection
language (WS-Inspection) 1.0. IBM, Microsoft (2001)

2. Benatallah, B., Dumas, M., Sheng, Q.Z., Ngu, A.H.H.: Declarative composition and peer-to-
peer provisioning of dynamic web services. The 18th IEEE International Conference on Data
Engineering (ICDEO02), pp 297-308, San Jose California, USA, Feb (2002)

3. Business Process Specification Schema. http://www.ebxml.org/specs/ebBPSS.pdf (2001)

4. Chiusano, J.M., Hamilton, B.A., Najmi, F., Sun Microsystems.: Registering Web services in an
ebXML Registry, Version 1.0 (2003)

5. Colgrave, J., Januszewski, K.: Using WSDL in a UDDI Registry, Version 2.0. http://www.oasis-
open.org/committees/uddi-spec/doc/tn/uddi-spec-te-tn-wsdl-v2.htm (2003)

6. DAML-S Coalition. DAML-S: Web services Description for the Semantic Web. ISWC 2002,
LNCS 2342, pp. 348-363, 2002. Springer, Berlin Heidelberg New York (2002)

7. Duftler, M.J., Mukhi, N.K., Slominski, A., Weerawarana, S.: Web services Invocation Frame-
work (WSIF). IBM T.J. Watson Research Center (2001)

8. Dustdar, S., Treiber, M.: A view based analysis on web service registries. Distributed and
Parallel Databases, forthcoming

9. ebXML Collaboration-Protocol Profile and Agreement Specification. http://www.oasis-open.org/
committees/ebxml-cppa/documents/ebcpp-2.0.pdf (2002)

@ Springer

http://www.ebxml.org/specs/ebBPSS.pdf
http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v2.htm
http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v2.htm
http://www.oasis-open.org/committees/ebxml-cppa/documents/ebcpp-2.0.pdf
http://www.oasis-open.org/committees/ebxml-cppa/documents/ebcpp-2.0.pdf

World Wide Web (2006) 9: 457-483 483

10.
11.
12.
13.
14.
15.
16.
17.
18.

19.

20.

21.

22.

23.
24.

25.

26.

27.

Hoschek, W.: Peer-to-Peer Grid Databases for Web service Discovery. CERN IT Division (2002)
IBM. TSpaces. http://www.alphaworks.ibm.com/tech/tspaces (2003)

Mani, A., Nagarajan, A.: Understanding quality of service for Web services. http://www-106.ibm.
com/developerworks/webservices/library/ws-quality.html (2002)

Medjahed, B., Benatallah, B., Bouguettaya, A., Blmagarmid, A.: WebBIS: An infrastructure for
agile integration of web services. Int. J. Coop. Inf. Syst. 13(2), 121-158 (2004) June 2004
OASIS/ebXML Technical Architecture Specification. http://www.ebxml.org/specs/ebTA.pdf
(2001)

OASIS/ebXML registry services Specification v2.5. http://www.oasis-open.org/committees/
regrep/documents/2.5/specs/ebrs-2.5.pdf (2003)

OASIS/ebXML registry Information Model v2.5 http://www.oasis-open.org/committees/regrep/
documents/2.5/specs/ebrim-2.5.pdf (2003)

Paolucci, M., Kawamura, T., Paynel, T. R., Sycara, K.: Importing the Semantic Web in UDDI.
LNCS 2512, pp. 225-236, 2002. Springer, Berlin Heidelberg New York (2002)

Pilioura, T., Kapos, G.-D., Tsalgatidou, A.: Seamless Federation of Heterogeneous Service
Registries. LNCS 3182, pp. 86-95, 2004. Springer, Berlin Heidelberg New York (2004)

Pires, P.F., Benevides, M.R.F., Mattoso, M.: Mediating Heterogeneous Web Services. Computer
Science Departament, Nicleo de Computacdo Eletronica—NCE2, System Engineering and
Computer Science Program—COPPE3. Federal University of Rio de Janeiro. (2003)

Sheng, Q.Z., Benatallah, B., Zhu, Y.Q., Stephan, R., Oi-Yan M.E.: Discovering E-services Using
UDDI in SELF-SERV. Proceedings of International Conference on e-Business (ICEB2002),
Beijing Institute of Technology, Beijing, China, pp. 396-401 (2002)

The OWL Services Coalition. OWL-S: Semantic Markup for Web Services. http://www.daml.org/
services/owl-s/1.0/ (2004)

Tsalgatidou, A., Pilioura, T.: An Overview of Standards and Related Technology in Web
Services. Distributed and Parallel Databases, 12, 135-162, 2002. Kluwer (2002)

UDDI Spec Technical Committee Specification. UDDI Version 3.0.1. (2003)

Universal Description, Discovery and Integration: UDDI Technical White paper. http:/
www.uddi.org/pubs/Iru_UDDI_Technical_White_Paper.pdf (2000)

Verma, K., Sivashanmugam, K., Sheth, A., Patil, A., Oundhakar, S., Miller, J.. METEOR-S
WSDI: A Scalable P2P Infrastructure of Registries for Semantic Publication and Discovery of
Web services. Information Technology and Management 6, 17-39. Springer Science + Business
Media, Inc. (2005)

W3C. XML Path Language (XPath) Version 1.0 W3C Recommendation 16 November 1999.
http://w3c.org/TR/xpath (1999)

W3C. XSL Transformations (XSLT) Version 1.0 W3C Recommendation 16 November 1999.
http://www.w3.0rg/TR/1999/REC-xslt-19991116 (1999)

@ Springer

http://www.alphaworks.ibm.com/tech/tspaces
http://www-106.ibm.com/developerworks/webservices/library/ws-quality.html
http://www-106.ibm.com/developerworks/webservices/library/ws-quality.html
http://www.ebxml.org/specs/ebTA.pdf
http://www.oasis-open.org/committees/regrep/documents/2.5/specs/ebrs-2.5.pdf
http://www.oasis-open.org/committees/regrep/documents/2.5/specs/ebrs-2.5.pdf
http://www.oasis-open.org/committees/regrep/documents/2.5/specs/ebrim-2.5.pdf
http://www.oasis-open.org/committees/regrep/documents/2.5/specs/ebrim-2.5.pdf
http://www.daml.org/services/owl-s/1.0/
http://www.daml.org/services/owl-s/1.0/
http://www.uddi.org/pubs/Iru_UDDI_Technical_White_Paper.pdf
http://www.uddi.org/pubs/Iru_UDDI_Technical_White_Paper.pdf
http://w3c.org/TR/xpath
http://www.w3.org/TR/1999/REC-xslt-19991116

	View Based Integration of Heterogeneous Web �Service Registries—the Case of VISR
	Abstract
	Introduction
	VISR view concept
	VISR communities
	Transient vs. stable communities
	Transient communities
	Transient community example
	Stable communities
	Stable Community Example

	VISR view profiles
	View class
	Filter class
	Mapping class
	Extension class

	VISR service profiles
	Povider class
	Service class
	Method class
	Usage class

	VISR architecture
	Lightweight peer
	Standard peer
	Registry peer
	VISR peer architecture
	Registry layer
	Mapper/Repository
	Registry Wrapper
	Coordinator
	View layer
	View based Web service discovery
	View based Web service invocation
	Service layer

	Related work
	Conclusion and further work
	Appendix
	Figure 12 shows the UML diagram of the VISR view profile
	Figure 13 shows the UML diagram of the VISR service profile
	Registry mappings
	UDDI
	ebXML

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

