
J. WEB INFOR. SYST. VOL. 1, NO. 1, MARCH 2005 1

Web Services on Embedded Devices
Daniel Schall

d.schall@infosys.tuwien.ac.at
Distributed Systems Group, TUWien

Argentinierstrasse 8, 1040 Wien, Austria
Marco Aiello

aiellom@ieee.org
Department of Information and Telecommunication Technologies

University of Trento, Via Sommarive 14, 38050 Trento, Italy
Schahram Dustdar

dustdar@infosys.tuwien.ac.at
Distributed Systems Group, TUWien

Argentinierstrasse 8, 1040 Wien, Austria

Received: January XX 2005; revised: November XX 2005

Abstract— The capabilities of embedded devices such as smart-
phones are steadily increasing and provide the great flexibility
of data access and collaboration while being mobile. From
the distributed computing point of view, fundamental issues
in mobile computing include heterogeneity in terms of varying
device capabilities (i.e., operating systems and various hardware
platforms), performance characteristics and real-time behavior,
and the ability to discover and interact with peers seamlessly.
Web services are a family of XML based protocols to achieve
interoperability among loosely coupled networked applications.
We propose the use of Web services on embedded devices
in order to solve interoperability issues in distributed mobile
systems. We discuss various toolkits available for embedded
devices and investigate performance characteristics of embedded
Web services on smartphones. Our goal is to guide the design of
Web services based applications on mobile devices, and provide
estimates of performance that can be expected.

Index Terms— pervasive computing, mobile devices, web ser-
vices, performance study

I. INTRODUCTION

Web services are a family of XML-based standards designed
for the communication of loosely coupled, dynamically bound
applications. Web services can be seen as the evolution of
the Web where not only humans interact with applications
via HTML forms, but also applications interact directly with
each another. Alternatively, Web services can be seen as
a generalization of distributed object middleware, such as
CORBA [24]. In whichever way one considers Web services,
there is a strong trend and wide adoption of the technology as
means for addressing interoperability issues.

Web services are not only a recent technological hype, but
are also defining a new way for designing applications and
information systems. They are the most known incarnation
of the programming paradigm known as Service-Oriented

Computing [18], which has the goal of enabling Service-
Oriented Architectures (SOA, e.g., see [4]). Of course, in-
teroperability comes at a price. Most notably, the use of
XML for the communication is computationally expensive
and bandwidth consuming. Furthermore, using XML does not
solve per se the ontological problem of having independent
applications interoperate. Nevertheless, Web services are ready
to penetrate embedded systems and mobile devices, and solve
the interoperability problem [2].

In a complex setting of devices and embedded systems a
number of issues need to be considered: on the one hand,
heterogeneity and interoperability, determined by the device’s
functional properties (e.g., static hardware capabilities made
available through a descriptive interface), and on the other
hand, continuously changing capabilities (e.g., due to various
operational conditions such as CPU utilization and memory
usage), which limit the ability to contribute to a task at
hand [12]. A task may require composition of a set of devices
and aggregated functionality in order to meet task specific
requirements. One important aspect is to find a feasible de-
vice configuration (e.g., interoperability among heterogeneous
devices) in order to satisfy task specific needs, the other
challenge is to execute a task in a satisfactory fashion (e.g.
according to task dead-lines or QoS agreements [16]).

Web services provide an ideal framework to address issues
such as heterogeneity and interoperability. However, it is of
major importance to understand the performance limits and
constraints, in terms of resource requirements, imposed by
various Web services toolkits, in order to estimate expected
performance at run-time (i.e., executing a task at hand).

We propose to use Web services as enabling infrastructure
for the interoperation of heterogeneous mobile devices. In
particular, we study the performances of various solutions for
realizing Web services on mobile devices.

1744–0084/01 c© 2005 Troubador Publishing Ltd



J. WEB INFOR. SYST. VOL. 1, NO. 1, MARCH 2005 2

The remainder of this paper is organized as follows. In Sec-
tion II, we describe potential application scenarios. Section III
is a review of a number of Web services toolkits available for
mobile devices and outlines design and performance issues.
A performance study of embedded Web services is given in
Section IV, including a performance evaluation. Related work
and projects are discussed in Section V. Finally, Section VI
draws conclusions on our performance study and Web services
on mobile devices.

II. APPLICATION SCENARIOS

There are many scenarios in which heterogenous mobile de-
vices need to interoperate. For instance, application scenarios
in the mobility domain and in the home domain, where we
find an increasing number of embedded devices with network
capabilities.

A. MOBILE APPLICATIONS AND SERVICES

Wireless networks with varying coverage (e.g., 3G, WiFi,
etc.) provide data access while on the move. In essence, the
type of mobile application can be categorized by the data
traffic. According to UMTS QoS traffic classes, we distinguish
between 1) conversational, 2) streaming, 3) interactive, and 4)
background classes [5].

The following sections introduce typical applications and
services that can be found in aforementioned traffic classes.
The distinct characteristic is real-time versus non real-time
data traffic.

1) Real-Time Multimedia: Multimedia content such as real-
time audio and video fall into the conversational or stream-
ing class. The Session Initiation Protocol (SIP) [13] and
the Real-Time Transmission Protocol (RTP) [14] provide the
negotiation/transport framework to deliver delay sensitive A/V
multimedia content. Various architectures, for instance situated
devices and resources [20], may be used to overcome limits of
mobile devices (e.g., display size, computational power, etc.)
and deliver media to mobile users in an optimized fashion.

2) Interactive Mobile Multimedia Applications: In contrast
to real-time multimedia applications, Web services based ap-
plications follow the request/response pattern and thus are set
up in the interactive class i.e., best effort.

In general, we categorize mobile applications, based in
the interactive traffic class, in information consumer and
provider. The former includes information access through
search queries, document download, etc. performed by mobile
users; whereas the latter refers to contents or data that is
provided or shared on mobile devices, for instance captured
multimedia content such as still images, audio files, etc.

Location based services are among the first mobile appli-
cations that have been developed by the ubiquitous comput-
ing community [11]. Application scenarios include localized
queries (e.g., finding restaurants in proximity) or providing
information to the mobile user through location based push [9]
(e.g., information that is customized based on user’s position
determined by GPS coordinates). For example, the Google
Web services API [10] provides access to the Google search
engine from mobile devices and thus can be used to obtain

localized information, if combined with a form of localized
search.

Location information is only a subset of the user’s con-
text. Various architectures and systems have been proposed
to collect and aggregate sensory data and infer high level
contextual information (a survey on context aware systems
is given in [3]).

B. NETWORKED DEVICES AND APPLIANCES AT HOME

Domotics is the field where housing meets technology in
its various forms (informatics, but also robotics, mechanics,
ergonomics, and communication) to provide better homes from
the safety and comfort point of view. Traditionally, domotic
solutions were provided by a single vendor, using proprietary
solutions for communication, mostly closed and expensive.
This is no longer true. Domotic elements are heterogeneous in
all aspects. Devices come from various vendors, have different
hardware capabilities, network interfaces, operating systems,
and yet need to have the ability to interoperate. Users need
to have a unique view on all hardware elements and devices
located at their homes. In addition, various tasks such as self-
configuration should be done automatically, through internal
communication and coordination, without requiring human
intervention or manual configuration.

In order to solve the complexity of the home distributed
system and to allow cooperation among the set of independent
devices, it is necessary to have standard protocols and ways
of communicating among them. Web services are an enabling
technology for this task, as proposed in [2]. The solution
to the interoperability comes at the cost of computational
resources for handling XML messages, though, the growth
in computational power, communication abilities, battery life
of the devices, together with the lowering of the prices makes
the approach evermore feasible.

III. WEB SERVICES ON EMBEDDED DEVICES

Implementing the Web service stack on mobile devices
is today reality. In particular, there are a number of Web
services toolkits available for mobile devices, in C++ as well
as Java/J2ME (e.g., Symbian based devices), and furthermore
.NET implementations on Microsoft platforms. Since those
devices have constraint resources, i.e., CPU, memory and
battery, the choice of the toolkit is crucial for the application’s
performance.

A. WEB SERVICES TOOLKITS

1) C++ TOOLKITS: gSOAP is a platform independent
toolkit for Web services [8], which includes a WSDL
parser wsdl2h (creates header files) and a stub/skeleton
compiler soapcpp2. Depending on the SOAP client/server
requirements, .c or .cpp files can be generated. The run-time
library, stdsoap2, serializes and de-serializes calls and
is the only dependency needed on the target platform.
Figure 1 illustrates the gSOAP (client) run-time and shows
the development and deployment cycle. The development
process starts with C/C++ header file creation based on the



J. WEB INFOR. SYST. VOL. 1, NO. 1, MARCH 2005 3

Fig. 1. gSOAP WS run-time

service’s WSDL file. Next, the gSOAP compiler is used to
create the code files. At run-time (i.e., the deployment) RPC
calls are made on client side proxies [8].

2) TOOLKITS FOR J2ME: The J2ME platform (Java 2
Platform Micro Edition) is a set of standard Java APIs defined
through the Java Community Process (JCP). The J2ME spec-
ifications define the Connected Device Configuration (CDC)
(i.e., a subset of J2SE) and the Connected Limited Device
Configuration (CLDC). In contrast to CDC, CLDC provides
libraries such as the Connection Framework which are suitable
for devices with a small memory footprint (not part of J2SE).
CLDC targets hardware platforms with 128 KB to 512 KB
memory and 16-bit or 32-bit CPUs. The Mobile Information
Device Profile (MIDP) is specifically designed for cell phones
and provides the user interface, network connectivity, local
data storage, and application management needed by these
devices.

Following SOAP APIs and Web services toolkits are suit-
able for J2ME/MIDP based devices.

1) kSOAP is an open source SOAP API for J2ME de-
vices [1]. It provides a lightweight way to access SOAP
based Web services. However, kSOAP cannot generate
client side stubs from the web service’s WSDL file.

2) JSR-172 is a set of Web services APIs (WSA) for J2ME
[22] available in Sun’s wireless tool kit (WTK) 2.2. In
contrast to kSOAP, client side stubs can be generated
using WSDL files, which accelerates the development
process. WSA for J2ME has thus similar capabilities
(e.g., stub generator) compared to gSOAP’s client run-
time. However, it is important to note that WSA is only
suitable for consumption of Web services on mobile
devices (i.e., it cannot provide a service on a mobile
host).

3) WEB SERVICES FOR .NET COMPACT FRAMEWORK:
The .NET Compact Framework (CF) is a subset of Microsoft’s
.NET framework. The .NET CF is supported on various
devices/platforms that are based on PocketPC and Smartphone
architectures. Web services on .NET CF support the use of
synchronous or asynchronous invocation [17]. Development
of embedded Web services is analog to implementing Web
services clients in .NET. A Web Reference (i.e., a reference to
the actual service) has to be added to a project and code is
automatically generated.

B. PERFORMANCE METRICS

In order to choose a tool for implementing the Web service
stack on a mobile devices, we need to consider a number of
parameters on which to establish such a choice. Following, we
identify a number performance metrics and design considera-
tions:

1) Average time needed to execute a given request.
2) The latency given a number of requests to be executed.
3) The maximum number of concurrent requests that can

be executed.
4) Overhead of using Java (e.g., multi-threaded Java ap-

plication) in terms of startup overhead, CPU usage and
memory consumption (i.e., allocation given a number of
requests to be executed).

In our following performance study, we focus on a client
or Web services consumer scenario, however, discussions
have analog significance for service providers implemented
on mobile devices.

IV. A COMPARATIVE PERFORMANCE TEST

The aim is to compare the performance of C++ Web services
with Java implementations using the Symbian OS. We evaluate
performance, in terms of latency obtained through roundtrip
delay measurements of SOAP/XML messages per second.

A. METHODOLOGY

Performance estimates can be obtained through analytical
modeling and simulation or through an empirical study such as
observed measurements (e.g., measuring roundtrip delay using
time stamped messages). In addition, various Java profilers are
available to analyze the performance and bottlenecks of Java
applications at run time (e.g., memory overhead, function calls,
etc.).

We use a black box approach and measure roundtrip delay
obtained through time stamped messages as we have no knowl-
edge of the server side configuration and load. In addition, we
use the Java profiling tools available in Sun’s WTK 2.2 to
obtain ”offline” information about the Java SOAP toolkit (i.e.,
Memory Monitor and Method Invocation Graph) 1.

A straight forward way to obtain packet statistics is to use
the ping utility (using the ICMP protocol). For a given packet
size, we measure the roundtrip delay (roundtrip time RTT)
for each packet and some statistics such minimum, maximum
and average RTT time in millisecond. For our experiments we
take a similar approach and add time stamps to each SOAP
request/response invocation. In order to trace a request, we add
a time stamp t1 at method invocation on the SOAP client, t2
upon sending the SOAP message through the socket interface,
t3 upon receiving a response on the socket interface and finally
t4 when getting the result of the SOAP call. We can calculate
following timer intervals: Twstack(t2 − t1), gives us the time
needed to create a SOAP message (time spent in the web

1WTK profiling tools are available for the wireless terminal emulator. It is
important to note that a Java profiler adds significant CPU load and memory
overhead to observed system, and thus should not be used for a comparative
online performance study.



J. WEB INFOR. SYST. VOL. 1, NO. 1, MARCH 2005 4

services stack), Tnetwork(t3 − (t2 + τ)) time to receive a
response on the socket interface and Twstack(t4 − t3), which
is the processing time of the response message in the stack.

Tnetwork is governed by various random variables (e.g.,
actual network load). By using Java, we add a time-offset τ
(Java socket to native socket interface) which will be neglected
in our measurements.

B. EXPERIMENTAL SETUP AND IMPLEMENTATION
We use a Symbian OS v8.0a based device (S60 2nd Edition

FP 2 developer platform) and invoke Web services requests
using the Google Web services API [10]. The choice of the
toolkit is thus limited to Java and C++. In particular, a problem
arises when trying to consume the Google API with WSA
for J2ME. The WSA stub generator tool, available in WTK
2.2., fails due to unsupported SOAP binding style (i.e., only
document style is supported in WSA, however, the Google
API uses rpc style).

IP connectivity can be provided through 2.5G/3G (GPRS
or WCDMA) wireless networks or Bluetooth. In our tests,
a Bluetooth connection between the mobile device and a
Windows XP based PC (acting as a remote access server)
was configured.

The goal of our architecture is to execute multiple SOAP
requests concurrently. Therefore, we use multiple threads to
achieve non-blocking operation. The native C++ Symbian
API supports multi-threading through the RThread class.
On J2ME, standard Java threads can be used to accomplish
concurrent execution of requests.

In Section III-B we enumerated various metrics that should
be considered at design time. The very basic task is to execute
a single request, thus spawning a thread t for request ri

to be executed, a task tuple (t, ri). However, the maximum
number of requests that can be executed simultaneously (i.e.
the number n of requests in execution r

(t)
exec, at particular

time instance t) needs to be taken into account. In Java, we
implemented a standard thread pool and limit the thread pool
size by K (e.g., thread pool size K = 4)2. Next, we execute
N requests in a batch manner. The time needed to execute
N requests is determined by the life-cycle T

(n)
k of a thread

tk (a life-cycle is calculated by Tcycle(t
(n)
end − t

(n)
start)), where

k = 1...K is the thread index executing request n = 1...N .

C. RESULTS AND DISCUSSION
The results of the experimentation with the Google APIs

are summarized in Figure 2. In the figure, a direct comparison
of C++ and Java for a set of request rates is presented. The
diagram shows average time values for Tsend, time interval
to create a request, Treceive, time interval to receive the
corresponding response, Tnetwork, the network latency, Treq,
total time required to execute a given request and receive
response, and finally Ttotal which is the total time needed to
process all requests and responses.

2If we set K > 8, Java throws a Symbian exception, error
KErrServerBusy. This error is caused by RSessionBase, as a result of
the server being busy handling another request.

0

2000

4000

6000

8000

10000

12000

14000

C++ (4
Req.)

Java (4
Req.)

C++ (8
Req.)

Java (8
Req.)

C++ (16
Req.)

Java (16
Req.)

Request Rate

Me
as

ure
me

nts
 [m

s]

AVG_SEND
AVG_NETW
AVG_RECV
TIME_REQ
TOTAL

Fig. 2. Overview Average Time Intervals

As illustrated in Figure 2, Java performs better in creating
a request Tsend, but poorly in receiving a response Treceive.
Slow SOAP response processing becomes more apparent when
executing the Java application on the WTK emulator 3. In
average, the C++ toolkit is faster in executing a number of
requests Ttotal and faster in executing a given request Treq.

Figure 3 illustrates best, worst and average processing
time, given a number of requests to be executed. In this
diagram net processing time in the Web services stack is
shown (i.e., we neglect Tnetwork).

0

2

4

6

8

10

12

14

16

18

C++ Java C++ Java C++ Java

Re
qu

es
t R

ate

0

500

1000

1500

2000

2500

3000

3500

4000

Me
as

ure
me

nts
 [m

s]

REQ
MAX_REQ
MIN_REQ
AVG_REQ

Fig. 3. Deviations of Average Values

Java has in general larger deviations in min/max values.
Reasons are non-deterministic garbage collection on the Java
Kilobyte Virtual Machine (KVM) and code optimization at
run-time (i.e., optimization of repeatedly executed parts of the
code, called hotspots). This gives up to 50% faster execution
of subsequent requests, compared to the first ones (e.g., the
first K executions).

Table I shows obtained performance metrics (values are
rounded).

TABLE I
PERFORMANCE METRICS RESULTS

Toolkit Max Req. Avg Req.[ms] 8 Req.[ms] 16 Req.[ms]

gSOAP > 16 2800 5000 9000

kSOAP ≤ 8 3800 12000 13000

The maximum number of concurrent requests is signifi-
cantly higher using gSOAP/C++. However, in order to obtain

3The profiler’s method invocation graph shows a main bottleneck in
processing SoapSerializeEnvelop.readUnknow in the kSOAP stack.



J. WEB INFOR. SYST. VOL. 1, NO. 1, MARCH 2005 5

comparable measurements (e.g., time needed to execute mul-
tiple requests), we limited the maximum number of requests
in execution in C++ as well (i.e., K set to 4).

V. RELATED WORK

Application areas of collaborative embedded devices span
diverse research fields. Our research is related to embedded
Web services and performance characterization. Understanding
limits and characteristics are significant in various application
domains where time critical information and real-time moni-
toring are important.

Attention is needed in the area of aging in place as the
number of the elderly population increases [21]. Physical
inabilities due to aging and cognitive decline yield the need
to monitor health status, and require infrastructures for home
health care. Domotic technologies provide appropriate solu-
tions for health care at home. The goal is to provide a level
of comfort and safety, and let the elderly live in his/her own
home without invading everyday activities or the environment.
Thus, transparent and intelligent systems are needed to aid the
user in his/her needs.

Work in the area of interoperability problems and SOA, with
special focus on legacy issues, can be found in Jammes et al.
[15]. The work involves the implementation of a Web services
stack on devices following a form of device profiling. The
stack proposed is based on WS-Eventing and implemented on
Linux, Windows, Windows CE, ThreadX, and QuadrOS. QoS
levels of the stack, such as WS-Security, are not implemented.

From the technological point of view, a performance study
of SOAP based servers on mobile devices is conducted by
Pham and Gehlen [19]. A mobile server using the kSOAP
API for J2ME is implemented, and a study and analyzes of
J2ME multi-threading behavior is presented.

Engelen introduces the gSOAP toolkit in [7] and studies the
performance of gSOAP (results available at [6]). The gSOAP
toolkit is compared to .NET, Apache Axis Java and C++, and
xSOAP. The goal of this performance study was to compare
performance on standard PCs.

Tierno and Campo [23] provide an analyzes of the limits of
Java applications on J2ME. The ability to process multimedia
data, i.e. applications such as image processing, movement de-
tection, and pattern recognition, on smart phones is discussed.
In addition, various code optimization techniques, employed
by KVMs, are highlighted.

VI. CONCLUSION

As high speed 3G networks such as UMTS and metropolitan
WiFi are increasingly deployed, ubiquitous data access is
becoming a reality. In addition, a large number of embedded
systems (e.g., sensors and actuators) at home are equipped
with wireless interfaces and may organize themselves au-
tonomously. Web services on embedded devices address het-
erogeneity and enable interoperability among disparate sys-
tems. In this paper, we discussed various application scenarios
in both domains. Considering application performance is a key
to successful deployment of such systems on a larger scale, in
order to meet task specific requirements.

We provided an overview of different Web services toolkits
available for the Symbian platform. Our empirical study com-
pares the performance of Java/J2ME based Web services with
toolkits available in C++.

We discussed a framework to obtain online performance
measurements, unobtrusively, through time stamped messages,
e.g., at various layers in the Web services stack. These
measurements included creation time of SOAP messages,
processing time of messages, etc. This method provides a
way to trace messages in the system and corresponding time
spent at various layers.

We believe that Web services on embedded devices provide
great flexibility and interoperability. Web services play an
important role in accessing or providing multimedia content
on mobile devices. They aid the process of sharing multimedia
files that may be captured in situ, and also help in locating con-
tent in distributed systems such as large scale video archives.

REFERENCES

[1] SOAP Implementation for J2ME. http://kobjects.
sourceforge.net/.

[2] M. Aiello. The Role of Web Services at Home. In IEEE Web Service-
based Systems and Applications (WEBSA), 2006. To appear.

[3] M. Baldauf, S. Dustdar, and F. Rosenberg. A Survey on Context Aware
Systems. International Journal of Ad Hoc and Ubiquitous Computing,
2006. To appear.

[4] D. Chappell. Enterprise Service Bus. O’Reilly, 2004.
[5] S. Dixit and R. Prasad. Wireless IP and Building the Mobile Internet.

Artech House Publisher, 2003.
[6] R. A. Engelen. SOAP/XML Web Service Performance. http://www.

cs.fsu.edu/˜engelen/soapperformance.html.
[7] R. A. Engelen. Pushing the SOAP Envelope with Web Services for

Scientific Computing. The International Conference on Web Services
ICWS, 2003.

[8] R. A. Engelen. gSOAP: C/C++ Web Services Toolkit, 2004. http:
//gsoap2.sourceforge.net/.

[9] I. Miladinovic G. Pospischil, J. Stadler. A Location-Based Push
Architecture using SIP. In 4th International Symposium on Wireless
Personal Multimedia Communications (WPMC 2001), September 2001.

[10] Google. Google API Specifications. http://www.google.com/
apis/.

[11] J. Hightower and G. Borriello. A Survey and Taxonomy of Location
Systems for Ubiquitous Computing, August 2001.

[12] B. Horan. The Use of Capability Descriptions in a Wireless Transducer
Network. Technical Report TR-2005-131, Sun Microsystems, 2005.

[13] IETF. Session Initiation Protocol (SIP). http://www.ietf.org/
html.charters/sip-charter.html.

[14] IETF. RTP: A Transport Protocol for Real-Time Applications, January
1996. http://www.ietf.org/rfc/rfc1889.txt.

[15] F. Jammes, A. Mensch, and H. Smit. Service-Oriented device com-
munications using the devices profile for web services. In MPAC
’05: Proceedings of the 3rd international workshop on Middleware for
pervasive and ad-hoc computing, pages 1–8. ACM Press, 2005.

[16] A. Lazovik, M. Aiello, and M. Papazoglou. Planning and Monitoring
the Execution of Web Service Requests. In Conf. on Service-Oriented
Computing (ICSOC-03), Lecture Notes in Computer Sciences 2910,
pages 335–350. Springer, 2003.

[17] Microsoft Developer Network (MSDN). Consuming Web
Services with the Microsoft .NET Compact Framework,
March 2003. http://msdn.microsoft.com/library/
default.asp?url=/library/en-us/dnnetcomp/html/
netcfwebservices.asp.

[18] M. P. Papazoglou and D. Georgakopoulos. Service-oriented computing.
Commun. ACM, 46(10):24–28, 2003.

[19] L. Pham and G. Gehlen. Realization and Performance Analysis of a
SOAP Server for Mobile Devices. volume 02, pages 791–797. VDE
Verlag, Apr 2005.



J. WEB INFOR. SYST. VOL. 1, NO. 1, MARCH 2005 6

[20] T. L. Pham, G. Schneider, S. Goose, and A. Pizano. Composite
Device Computing Environment: A Framework for Augmenting the
PDA Using Surrounding Resources. In Workshop on Situated Interaction
in Ubiquitous Computing at CHI 2000, April 2000.

[21] V. Stanford. Using pervasive computing to deliver elder care. IEEE
Pervasive Computing, 1(1):10–13, 2002.

[22] Sun Microsystems. J2ME Web Services Technical White Pa-
per, July 2004. http://java.sun.com/j2me/reference/
whitepapers/Web_Svcs_wp072904.pdf.

[23] J. Tierno and C. Campo. Smart Camera Phones: Limits and Applications.
IEEE Pervasive Computing, 04(2):84–87, 2005.

[24] S. Vinoski. CORBA: integrating diverse applications within distributed
heterogeneous environments. IEEE Communications Magazine, 14(2),
1997.


