
Computing
DOI 10.1007/s00607-010-0107-y

A survey on self-healing systems: approaches
and systems

Harald Psaier · Schahram Dustdar

Received: 21 July 2009 / Accepted: 11 July 2010
© Springer-Verlag 2010

Abstract Present large-scale information technology environments are complex,
heterogeneous compositions often affected by unpredictable behavior and poor man-
ageability. This fostered substantial research on designs and techniques that enhance
these systems with an autonomous behavior. In this survey, we focus on the self-
healing branch of the research and give an overview of the current existing approaches.
The survey is introduced by an outline of the origins of self-healing. Based on the
principles of autonomic computing and self-adapting system research, we identify self-
healing systems’ fundamental principles. The extracted principles support our analy-
sis of the collected approaches. In a final discussion, we summarize the approaches’
common and individual characteristics. A comprehensive tabular overview of the
researched material concludes the survey.

Keywords Autonomous behaving systems · Autonomic computing ·
Self-adaptive systems · Self-* properties · Self-healing principles ·
Self-healing approaches · Survey

Mathematics Subject Classification (2000) 00-02

Communicated by C.H. Cap.

H. Psaier (B) · S. Dustdar
Distributed System Group, Institute of Information Systems 184/1,
Vienna University of Technology, Argentinierstrasse 8, 1040 Vienna, Austria
e-mail: hpsaier@infosys.tuwien.ac.at

S. Dustdar
e-mail: dustdar@infosys.tuwien.ac.at

123

H. Psaier, S. Dustdar

1 Introduction

1.1 The complexity problem

Modern system design often results in humans overwhelmed by the effort to prop-
erly control the assembled collection. Designs comprise heterogeneous, tightly, and
loosely coupled components. Likewise, dependencies of different application soft-
ware are application contingent and often interfering. The dilemma became one of the
main driving forces for research on autonomously behaving systems. As a result of
the complexity, Ganek and Corbi [30] complain about the increasing costs in mainte-
nance. Huebscher and McCann [42] describe it as the increasing human effort required
to keep systems operational. Salehie and Tahvildari [71] blame it on the heterogene-
ity, dynamism, and interconnectivity in software applications, services and networks.
Finally, Paul [65] brings it to the point and calls it THE obstacle: the increasing com-
plexity.

1.2 Autonomous behavior

Recently, the trend of assembling heterogeneous parts to a purposefully collaborating,
and foremost profitable system unfortunately results often in poor security, dependabil-
ity, and maintenance along with many other difficulties. These challenges motivated
visions of self-aware systems described by several research papers: Most prominently
by the autonomic computing vision of IBM introduced by Kephart and Chess [50].
Autonomic computing’s naming derives from the research on nature’s autonomic ner-
vous system. It tries to follow the concept of decoupling the high level reasoning
from an independent maintenance system underneath. The research focuses on possi-
ble solutions for autonomous maintenance in current computing infrastructures. With
overlapping intentions the research on self-adaptive systems has evolved. Salehie and
Tahvildari [72] see one distinction in the fact that self-adaptive systems try to focus
on challenges at a more general level. Most of their contributions cover higher level
functionality such as the autonomous management, control, evaluation, maintenance,
and organization of a whole systems.

Nevertheless, there is one common underlying idea: introducing an autonomous
behavior to handle an otherwise complex and unmaintainable system. This autono-
mous behavior must independently take decisions at runtime and manage the assigned
system. Management actions (e.g., configure, adapt, recover) are goal dependent, how-
ever, must result in a consistent system. The success of an adequate autonomous
behavior depends on an accurate system knowledge. Both, autonomic computing and
self-adaptive system research [72,75] agree, only the knowledge of internal state (self
aware) and external situation (context aware) allows for proper adaptation. This com-
bined awareness is gained by filtered data from sensing and feedback from effect-
ing interfaces aligned to the context resulting in an accurate system overview. To
keep a current view and meet contingent time constraints a closed loop system is
assumed. Figure 1 outlines the layer dependencies and data-flow between the required
data.

123

A survey on self-healing systems: approaches and systems

Fig. 1 Required dependencies
and data-flow for systems with
autonomous behavior

1.3 Self-healing research origins

The most cited cornerstone of the mentioned research areas is probably the autonomic
computing initiative by IBM currently comprising several papers and research direc-
tions.1 Ganek and Corbi [30] claim that current systems lack comprehensibility and
require an extension for autonomous behavior, by adapting at runtime to unpredictable
system changes. They emphasize the need by presenting numbers of the increasing
amount spend on system maintenance over the last years. In a nutshell, they cast the
fundamentals of their vision for autonomic computing onto four self properties tied
to a self-managing system, including:

self-configuring: The ability to readjust itself “on-the fly”
self-healing: Discover, diagnose, and react to disruptions
self-optimization: Maximize resource utilization to meet end-user needs
self-protection: Anticipate, detect, identify, and protect itself from attacks.

Over the years this list of properties has been extended and is currently covered
by the research on self-*, self-X respectively, properties (refer to glossary in [75] for
an extended overview). Self-healing research, the focus of this survey, has not only
become an integral part of the autonomic computing vision but generally of the research
on autonomously behaving systems. Thus, Salehie and Tahvildari [72] include self-
healing in self-adaptive research and describe it as a combination of self-diagnosing
and self-repairing with the capabilities to diagnose and recover from malfunctions.
Valid for both directions, Kephart and Chess [50] define the common objectives of
self-healing as to maximize system’s availability, survivability, maintainability, and
reliability.

Research on self-healing systems has its origin in fault-tolerant and self-stabilizing
systems research. Fault-tolerant systems handle transient and mask permanent failures
in order to return to a valid state [67]. Self-stabilizing systems [25] are considered a
non fault masking approach for fault-tolerant systems. These systems have two distinct
properties. Arora and Gouda [9] refer to them as (i) the system is guaranteed to return
to a legal state in a finite amount of time regardless of interferences (convergence) and
(ii) once in legal state it tries to remain in the same (closure). More recent research in
self-stabilizing computer systems seizes on the challenges of autonomic computing
and self-healing research. Most notably the research of Dolev and Schiller [26] on
group communication on arbitrary networks with self-stabilizing protocols.

Contemporary large-scale networked systems have become highly distributed and
allow new levels and structures of management and organization. However, such

1 http://www.research.ibm.com/autonomic/.

123

http://www.research.ibm.com/autonomic/

H. Psaier, S. Dustdar

restructuring is accompanied by new risks and loss of comprehensive control. Indeed,
arbitrary behaving systems are contrary to the convergence and closure properties
of self-stabilization. Survivable systems [55] are designed to sustain the unexpected.
Their main approach is to classify the parts of the system according to their overall
essence. On a malicious influence the system focuses on maintaining the essential
services and recovers non-essential services after intrusions have been dealt with.
Finally, Ghosh et al. [31] note that exceptional situations might also require human
intervention to support self-healing systems.

In short, a system with self-healing properties can be identified as a system that
comprises fault-tolerant, self-stabilizing, and survivable system capabilities and, if
needed, must be human supported.

The rest of this survey is organized as follows: Section 2 presents the principles
and requirements for a self-healing enhanced system. Section 3 describes the areas
of application, and some prominent representatives and solutions to the problems. A
conclusion and comparison of the research is given in Sect. 4 and a summary and
outlook in Sect. 5 concludes the survey.

2 Self-healing principles

This section describes the main principles of self-healing systems. It will help to
understand the design decisions of the researched approaches and their underlying
structures. Starting with a current definition of self-healing systems, we identify the
important parts of a self-healing system to give a detailed insight into their purpose,
composition, and functionality.

2.1 What is self-healing?

Included by IBM [30] as one of the main four properties defining an autonomic system,
Ghosh et al. [31] provide a most recent definition of self-healing systems:

“…a self-healing system should recover from the abnormal (or “unhealthy”)
state and return to the normative (“healthy”) state, and function as it was prior
to disruption.”

One might argue that this is very general and highly similar to what is expected of
the well established fault-tolerant or recent survivable systems. Fault-tolerant systems
comprise stabilization techniques and replication strategies as essential methods for
recovery. Therefore, Ghosh et al. [31] admit that self-healing systems in some cases
are seen as subordinate to fault-tolerant systems. Survivable systems handle malicious
behavior by containing failing components and securing the “essential services” rep-
resenting a minimal but functioning system configuration [27,55,57]. Generally, the
focus of self-healing research is on recovery as an elaborate process. This comprises
both, methods for stabilizing, replacing, securing and isolating, but more essentially,
strategies to repair and prevent faults. [31] identify the key aspect of self-healing sys-
tems as recovery oriented computing. This might also be a reason, why some of the

123

A survey on self-healing systems: approaches and systems

Fig. 2 Relations and properties of self-healing research

researched approaches outline self-healing only as an enhanced recovery method (e.g.,
[3,21]). Sterritt [75] sees the efforts of all autonomic computing as an evolutionary,
well elaborated path to achieve the goals. Ganek and Corbi [30] further detail self-
healing applications’ operation mode as an organized process of detecting and isolating
a faulty component, taking it off line, fixing the failed component, and reintroducing
the fixed or replacement component into the system without any apparent disruption.
For Ganek and Corbi [30] the objective of self-healing properties is to support sys-
tem’s reliability by minimizing the outages. Additionally, self-healing systems should
be able to anticipate conflicts trying to prevent possible failures.

To summarize, the reason for enhancing a system with self-healing properties is
to achieve continuous availability. Compensating the dynamics of a running sys-
tem, self-healing techniques momentarily are in charge of the maintenance of health.
Enduring continuity includes resilience against intended, necessary adaptations and
unintentional, arbitrary behavior. Self-healing implementations work by detecting dis-
ruptions, diagnosing failure root cause and deriving a remedy, and recovering with
a sound strategy. Additionally, to the accuracy of the essential sensor and actuator
infrastructure, the success depends on timely detection of system misbehavior. This
is only possible by continuously analyzing the sensed data as well as observing the
results of necessary adaptation actions. The system design leads to a control loop
similar assembly. An environment dependent and preferably adaptable set of policies
support remedy decisions. Possible policies include simple sets of event dependent
instructions but also extended AI estimations supporting the resolution of previously
unknown faults. A conspectus of the research on self-healing properties is given in
Fig. 2. At the bottom, the origins of the self-healing ideas are illustrated. On the top
some research based on self-healing research is depicted. The properties of self-healing
are listed on the right.

123

H. Psaier, S. Dustdar

2.2 Self-healing loop

The main design element of autonomic computing is the autonomic element [42,44,
50]. It is kept very abstract to fit the internals of all the autonomic properties. The
element comprises a manager that holds five distinct functions with individual tasks.

monitor: The monitor gathers status information from the system through sensors and
pre-processes it for the analyze task.

analyze: This entity determines whether the received monitored information must fol-
low a designated action. This is generally done by comparing status information to
system specific thresholds.

plan: A running system often is full of situation specific dynamics. Therefore, an
accurate, sound, and planed deployment of the actions demanded by analyze is
required.

execute: Presents the entity that executes the parts of previously conceived plans on
the managed element.

knowledge: This represents the knowledge base consumed and produced by all four
previously mentioned tasks.

The collaboration of the five tasks assembles the work of the manager. More pre-
cisely, the subtask of a task is to process the input and filter the output for further
processing. It becomes obvious that there is a data-flow in the form of a loop among
the tasks. This was called the autonomic control loop sometimes referred as MAPE
or MAPE-K (Monitor, Analyze, Plan, Execute, Knowledge) loop [44].

The idea of a continuous multi-state processing loop fits best the operation mode
of self-healing approaches. In self-healing literature, the five autonomic processes are
usually reduced and included into three main stages in a loop. Kephart and Chess
[50] identify them as detection, diagnosis, and repair. Salehie and Tahvildari [72] call
it a sum of self-diagnosing and self-repairing with discovery, diagnosing, and react-
ing stages. Parashar and Hariri [63] only consider detect and recover as the stages.
Huebscher and McCann [42] see the three in detect, diagnose, and fix actions. Con-
sidering the researched work, it is safe to say that for the first stage detection is the
most adequate definition. Originating from the Latin detectio, the act of uncovering
or revealing an alternating of the normal behavior describes the stage’s task the most
accurate. Analysis and planning functions are comprised by the diagnosis in self-
healing implementations. A set of rules or adaptable policies support diagnosis in
planning. The most appropriate denotation for the final stage is recovery. Recovery
is considered extended, however, not always entirely successful, and what differs
self-healing from related remedy techniques. Figure 3 depicts the formation of the
self-healing loop with the data-flow among the three stages and the environmental
interfaces.

detecting: Filters any suspicious status information received from samples and reports
detected degradations to diagnosis.

diagnosing: Includes root cause analysis and calculates an appropriate recovery plan
with the help of a policy base.

123

A survey on self-healing systems: approaches and systems

Fig. 3 Staged loop of
self-healing

recovery: Carefully applies the planned adaptations meeting the constraints of the
system capabilities and avoids any unpredictable side effects.

2.3 Self-healing states

The success of self-healing extensions depends on the distinction between system’s
intentional states and degraded, unacceptable states. The operating environment of
self-healing extensions large-scale, unreliable systems, hold various error sources,
possibly varying over time. The robustness of the self-healing alignment must not
depend on a single element but the system as a whole should be able to recover from
failures [81]. Thus, single element failures should have only minor impact on the
whole system. In many cases there is no fine line, clearly separating acceptable from
an unacceptable state. Instead, there is a momentary transmission zone in between.

The most recent model presented by Ghosh et al. [31], in particular, features a
fuzzy transition zone with an unclear “Degraded State”. This state reflects the fact
that the adverse conditions of a systems cause self-healing systems to drift in a still
acceptable state, however, closer to failure. This concept regards the fact that large,
unpredictable systems usually do not suddenly quit operations when smaller portions
fail, but continue operation with possibly considerable loss on performance. This pro-
vides recovery techniques with additional time for actions and can bring the system
back on track without complete disruption. The described model is depicted in Fig. 4.

Another problem observed by Clarke and Grumberg [20] is the state explosion
problem of large systems with many concurrent processes. Their observation reveals
that the number of processes may cause the number of possible states to grow expo-
nentially. The proposed solution to handle all the possible states is to identify common
properties. In the case of Alpern and Schneider [6] states are aggregated according
to patterns in the execution history or in Clarke and Grumberg [20] according to
equivalence classes for the running processes.

2.4 Self-healing policies

Influenced by AI research on human behavior [66,74], Norman et al. [62] propose a
three level model based on reaction, routine, and reflection. In this model, the three

123

H. Psaier, S. Dustdar

Fig. 4 State diagram of self-healing (taken from [31])

levels differ in depth of processing involved between evaluation of surrounding world
(affect) and interpretation of world (cognition). Later, Kephart and Walsh [49] define
three different types of policies: Action, Goal and Utility Function with increasing
behavioral specification that correspond the three previously presented levels. The
policies related to the corresponding model level are the following:

Action Policies (Reaction): This is a type of policy that dictates an action to be taken on
a certain occurrence, similar to an IF(Condition)THEN(Action) statement. Like-
wise, the reaction level is defined as one where no learning occurs and immediate
response is expected.

Goal Policies (Routine): These policies define a desired state, respectively, a set of
states. This implies that the system must calculate a situation depending set of
actions to make a transition from the current to the desired state. Akin to this
the routine level is defined as one, where largely routine evaluation and planning
behaviors takes place.

Utility Function Policies (Reflection): As a generalization of the goal policies, utility
function policies connect a value to each possible state that is adjusted at runtime,
depending on the current state. The reflection level is described as self-aware. It
deduces the results for problem solving from information of its history, system
capabilities, current system state, and current environment state.

A prototype evaluation presented by White et al. [81] observes that goal-driven and
utility function policies can be key elements to achieve a degree of self-management.
Self-healing research considers recovery as a solid planned process. Simple reactive
behavior might not be sufficient for the scope. Instead, to recover and also maintain the
system several possible options must be balanced. The result of self-healing policies
is a directly or indirectly caused set of actions moving the system towards a safe state.

2.5 Failure classification

Failure classification and root cause analysis is a challenging task in computer net-
works with a complex compositions. Only a classification and identification of the

123

A survey on self-healing systems: approaches and systems

failure allows to deploy adequate recovery strategies. Failures can affect single units
or whole portions of the systems and the two types can provoke each other because
of the dependencies. However, general classifications of failures are available in self-
healing related research. The occurrence of a failure is generally defined as an event
at runtime where the current system behavior deviates from the intended. Ghosh [32]
provides a comprehensive fault classification for fault-tolerant systems. Coulouris
et al. [22] provide a classification of faults in regard to distributed systems. Table 1
represents a summary of the identified classes relevant to self-healing research.

Another, more general, fault classification is provided by Kopetz [53] which parti-
tions failures into dependent on value or timing by nature. A failure can be recognized
(failure perception) consistently by all affected parties or in the worst case only incon-
sistently. The second type is also named the two-faced, malicious or Byzantine failure
type and can only be recognized by 3k + 1 components (k representing the number
of tolerated failures). A system can deal with the effects of a benign failure, whilst a
malign failure exceeds the recovery capabilities and may cause total failure. Finally, a
failure can be identified by the number of occurrence in a given time interval. Perma-
nent failures occur only once and remain in faulty state until repair. Transient failures
recover themselves and can appear repeatedly.

It becomes clear that especially in large, arbitrary systems failure detection and
immediate classification in most cases is not a straight forward process. A crash failure,
e.g, might be classified as an omission failure because local detection is not available
or affected by the failure. Thus, a detected failure might be the result of another. The
columns Possible Detection and Possible Resolution in Table 1 can only list some
well known and possible methodologies for classification and resolution. However,
because of the many interdependencies in large systems and possible false detection
and recovery strategy, self-healing technologies rely on the state model presented in
Sect. 2.3. Remaining in a fuzzy state with degraded functionality, self-healing appli-
cations select among several strategies depending on the current state retrieved by the
feedback loop and history information until healthy state is achieved.

2.6 System fitness and evolution

Designing a complex system for long-term service can prove to be challenging. Firstly,
many requirements are not known a-priori but expose over time. As part of the unex-
pected behavior, self-healing systems also need to support evolutionary contingent,
necessary and intentional adaptations. Secondly, a variety of malicious occurrences
might restrict system’s functionality to the essential services without the capabil-
ity of the self to return to normal performance. Additionally, resource usage might
exceed the limits by dynamic requirements. Therefore, Kephart and Chess [50] retreat
from a fully autonomous vision and consider human assistance to the adaptation loop
in the evolution of autonomic computing environments. Ghosh et al. [31] point out
that part of the self-healing research also recognizes human intervention as a means
to adjust and restore. They coin the term assisted-healing to describe the situation.
Salehie and Tahvildari [72] explain the possible options and trade-offs. The limits
and portions of intentional external influence without interfering the autonomously

123

H. Psaier, S. Dustdar

Table 1 Failure classes

Class Affects Description Possible detection Possible resolution

Crash failure Process Externally undetectable
interruption of a process
execution

Local detection
methods

State recovery and
restart

Fail-stop Process Execution is deliberately
inhibited on a failure
and detected by other
processes

Halt on failure
property

Stable storage status
reconstruction and
partition of
remaining work

Omission Process or
channel

Message loss generally
caused by lack of buffer
space (e.g. send-
omission or receive-
omission), intervening
gateway strategies,
network transmission
errors

Timeout,
checksum

Re-route,
retransmission

Transient Process or
channel

The instantaneous
transparent presence of
various self recovering
faults disturbing other
parts of the system

Only side effects Recovery of
side effects

Timing and
Performance

Process or
channel

Constrained distributed
synchronous execution
of tasks by a specific
amount of time

Timeout (QoS) Re-assignment of
task

Security Process or
channel

The system is
compromised by
adversary implied
malicious behaviour

Behavior
dependent

Behavior dependent

Arbitrary
(Byzantine)

Process or
channel

Any type of failure may
occur A process
confuses the neighbors
by providing constantly
individual consistent
but contradicting
information A
communication channel
may deliver corrupted
or duplicate messages

Process: redundant
communication and
voting (3k + 1),
Channel: checksum
and sequence numbers

Reconstruction,
resend and ignore

adapting mechanism must be estimated. Next, the possible how and where of the
interaction interfaces must be discussed. Interfaces must permit an externally launched
adaptation to be carefully planned, controllable, and soundly deployed.

3 Implemented approaches and applications

The early years of autonomic computing started a substantial amount of research effort
[75]. As a part of the same, a number of self-healing concepts and techniques have

123

A survey on self-healing systems: approaches and systems

been developed in different application areas. In the following sections we present
the features of implemented self-healing approaches classified by areas of research. A
short introduction explains the environment with predominant disruptions and empha-
sizes the motivation for a self-healing implementation. Thereafter, representatives of
approaches and their solutions are described in detail.

3.1 Survey index and guide

Table 2 provides an overview of the collected work detailed in the following sections.
It is structured in an index with section reference and a short summary of the sections’
content.

3.2 Embedded systems

Embedded systems operate in special, constrained environments. Because of these
constraints they are usually limited in hardware resource, power consumption, pro-
cessor speed, and memory size. They must interact continuously with a dynamic
environment and are expected to function for extended periods. Another requirement
is an appropriate and reliable response to changing environment conditions. Therefore,
embedded systems are equipped with sensors and effectors [46]. These characteristics
are closely related to the requirements of self-healing systems. However, embedded-
systems’ constrained nature allows only restricted modes of influence. Thus, at design
time, considerable effort is spent to resolve all reliability issues. Reliability considers
both, timely reaction to usual events but also detection and recovery from exceptional
incidents. The term reactive system has become an alternative term to describe an
embedded systems [15]. Critical time constraints reduce the options in recovery and
diagnosis. Hence, the common reaction to failures with these types is redundancy by
replacing broken parts with standby duplicate spare parts. Consequently, to provide an
appropriate amount of reliability, a certain overhead of extra components is required.
Self-healing approaches in this area point out that this can lead to suboptimal design
and other constraints caused by, e.g., higher production costs, exceeding weight, and
higher power consumption.

In their analysis Glass et al. [33] criticize that previous redundancy models with
duplicate parts had exactly one resource type dedicated for one specific task. Their
solution is to consider multiple mappings between resources and tasks. This means on
a network of resources more instances of the same task are running simultaneously,
some of them as idle. These are ready to instantly take over in the event of a fault.
Later, their self-healing description of a point-to-point network in [34] influenced
by the research in [51] explains the recovery strategy as a combination of self -
reconfiguration and self-routing. An idle shadow task receives status updates by the
regular tasks in a mechanism called checkpointing. Failure detection is provided by
keep alive messages exchanged by task and shadow-task. Thus, the shadow task is
ready to take over once messages disappear and a reconfiguration of the network is
initiated. This also leads to a necessary re-routing of the task’s communication path
supported by the combined routing knowledge of the individual nodes.

123

H. Psaier, S. Dustdar

Table 2 Overview and index

Research area Summary

Embedded systems Demanded by their design and purpose, embedded systems
(Sect. 3.2) have a long tradition in fast recovery strategies

Novel self-healing extensions try to define recovery
actions including the whole system instead
of just focusing on the recovery of single components

Operating systems The dependencies of the various running OS-services can
(Sect. 3.3) interfere not only on startup but also at runtime. New ideas

include a self-healing manager which notes service
failures and re-runs stalled services

Architecture based With the help of architectural models expressed by
(Sect. 3.4) description languages differences between runtime

composition and healthy model of composition are
extracted. Moreover, recovery strategies are deduced
by the type of difference

Cross/multi-layer-based Approaches in this category organize their resources
(Sect. 3.5) into layers. The interpretation of the layer concept

can be different. One approach uses the layers to avoid
conflicts in resource assignment others define the
recovery boundaries and priority of a resource by layers

Multi Agent-based Agent-based environments provide new opportunities
(Sect. 3.6) for self-healing extensions. Agents can act autonomously

and host self-healing capabilities that guard the assigned
system part. Other approaches consider the collaboration
capabilities of agents

Reflective-middleware The self-reflective property of reflective systems offered
(Sect. 3.7) new ideas for self-healing techniques on the middleware

layer. The approaches in this section highlight managers
that transparently combine the properties of reflective-
middleware to a self-healing enhancement
for applications on top

Legacy application and AOP This section presents work that tries to enhance new
(Sect. 3.8) and legacy applications with self-healing techniques

The common idea is to find and provide ideal checkpoints
and hooks for monitoring and recovery actions. These
features are either provided by the linker or runtime for legacy
applications or implemented by the AOP paradigm

Discovery systems Self-healing strategies in this category of systems focus
(Sect. 3.9) on failure resilience. Instead of deploying recovery

strategies to the collection of registered resources they
try despite of failing resources to keep request latency
to a minimum and the query responses consistent

Web services and QoS-based The self-healing approaches focus on the process structure
(Sect. 3.10) or the maintenance of the involved services. In the first

type of approaches the monitoring and recovery
capabilities of process languages are combined to a self-
healing loop. The other type detects degradations by
monitoring the communication between the services
Recovery tries to balance the service load

123

A survey on self-healing systems: approaches and systems

A method of exploiting the capacity of all redundant resources on a network is
also shared by initial work in [80]. In the regular case, all resources are standby for
additional tasks, possibly required during runtime. As in the previous work, recovery
in this implementation considers isolating the faulty component by bypassing it. A
more extended approach can be found in [3]. In this FPGA approach, instead of only
having independent embedded nodes with multiple redundant function units, a self -
configuring master-slave architecture transparent to applications, relocates failing
slaves. Nodes with reduced redundancy are connected to a central manager that main-
tains a table with an overview of nodes and related assigned tasks. In a self-optimization
algorithm new tasks are dispatched equitably to nodes. Once a single node runs out of
part’s redundancy, it reports the problem to the central manager. Recovery gathers the
task’s last state from the failing node and assigns the unfinished task to a spare node.

3.3 Operating systems

Soft faults and hard faults are the two categories of faults affecting a running operating
system. Soft faults are considered application crashes that can be recovered. Opposed
to that, a complete system restart is required on hard faults caused by broken hardware
or faulty drivers often resulting in blocking I/O exceptions. According to Tanenbaum
et al. [77] the main objective of self-healing in operating systems is, aside from failure
resilience, to avoid faults requiring a system restart. These include mainly two possible
methods: (i) release the supervising kernel from dependencies and (ii) free allocated
resources and rerun the failing applications. This second concept is also applied in
recovery-oriented computing and an influential approach is found in Candea et al.
[16]. The recovery by rerun scheme is described as recursive microreboots that reboot
units recursively according to the dependencies hold in the referencing reboot tree.

The first solution to minimize and stabilize the operating system kernel is presented
in the example of the Minix3 Operating System.2 The precaution taken in this system
design is an isolation of all system drivers from the kernel. External access to the kernel
data structures is granted in read-only mode. In Herder et al. [38] two special server
(services) reincarnation and data server, handle recovery. The reincarnation server is
a parent process to all other processes and notices through this relation if a child thread
fails. The data server holds configuration and status information. Recovery policies
are stored for every component and the common replaces the failing application with
a fresh copy.

The other prominent idea is a predictive self-healing mechanism described in
Shapiro [73] and implemented in Solaris-10.3 Proactive in this implementation means
a clever diagnosis that can anticipate major degradations. At the core, an operating
system service called the fault manager, polls the messages provided by the system
logging facilities. It then dispatches the messages to the matching diagnosis engines
for the several fault classes, e.g., CPU, memory, I/O, and applications faults. Each
diagnosis engine attempts to anticipate and diagnose a possible problem and trigger

2 http://www.minix3.org/.
3 http://www.sun.com/software/solaris/.

123

http://www.minix3.org/
http://www.sun.com/software/solaris/

H. Psaier, S. Dustdar

an automated recovery response. A recovery response manages the coordinated rerun
of the affected applications. Coordination is essential, because operating system ser-
vice providing applications, such as daemons might have interdependencies with other
applications and daemons. A plain restart of a misbehaving one can result in others
failing. Therefore, this approach handles dependencies as contracts. These are man-
aged by a dedicated service, the service manager. The service manager is consulted
by recovery for a correct order of possibly multiple restarts.

3.4 Architecture-based

A common diagnosis method in self-healing compares current values of critical system
properties to pre-estimated “healthy” value constraints. This fact was recognized by
system architecture-based research and expressed by the idea of keeping an updated
notion of the guarded system captured in an architectural model. The real environ-
ment is mapped to a model of resources and dependencies and kept consistent. The
complexity of reality is usually reduced by abstracting only the substantial properties
(e.g., elements, interaction patterns, performance expectations) of the environment and
expressed in an architectural description language (ADL). Monitoring and recovery
facilities are assumed to be supported by a properly equipped middleware underneath
(possibly in conjunction with, e.g., reflective middleware see Sect. 3.7). At runtime,
these approaches need to handle three major tasks. Firstly, the sensed data must be
translated for comparison to the last known model. Next, possible violations of ranges
caused by changes must be recognized using the model. Finally, on a violation, diag-
nosis deduces the according correction model, translated back to required recovery
actions.

The approach in Dashofy et al. [24] describes the system under consideration in
an XML-based architecture description language (xADL 2.0). During diagnosis, the
ArchDiff tool takes current and desired architecture as input and outputs the discrep-
ancies in an architectural diff. This diff is mapped to a recovery description. Dedicated
design critics collaborate and pre-estimate any violation to integrity by checking the
recovery description. Only correct descriptions are applied. Cheng et al. [18] illus-
trate an adaptation framework, following the model of the MAPE loop. The state
recognition in this approach is handled by a service called Architectural Manager. It
comprises tools for abstraction of the monitored feedback and relation to the properties
of the architectural model. An evaluation determines if the system is still in acceptable
ranges. Finally, a repair handler adapts the model and propagates the changes to the
running system.

The model adaptation concept is also shared by Cheng et al. [17,19]. These exploit
the advantages of a quite reliable and complete view of the underlying environment.
They not only adapt for recovery, but support system reconfiguration and evolution
at runtime by policy adaptation. In the layered structure in Cheng et al. [17] the
layer above the Model Layer can set overall system objectives regarding, i.e., the
quality of service. In Cheng et al. [19], the authors extend the architecture-based self-
adaptation of the Rainbow framework with an adaptive learning approach. The system
records and remembers (learns) human administrator decisions in critical situations.
Such derived action scripts are called tactics and related to self-healing policies.

123

A survey on self-healing systems: approaches and systems

3.5 Cross/multi-layer-based

Adaptation focused on more than one resource is a strength of self-healing techniques.
The approaches in this section additionally consider coordinated adaptations on dif-
ferent system layers. The most prominent areas of application described in [2,83]
are multimedia applications and unreliable networks [47,68,82]. A starting point is
separation of concerns. Minor functionalities and responsibilities are partitioned into
the layers. An overview layer, manages the required adaptations and keeps an updated
view of the status on the different layers’ resources. Therefore, this layer must be
informed of the latest status in addition to all adaptation features of the subordinated
layers.

In the GRACE project [2,83], a resource coordinator assigns spare resources (net-
work and hardware) to the requesting applications. Once reserved, the application reg-
ulates on its own the allocation and reallocation of the assigned resource. The reasons
for a request can be conflicting and contradicting and are resolved at the coordinator. In
a predictive manner the coordinator tries to avoid conflicts and must balances between
cost and overall utility, with the aim of optimizing utility and lowering cost.

A different understanding of multi-layer adaptation is found in wireless and ad-hoc
networks. The layers referred to in these works are the layer of the ISO/OSI-7-Layer
model. The concept in Kant and Chen [47] presents a self-healing multi-layer method
with policies containing hierarchical survivability requirements. Therefore, the depen-
dencies of critical and prioritized services are restored first at all layers. In a following
work, Kant and Chen [48] realize that the same multi-layer recovery result can be
achieved with a combination of different adaptation strategies on several layers. This
approach selects the adequate one for each layer depending on the delay expectations
of the affected parties.

3.6 Multi agent-based

Agent-based systems, similar to the previously presented embedded systems, pro-
vide robustness by redundancy. The difference is that embedded systems are usually
encountered in closed environments with simple behavioral patterns. The strength of
agent-based approaches is that by design they can handle unexpected situations in
environments with unpredictable behavior. An agent is responsible for its entrusted
environment and must be self aware and adapt to support overall objectives [45]. Fur-
thermore, to meet the objectives, agent-based systems consist of multiple cooperative,
persistent agents [40].

Corsava and Getov [21], intelligent agents or “intelliagents”, are advised to diag-
nose the behavior of different classes of resources in a cluster landscape. In particular,
different intelliagents monitor hardware, operating systems, and network resources.
An agent’s structure has five major parts. Apart from the common ones including
monitoring, diagnosing, and repair, intelliagents collaborate with each other by com-
munication. They log their activities and try to self-maintain. The design of an agent is
faithful to the initial ideas of autonomic computing. Intelliagents are mainly deployed
to support the human administrator in daily tasks. Thus, detection results are always

123

H. Psaier, S. Dustdar

logged and the recovery attempt is simple. Recovery stalls the execution on affected
resources, tries to find a fail-over unit and restarts execution with the saved state. This
has the advantage that external influence and help by the human administrator does
not confuse the self-healing system.

But agent robustness not only derives from agent redundancy. Equipped with the
same algorithms, the agents are contained with the same flaws and most probably fail
successively on the same defect. Instead, one important notion in agent-based software
and self-healing, is robustness via heterogeneous implementations.

An interesting path is followed by the ideas presented in Huhns et al. [43]. This
paper considers its contribution to self-healing in the aforementioned robust redun-
dancy. In contrary to the redundancy by identical parts, the outlined concept means
both, redundancy by diversity of implementation, and redundancy by voting for a cor-
rect result. Furthermore, the voting method can be applied as a pre-selection of the
most suitable implementations, a selection of the most accurate result at the end; or a
combination of both. Two architectural approaches are considered. In the centralized
one, only one agent collects the capabilities of all other agents and decides which are
the most suitable for an incoming task. At the end it decides on the best result. The
distributed approach is more complex and includes a gossip communication between
the agents. Again, a pre and post process voting is possible.

A centralized approach can be found in Tesauro et al. [79]. The developed soft-
ware architecture called Unity, aims at self-management by component interaction.
Components are autonomic elements appointed to control the resources. The pre-
sented self-healing method involves only elements that serve as policy repositories.
The approach allows human administrators to set the system objectives as policies.
The hierarchy comprises a bootstrapping arbiter on top that deploys several redundant
registries containing the policies into a cluster of resources. Deployed registries pro-
vide the elements managing the cluster resources with policy updates. Once a registry
fails, the arbiter will temporarily reassign all activities of the failing to a still running
registry. Meanwhile, the arbiter determines an ideal host in the cluster to deploy the
replacement repository. In this scenario, the arbiter represents the voter and the new
host selection the diversity.

An elaborated agent approach is available by IBM’s APLE, a Java based agent
framework [12]. This framework builds on the idea of blank base agents that can
be extended with functionality and bound together to a new agent, thereby enabling
task splitting among the sub-agents and divers task handling by different extension
composition. The base of the framework is formed by the AbleAgent composed by
components called AbleBeans. A collection of interconnected beans define the agents
specific function. A component library is an archive for the different types of beans.
Three types of beans are distinguished. Data beans access and transform data. Learn-
ing beans contain learning algorithms and data maintaining capabilities. Rule beans
define sets of rules in a specific rule language. On the highest level the agent platform
comprises services that provide life-cycle management (create, suspend, resume, quit)
for agents as well as inter agent communication. In a final section, the paper presents
the layout of the Autonomic agent. This is a composed agent platform that mimics an
autonomic manager by combining required functions with a collection of dedicated
agents. As a special contribution three levels of reaction, reflexive, instinctive, and

123

A survey on self-healing systems: approaches and systems

learned behavior are added to the autonomic agent as separate agents (AbleSubsump-
tionAgents). These apply to the three types of policies of Sect. 2.4.

3.7 Reflective-middleware

Self-representation is the main feature of a reflective system. In detail, this describes
an interface with two main features. It enables analysis by queries on structure and
on system states, and adaptation by reconfiguration actions. This requires a stringent
connection between representation and the system itself. Maes [56] specifies the con-
nector of a reflective system causal, meaning that once internal structures change, they
must also change in the reflective representing domain and vice versa. Starting with the
adoption of architectural reflection in programming languages, reflection lately was
also introduced into middleware and includes such projects as DynamicTAO [52],
OpenCORBA [54], OpenORB [13], to name a few.

Blair et al. [14] explain the relation between OpenORB self-healing techniques.
The main idea is to resign to one of the main features of middleware, the transpar-
ency. Instead, openness provides authorized applications, via meta-models (resource
meta-models and interception) access to configuration means to control structure and
behavior. On the one hand, OpenORB provides structural reflection, including inter-
face meta-models for external representation and architectural models for internal
representation of a component. These are a representation of the underlying system
structure and support adaptation by the knowledge of components and their intercon-
nections. On the other hand, behavioral reflection, composed by interception meta-
models, enables dynamic inspection of data-flow monitoring and manipulation, and
resources meta-models offer access to resources and their management. The presented
approach considers self-healing comprised by monitoring and adaptation management
components. These are dynamically introduced into various meta-space models. They
provide an interpreter for timed automata to control at one side, and interfaces to
the other components on the other. Predefined policies in the form of timed auto-
mata, guide the management components in event registration and handling, and, if
necessary, in adaptation.

A complete self-healing loop for reflective middleware is outlined in Hong et al.
[41]. This work considers self-healing as one of the computation units atop of the
reflective middleware. The outlined system comprises, in the notion of computation
units, the runtime as basic computation level monitored by the reflective computation
level. Above that, a self-healing computation analyses and plans changes. The required
adaptations are then propagated through the reflective computation down to the basic
computation.

3.8 Legacy application and AOP

This section considers self-healing approaches that enhance existing and new applica-
tion software with recovery structures. The goal is to capture any possible exceptions,
to root analyze the fault, and to overcome the interruption, supporting application
continuance.

123

H. Psaier, S. Dustdar

The first presented representative tries to support established legacy applications.
The challenge is to find a way to access and control, however only soundly or trans-
parently interfere, with the regular mode of operation. In contrast to the previously
presented middleware approaches, sensor and actuator interfaces are not available
from the start. Instead, ideal access points must be located. The presented solutions
add checkpoints or hooks to the application’s linking mechanism or runtime environ-
ment to monitor and control the program-flow. The work in Griffith and Kaiser [35]
is an initial idea of how this method could work in a .NET runtime. The Just In Time
(JIT) compiler provides an entry point to possible execution flow adaptation. Over-
writing the execution pointer address before or after a method call could redirect the
flow to an external repair engine in the case of a failure. The Java based approach in
Fuad et al. [28] injects hooks at strategic points enabling runtime interaction with the
managed code. Injection means introspect and retrofit existing byte codes with Java-
assist4 bytecode manipulation at strategic checkpoints. Additionally, every method is
finalized with an extra try-catch block, catching any runtime exceptions. On an excep-
tion, diagnosis estimates the root cause. Recovery tries to reinitialize the code at the
failing point and execution can continue at the last known state.

The event-based extensible framework in Abbas et al. [1] provides program-flow
interception and redirection of linked applications, by hooking into the dynamic linker
and altering jump addresses if necessary. The approach extends a common linker with
dedicated hooks. Hooks monitor the symbol look-up at the linker and trigger events
in a callback to a service called Dynamic Dynamic Linker (DDL). This service has
an API for external extension and provides a redirection library that can dynamically
adapt the application linking.

Aspect-oriented programming (AOP) provides access points to monitor and alter
behavior of a running application already at design time. AOP is based on joint points,
which similar to the previous hooks and defines a point in the program flow, like a
method invocation. Joint points associated advices can then execute defined methods
before, during, and after an identified situation.

As an example, the approach in Haydarlou et al. [37] considers AOP as a method for
self-healing. Detection comprises two stages. Sensors are instrumented in all strategic
components (objects) and boundaries (interaction points) of the application. Sensors
are passively waiting for failure alarms. A status model is actively gathered storing
system structure and changing states. Analysis uses information on events, method
invocations, and state changes, to recognize failure patterns. Recovery planning in this
implementation covers three stages comprising all three types of policies presented in
Sect. 2.4. Well known failure patterns are easily recognized and handled in reflexive
manner by the Reflexive Planner. If this type of planner fails, a deeper analysis esti-
mates the root cause for the Instinctive Planner that selects a more complex recovery
plan form a repository. Finally, if the planner also fails to select a strategy, a Cognitive
Planner equipped with human interaction interface and machine learning algorithms
creates a new complex recovery plan that is executed and saved to the repository.

4 http://www.csg.is.titech.ac.jp/~chiba/javassist/.

123

http://www.csg.is.titech.ac.jp/~chiba/javassist/

A survey on self-healing systems: approaches and systems

Finally, the work in Alonso et al. [5] considers supporting self-healing with a
fine-grain monitoring framework architecture. This AOP-Monitoring Framework is
composed by sensors and the Monitor Manager. The sensors represent aspects and
deliver the manager with collected information. The monitor analyzes the data and
determine an appropriate action policy. It anticipates failures by using data mining
or forecasting methods using the sensor collected data. In detail, it can dynamically
activate and fine tune sensors at a suspicious spot to precisely investigate the situation.

3.9 Discovery systems

Discovery systems must provide a consistent view of distributed components. They are
designed to support the discovery of different resources with a variety of distributed
applications on nodes with distinct requirements specified by individual semantics.
Such systems must be highly available, scale, and be up to date on the network’s
status. Failure sources include the unreliable behavior of the resources that suddenly
disappear, crash, recover, and then possibly later reappear. Hence, discovery systems
and self-healing systems handle environments with similar behavior.

Dabrowski and Mills [23] discuss this fact. Similar to self-healing’s aim for con-
tinuous availability, service discovery primarily focuses on consistency maintenance
of discovered resources and answer client’s resource queries at any time. To succeed,
updates to service descriptions are fetched either by active polling of the resource or
by subscription to notifications on changes. Failure discovery is described as com-
bination of two stages. At a first stage, heartbeat messages in the form of scheduled
resource announcements are monitored. If these disappear, in a second stage, the
monitor actively polls the suspicious resource waiting for an acknowledgment. On a
recognized resource failure the recovery strategies base on persistence at two levels.
The first, soft-state persistence includes preliminary discarding knowledge from the
registry, considering a temporal failure. The second is application-level persistence
and counts on the resilience of individual applications using a failing service.

Noticeable, this work contains no description of any recovery methods deployed
by the registry. Rather, because of the system’s complexity and heterogeneity, there
cannot be one defined remedy method for all resources. To scale, this cannot be the
concern of the discovery service of the system. On the contrary, the healing methods
must be applied to the individual resources and it is their responsibility to announce
availability after recovering.

Hence, the main effort in discovery systems is failure resilience, meaning that
request latency is kept to a minimum and lookups remain consistent. In wide-area
unreliable networks, the trend has gone towards tree lookup in form of distributed
hash tables (DHT). DHT manage their knowledge in structured graphs. Neighbor
nodes share partly the same information about resources. A node failure is recovered
by firstly broadcasting the fact to all concerning neighbors and than selecting the best
fitting substitute [69].

This method for self-healing discovery systems is also used by the approaches
in Albrecht et al. [4] and Rilling [70]. Both base the success of their self-healing
on the recovery strategies on DHTs. The first describes a resource discovery service
for wide-area distributed systems named SWORD. The results confirm the claim

123

H. Psaier, S. Dustdar

that services managed by DHT automatically inherit the DHT’s self-configuration,
self-healing, and scalability properties. The Vigne self-healing architecture for grid
operating systems presents an environment for distributed decentralized control of
applications. It accomplishes recovery and fault transparency relying on the underly-
ing DHT routing mechanism.

The self-healing network (SHN) [8] for runtime environments uses the notion of
neighbors for failure recovery. SHN belongs to the family of discovery and resource
management systems and aims for high scalability. Recovery is similarly enabled
by nodes organized as neighbors in a tree structure, informing each other on detected
changes. It bases on the authors’ previously specified scalable and fault-tolerant proto-
col (SFTP) [7], that use the neighbor nodes to reroute the messages in the failure cases.

3.10 Web services and QoS-based

Services have gained importance not only in research (Grid-Computing, Workflow
engines) but also in business applications (Google Webservice,5 Amazon Web Ser-
vices6). As the W3C Working Group Node7 on QoS for Web Services explains, because
of the dynamic and unpredictable characteristics of Web services, one of the major
challenges of service providers is to guarantee a certain quality of service (QoS)
towards the expectations of their clients. Out of the desired properties of WS QoS
listed by the W3C performance, reliability, robustness, exception handling, integrity,
availability are the most related to self-healing. On the one side, a contract (e.g., SLA)
binds the provider to a certain degree of quality promised to the requester, on the other
side, the provider aims to optimize profit from the service by any means available,
namely exploiting the best all available resources. While the optimization side is more
subject to other self-* research, the maintenance of a certain degree of QoS is an
entry point for the presented self-healing approaches in this subsection. Web services
are failure affected in a similar way as discovery services. Moreover, the failure of
just a single service can cause a significant degradation in performance because of
the service interdependencies. This leaves WS recovery with two possible options.
Either a reconfiguration is done internally on the composition of the WS workflow, or
a reconfiguration requires architectural changes of the services’ landscape itself.

BPEL engines, providing the common workflow engines of today, comprise three
handlers as interfaces for recovery. These are fault, compensation, and event handlers.
Fault and event handler are activated during execution and provide status informa-
tion which can be monitored and diagnosed. For recovery, the compensation handler
can be invoked after execution of the faulty activity. However, these handlers are only
interfaces and it is up to the designer to combine the methods for a successful recovery.

This lack is recognized by the work in Modafferi and Conforti [58]. It presents
a non-intrusive approach, which instead of implementing a new engine or extend-
ing the existing one, extents the design language of BPEL workflows with proper

5 http://code.google.com/apis/ajaxsearch/.
6 http://aws.amazon.com/.
7 http://www.w3c.or.kr/kr-office/TR/2003/ws-qos/.

123

http://code.google.com/apis/ajaxsearch/
http://aws.amazon.com/
http://www.w3c.or.kr/kr-office/TR/2003/ws-qos/

A survey on self-healing systems: approaches and systems

annotations. A complementary pre-processor converts the definitions back to BPEL
workflows extended with optional recovery operations. The imagined recovery actions
are in detail, the modification of process variables, the specification of deadlines for
tasks, the ability of re-doing a nested portion of the flow (task or scope), the possibility
to reroute the flow path, and the return to a safe point in the process.

Modafferi et al. [59] extend a standard BPEL engine (BPEL4WS 1.1 compatible)
with management access composing it to a Self-healing BPEL (SH-BPEL) engine. An
additional Process Manager hosts the BPEL engine. The manager controls the engine
through two interfaces. The Process Management API supports operations on the pro-
cess instances and the Engine API allows direct influence of the engine. In addition, the
manager can intercept the message exchange between BPEL engine and Web services
and, transparently to the BPEL engine, influence and replace the Web services. This
already relates the second option of the WS recovery methods. Finally, the manager
stores action policies that react to notifications and provides itself a management API
that allows external applications to trigger policies.

Another extension of an existing engine is presented in Subramanian et al. [76]. The
SelfHealBPEL engine interfaces with the ActiveBPEL engine. The extension provides
a recovery policy definition sh-policy for any activity. Detection assures that pre- and
post-condition and non-functional properties of a tracked activity are satisfied and
then on execution monitors unexpected exceptions. Any deficient activity is reported
to diagnosis. This module suspends process execution. Diagnosis’ recovery commits
the plan to process creation and management of the ActiveBPEL engine.

ActiveBPEL is also subject of extension in the work presented in [10,11]. This
self-healing solution named Dynamo (Dynamic Monitoring) bases on reusable sets of
supervision rules. These rules are organized in monitoring locations in the process,
supervision parameter as detection rules, monitoring expressions stating diagnosis
pre- and post-conditions, and reaction strategies for recovery. Priority levels asso-
ciated with supervision rules guarantee that from the bunch of rules connected to a
location only those with a certain priority are executed. Recovery strategies are com-
posed of atomic actions called strategy steps. Strategy steps can be combined and
executed alternatively (by an “or” statement) or together (by an “and” statement).
This self-healing technique is applied by an AOP-extended ActiveBPEL with a Java
based evaluator and rule processor.

A service related approach of a self-healing infrastructure in the work of
Moo-Mena et al. [60]. They consider non-intrusive communication flow QoS moni-
toring for service degradation detection. An interceptor measures the response times
between requester and provider. Three types of information sources help the diagno-
sis in decisions. The first one, the Parameter Repository serves as a log for the QoS
measurement. The second, the Service Level Parameters contains thresholds for the
QoS of the single interactions. WS Table Access keeps current service transaction state
information. By monitoring agreement degradations (e.g., via SLAs) combining the
information of current QoS measurement in the first source and expected in the second,
the diagnosis decides whether to initiate recovery. The main recovery method of this
approach is to instantiate a new service of the affected service’s type. Depending on per-
formance degradation or service malfunction the new service rule is additional service
or replacement. In both cases, the interceptor reroutes the request to the new service.

123

H. Psaier, S. Dustdar

A combination of reactive and proactive self-healing is described in the work of
Halima et al. [36]. The work presents a self-healing middleware called QoS-Oriented
Self-Healing (QOSH), that enhances SOAP messages with QoS metadata to moni-
tor QoS degradations. This is an example of an application non-intrusive monitoring
using, as frequently used, the response time to rate QoS. In this implementation analy-
sis is split into diagnosis and prognosis. Whilst diagnosis is reactive to alerts, diagnosis
tries to predict service deficiency by analyzing the history of QoS measurements. In
either case, the reaction is a reconfiguration of the services. To balance possible local
adaptation over-reactions, the middleware is also equipped with a global diagnosis
and can identify the source of degradation more precisely, inhibit useless adaptations,
and optimize the overall healing effort.

Another services related adaptation approach can be found in the paper by Moser
et al. [61]. The Vienna Dynamic Adaptation and Monitoring Extension (VieDAME)
focuses on BPEL controlled service invocations with a high demand on availability.
VieDAME is split into two parts: the core and the engine adapters. The core comprises
monitoring, service selection and message transformation. The engine adapter inter-
acts with the BPEL engine. An adaptation cycle includes the monitoring (SOAP calls)
and evaluation of various QoS attributes of services towards constraints. Then in the
service selection process the best fitting among “partner” services for the same task is
selected. Finally, a message transformation adapts the service invocation messages to
the selected service interface. Implemented with AOP methods, the system represents
a non-intrusive approach separating the BPEL engine from the adaptation engine.

4 Discussion of approaches

The principles of self-healing systems were described in Sect. 2. On the base of these,
the following sections extract the common and distinct characteristics of the researched
work. First, common characteristics are discussed. In line with the structure of Sect. 2.2
the behavior in the three dominant stages is examined. A summarizing table in Sect. 4.7
gives a comprehensive overview and concludes the discussions.

4.1 Separation of concerns

As explained in the principles (cf. Sect. 1.1), most self-healing approaches recognize
their main task in resolving the system’s complexity. The well researched separation
of concerns concept of the software engineering community [64,78] is considered a
viable method for providing some flexibility and comprehensibility.

In the researched works, flexibility is usually gained by introducing a layered or
master–slave structure. A higher, global view, gains an updated, current view of the
system hold in tables or models. A local layer acts as an interface to the context and
comprises sensor and effector units. All three stages of self-healing implementations
depend on an appropriate current view. Detection requires a reference to distinguish
between the self-healing states. Diagnosis selects the correct recovery policy according
to the current requirements. Recovery supervises the adaptation process with feedback
from the context. The most important aspect of an accurate view is that it allows to

123

A survey on self-healing systems: approaches and systems

involve the whole system into the adaptation process. Recovery does not only depend
on local recovery methods but strategies can consider all known system capabilities.
Adaptation might shift the failing task from a destabilized to a stable portion of the
system. Increasing load can be balanced fair among all available resources.

An important result of the separation is that it augments the quality of the recovery.
Quality consideration include a better traceability and more precise identification of
faults as well as a widespread, prospective fault recovery. Failure recovery not only
depends on simple strategies but aims for a global resolution and a clever reconfigura-
tion to avoid future disruptions. A user is provided with more reliability and reliance.
Finally, a separation of concerns lowers also the probability of an error-prone impact
of evolutionary changes. Hence, system’s maintenance is facilitated; reuse and evo-
lution guaranteed. Minor parts, added, exchanged, or removed, issue only negligible
impacts.

4.2 Intrusive versus non-intrusive

Self-healing approaches often extend existing, well established systems. Therefore,
the requirements for an integration are delicate and aim for a smooth alignment. Two
modes of integration are considered appropriate.

In an intrusive manner the original system must be adapted to support self-
healing extensions. Methods for gaining system awareness and allow adaptations
need to be recognized, elaborated, and implemented. The constructed solution might
interfere with the original design and alter the course and timing of data exchange
and logic decisions. Different, possibly faulty, results must be taken into account and
compensated. However, apart from these disadvantages, a thoroughly planed and strict
coupling with the guarded systems can guarantee an optimal integration in the time
domain. Detection becomes more accurate and adaptations are timely and precise.

A non-intrusive alignment of self-healing techniques respects the guarded system
as a complete unit. Adaptation and monitoring are limited to the optional interfaces
possibly provided by the system. If no interfaces given, diagnosis can only evaluate the
interaction between the system and the environment. A recovery strategy includes only
adaptations of the system’s surroundings. Non-intrusive might be the preferred way of
integration, however the less applied. Its efficiency depends fully on the capabilities
and characteristics of the supported system.

4.3 Closed versus open

As apparent from the principle section, stabilization is one of the main goals of
self-healing systems. However, guaranteeing stability is an almost impossible task
in systems with unpredictable behavior. Therefore, some of the self-healing designs
try at least to avoid all a-priori known failure sources. The concept of a strictly
closed-loop presented in Sect. 2.2 is adopted by most of the reviewed self-heal-
ing approaches. The result of this straightforward concept is a clearer understand-
ing of the operation mode. As a drawback, little configuration options limit the
system’s adaptations for future requirements. However, self-healing techniques are
usually aligned to systems to enhance the long term use. Thus, some of the researched

123

H. Psaier, S. Dustdar

works introduce at least indirect influence by allowing dynamic handling of policies.
Fewer consider direct influence via loop connected interfaces (e.g., UI with control
unit).

4.4 Detecting and reporting suspicious behavior

Fault detection in self-healing systems is accomplished by recognizing degradations.
In the examined work, different types of approaches are applied. A first general dis-
tinction separates approaches that actively search for inconsistencies in the sensed
data and others that are triggered by inappropriate behavior. Both take advantage of
the layer or hierarchical structure of the system. A lower level monitors and pre-
filters the data-flow. Detection analyses the event and on suspicion alerts diagno-
sis. All approaches support detection by an exclusive system knowledge. Knowledge
comprises, e.g., system models, component dependencies, special notifications, log
information, monitoring data enhancements.

4.5 Diagnosing and policy selection

Self-healing systems are recovery oriented. An elaborate recovery strategy requires
an extended diagnosis. Only one of the studied approaches relies on action policies. In
accordance with the evaluation in White et al. [81] mentioned in Sect. 2.4, the rest of
the approaches considers at least goal driven polices, minor rely on utility functions.
In practice, a combination of more than one policy type is often observed. Comparable
to the separation of concerns, most approaches equip their external parts with reactive
action policies as a first fault containment. Supported by detailed system status infor-
mation a centralized planning additionally elaborates goal or utility oriented strategies.

4.6 Recovery techniques

An appropriate amount of redundancy affecting both hardware and software allows a
combination of different types of recovery. While hardware redundancy assists self-
healing implementations only with spare parts as duplicates or additional resources,
software and application redundancy can also include implementation diversity or relo-
cation of services. A detailed list of the redundancy types discovered in the researched
approaches is the following:

replacement: The faulty hardware part is replaced with a duplicate spare one. For
application software this means a rerun by killing of the faulty instance, freeing
possible still allocated resources, and starting a fresh new application instance.

balancing: The degradation is caused by load. In this situation recovery can temporar-
ily include extra application instances or spare hardware parts to sustain the load,
and when safe, free them again.

isolation: Cuts of a failing part of the system to assure that its malicious behavior does
not infect the other parts.

persistence: Assumes that an occurring defect causes no further degradation and is
carried by all parts. This can be seen as a “passive” recovery method. The failing

123

A survey on self-healing systems: approaches and systems

part is ignored and has to provide its own recovery actions if it wants to joint the
system again.

redirection: Changes the task-flow on a failure to a recovery routine and then back to
the original flow.

relocation: Moves an application or task from a failing to a different host re-directing
also the possibly affected communication and data flow.

diversity: Switches to a different approach (algorithm) to solve the task once, one is
considered to fail.

4.7 Overview

Table 3 represents a comprehensive overview of the examined areas of self-healing
research. A reference links to the appertaining approach. Principle and NI/IF (non-
intrusive and self-healing loop interface) introduce the approach. The values in NI/FI
refer to the explanations of Sects. 4.2 and 4.3, respectively. Detection criteria lists
the sources expected to reveal degradations. Monitoring is described in the mode col-
umn. Diagnosis is split in support, Pol./prog. (Policy and prognosis). Support denotes
the basis of diagnosis considerations. Policy refers to the policy types explained in
Sect. 2.4. Prognosis distinguishes those approaches that consider prognosis a property
of their adaptation strategies. The recovery technique column aligns the approaches to
the implemented recovery strategies presented in the previous section. A “-” indicates
that there was no evident information on the related examination column available.
Note, for example, that to the global view introduced in Sect. 4.1 most of the examined
approaches seem non-intrusive. For architecture-based approaches the subject is even
out of scope and non of the work-flow approaches dares to alter the internals of the
work-flow engine. The reader is advised, however, that the final overview does not
include any presumptions on the extracted categories and indicates, e.g., only those
approaches as non-intrusive which explicitly refer to the subject in their work.

5 Summary and outlook

The number of available approaches elucidate that the research on self-healing is very
active. The fundamental ideas trace back to the area of fault-tolerant systems. As a
particular contribution, self-healing focuses on an elaborated recovery process. The
notion of the self and the context as well as a hierarchical separation of concerns
provide a reliable base for reasoning and a balanced delegation of the required adap-
tation actions. Different recovery strategies are considered, combined, selected, and
deployed according to accepted side effects and current system status.

This survey gives an insight into a major selection of current and past self-heal-
ing approaches. Origins, principles, and theories of self-healing are explained. An
introducing paragraph describes the research environment and the motivation for a
self-healing approach in the area. An examination of related approaches comprehen-
sively explains the concepts in the line with the stated principles. In a final discussion

123

H. Psaier, S. Dustdar

Ta
bl

e
3

C
om

pa
ri

so
n

of
ap

pr
oa

ch
es

O
ve

rv
ie

w
A

pp
ro

ac
h

D
et

ec
tio

n
D

ia
gn

os
is

R
ec

ov
er

y

A
re

a
R

ef
er

en
ce

Pr
in

ci
pl

e
N

I/
IF

C
ri

te
ri

a
M

od
e

Su
pp

or
t

Po
l./

pr
og

.
Te

ch
ni

qu
e

E
m

be
dd

ed
[3

4]
N

et
w

or
k

of
–/

c
N

od
e

fa
ilu

re
s

K
ee

p
al

iv
e

m
es

sa
ge

s
R

ou
tin

g
ta

bl
es

a,
g/

–
re

pl
,r

el
sy

st
em

s
co

or
di

na
tin

g
no

de
s

[3
]

C
oo

rd
in

at
in

g
–/

c
N

od
e

fa
ilu

re
s

C
en

tr
al

m
an

ag
er

N
od

e-
ta

sk
ta

bl
e

a,
g/

ye
s

re
pl

,r
el

m
as

te
r

in
vo

ca
tio

n

O
pe

ra
tin

g
sy

st
em

s
[3

8]
R

ei
nc

ar
na

tio
n

–/
c

C
hi

ld
fa

ilu
re

T
hr

ea
d

m
es

sa
gi

ng
D

at
a

se
rv

er
a/

–
re

p,
pe

r

[7
3]

D
ed

ic
at

ed
ye

s/
c

L
og

m
on

ito
ri

ng
L

og
ex

am
in

at
io

n
D

ia
gn

os
is

en
g.

,
g/

ye
s

re
p

O
S-

se
rv

ic
es

de
pe

nd
en

cy
m

gr
.

A
rc

hi
te

ct
ur

e-
ba

se
d

[1
8]

A
rc

hi
te

ct
ur

e
m

gr
.

–/
c

M
od

el
co

m
pa

ri
so

n
m

od
el

di
ff

M
od

el
ca

pt
ur

in
g

g/
–

–
re

so
ur

ce
s

an
d

de
pe

nd
en

ci
es

[1
9]

A
rc

hi
te

ct
ur

e
m

gr
.

–/
o

M
od

el
co

m
pa

ri
so

n
m

od
el

di
ff

M
od

el
ca

pt
ur

in
g

u/
–

–
re

so
ur

ce
s

an
d

de
pe

nd
en

ci
es

C
ro

ss
/m

ul
ti-

la
ye

r
[2

,8
3]

R
es

ou
rc

e
co

or
di

na
tio

n
–/

o
R

es
ou

rc
e

re
qu

ir
em

en
t

A
llo

ca
tio

n
re

qu
es

t
R

es
ou

rc
e

al
lo

ca
tio

n
ov

er
vi

ew
g/

ye
s

pe
r,

re
l

[4
7]

N
et

w
or

k
m

an
ag

em
en

ts
ys

te
m

–/
c

A
la

rm
m

od
el

A
la

rm
s

Su
rv

iv
ab

ili
ty

re
qu

ir
em

en
ts

g/
–

pe
r,

re
l

A
ge

nt
-b

as
ed

[2
1]

A
ge

nt
co

lla
bo

ra
tio

n
–/

o
Pr

ed
efi

ne
d

su
bj

ec
ts

R
es

ou
rc

e
m

on
ito

ri
ng

D
ed

ic
at

ed
kn

ow
le

dg
e

ag
en

t
a/

–
pe

r,
re

l

[7
9]

R
ep

la
ce

ab
le

ag
en

ts
–/

o
A

pp
lic

at
io

n,
Se

nt
in

el
no

tifi
ca

tio
n

C
en

tr
al

ar
bi

te
r

g/
–

pe
r ,

re
l

ne
tw

or
k

fa
ilu

re
s

[1
2]

E
xt

en
si

bl
e

ag
en

ts
–/

–
–

–
A

ut
on

om
ic

ag
en

t
a,

g,
u/

–
–

R
efl

ec
tiv

e-
m

id
dl

ew
ar

e
[1

4]
R

efl
ec

tio
n

–/
c

M
et

a-
m

od
el

s
C

on
fig

ur
ed

by
M

ng
.c

om
po

ne
nt

s
w

ith
tim

ed
g/

ye
s

–
tim

ed
au

to
m

at
a

au
to

m
at

a
L

eg
ac

y
ap

pl
.a

nd
A

O
P

[2
8]

C
he

ck
po

in
ts

et
tin

g
–/

c
E

xc
ep

tio
ns

,d
at

a-
flo

w
H

oo
ks

Pr
og

ra
m

-fl
ow

m
ap

pi
ng

s,
a,

g/
–

re
d

ex
ce

pt
io

ns

[1
]

C
he

ck
po

in
ts

et
tin

g
–/

o
E

xc
ep

tio
ns

,d
at

a-
flo

w
H

oo
ks

Pr
og

ra
m

-fl
ow

m
ap

pi
ng

s,
a,

g/
–

re
d

ex
ce

pt
io

ns

[3
7]

Jo
in

tp
oi

nt
s

an
d

ad
vi

ce
s

–/
o

A
sp

ec
ts

Fa
ilu

re
al

ar
m

s
A

O
P

a,
g,

u/
–

re
d

[5
]

Jo
in

tp
oi

nt
s

an
d

ad
vi

ce
s

–/
c

A
sp

ec
ts

Fi
ne

tu
ne

se
ns

or
s

A
O

P
–/

ye
s

–

123

A survey on self-healing systems: approaches and systems

Ta
bl

e
3

co
nt

in
ue

d

O
ve

rv
ie

w
A

pp
ro

ac
h

D
et

ec
tio

n
D

ia
gn

os
is

R
ec

ov
er

y

A
re

a
R

ef
er

en
ce

Pr
in

ci
pl

e
N

I/
IF

C
ri

te
ri

a
M

od
e

Su
pp

or
t

Po
l./

pr
og

.
Te

ch
ni

qu
e

D
is

co
ve

ry
sy

st
em

s
[2

3]
Sh

ar
ed

re
du

nd
an

t
–/

o
R

es
ou

rc
e

fa
ilu

re
Po

lli
ng

or
no

tifi
ca

tio
n

T
T

L
–/

–
pe

r
lo

ca
tio

n
in

fo
rm

at
io

n

[4
,7

0]
Sh

ar
ed

re
du

nd
an

t
–/

o
R

es
ou

rc
e

fa
ilu

re
–

D
H

T
re

co
ve

ry
g/

–
re

l
lo

ca
tio

n
in

fo
rm

at
io

n

[8
]

Sh
ar

ed
re

du
nd

an
t

–/
o

R
es

ou
rc

e
fa

ilu
re

–
SF

T
P

g/
–

re
l

lo
ca

tio
n

in
fo

rm
at

io
n

W
eb

se
rv

ic
e

an
d

[5
9]

B
PE

L
co

m
pe

ns
at

io
n

–/
o

Q
oS

an
d

SL
A

M
es

sa
ge

ex
ch

an
ge

,
Pr

oc
es

s
m

an
ag

er
g/

ye
s

re
d

Q
oS

-b
as

ed
ha

nd
le

r
vi

ol
at

io
ns

en
gi

ne
A

PI

[7
6]

–/
c

C
on

di
tio

n
tr

ac
ki

ng
Sh

-p
ol

ic
y

g/
–

re
d

[1
0]

Su
pe

rv
is

io
n

fr
am

ew
or

k
–/

c
R

ul
e

vi
ol

at
io

n
L

oc
at

io
n

m
on

ito
ri

ng
Su

pe
rv

is
io

n
ru

le
s

g/
–

re
d

[6
0]

Q
oS

an
d

SL
A

vi
ol

at
io

ns
ye

s/
c

A
gr

ee
m

en
t

In
te

rc
ep

to
r

R
ef

er
en

ce
va

lu
es

g/
ye

s
re

d
re

l
de

gr
ad

at
io

ns
fo

r
re

sp
on

se
tim

es
fo

r
m

ea
su

re
m

en
ts

[3
6]

ye
s/

c
SO

A
P

en
ha

nc
em

en
t

g/
ye

s
re

d
re

l

[6
1]

Q
oS

an
d

hi
gh

av
ai

la
bi

lit
y

ye
s/

o
SO

A
P

in
vo

ke
ca

lls
A

gg
re

ga
te

d
in

vo
ca

tio
n

V
ar

io
us

g/
ye

s
re

d
re

l,
pe

rf
or

m
an

ce
Q

oS
at

tr
ib

ut
es

ba
l

In
co

lu
m

n
N

I/
IF

(n
on

-i
nt

ru
si

ve
/in

te
rf

ac
e)

op
en

,c
lo

se
;i

n
co

lu
m

n
Po

l./
pr

og
.(

Po
lic

y/
pr

og
no

si
s)

ac
tio

n,
go

al
,u

til
ity

;i
n

co
lu

m
n

Te
ch

ni
qu

e
re

pl
ac

em
en

t,
re

lo
ca

tio
n,

pe
rs

is
te

nc
e,

re
d

ir
ec

tio
n,

ba
la

nc
in

g

123

H. Psaier, S. Dustdar

differences and similarities of the researched material are summarized and an overview
table allows for approach comparison and evaluations for future improvement.

Large-scale and unreliable system accumulations have become reality and a means
to handle the unpleasant repercussions are considered important. The spectrum of
solutions is wide and still not completely exhausted. Paramount, fault-tolerant system
research has established a fixed position on the subject with the concepts of failure
transparency and self-stabilization algorithms. Survivable systems research recognizes
that for malicious intrusions with unpredictable impacts exist no simple fault recover-
ing formulas. Self-healing research inherits from both and combines its capabilities to
isolate, recover from faults, or at least, sustain essential parts of the guarded system. A
whole new research seems to open in the direction of self-sustaining systems [29,39].
This research considers the requirements for adaptive systems antagonistic to the limit-
ing requirements of perfect system design. Their motivation for future system design is
to find a satisfying trade-off between the vision of a perfectly functioning environment
and the real requirements of an adaptive but at times not-fully-operational runtime.

Acknowledgments This survey has received funding from the European Community’s Seventh Frame-
work Programme FP7/2007-2013 under grant agreement 215483 (S-Cube).

References

1. Abbas N, Palankar M, Tambe S, Cook JE (2004) Infrastructure for making legacy systems self-managed.
In: 2004 Workshop on Self-Managing Systems, Newport Beach, CA, USA, October 31–November 1

2. Adve S, Harris A, Hughes C, Jones D, Kravets R, Nahrstedt K, Sachs D, Sasanka R, Srinivasan J,
Yuan W (2002) The Illinois GRACE Project: global resource adaptation through cooperation. In:
Proceedings of the workshop on self-healing, adaptive, and self-managed systems (SHAMAN)

3. Akoglu A, Sreeramareddy A, Josiah J (2009) FPGA based distributed self healing architecture for
reusable systems. Cluster Comput 12(3):269–284

4. Albrecht J, Oppenheimer D, Vahdat A, Patterson DA (2008) Design and implementation trade-offs for
wide-area resource discovery. ACM Trans Internet Technol 8(4):1–44

5. Alonso J, Torres J, Moura Silva L, Griffith R, Kaiser G (2008) Towards self-adaptable monitoring
framework for self-healing. Tech. Rep. TR-0150, Institute on Architectural issues: scalability, depend-
ability, adaptability, CoreGRID-Network of Excellence

6. Alpern B, Schneider FB (1989) Verifying temporal properties without temporal logic. ACM Trans
Program Lang Syst 11(1):147–167

7. Angskun T, Fagg GE, Bosilca G, Pjesivac-Grbovic J, Dongarra JJ (2006a) Scalable fault tolerant
protocol for parallel runtime environments. In: 2006 Euro PVM/MPI

8. Angskun T, Fagg GE, Bosilca G, Pjesivac-Grbovic J, Dongarra JJ (2006b) Self-healing network for
scalable fault tolerant runtime environments. In: Proceedings of 6th Austrian-Hungarian workshop on
distributed and parallel systems. Springer, Innsbruck

9. Arora A, Gouda M (1993) Closure and convergence: a foundation of fault-tolerant computing. IEEE
Trans Softw Eng 19(11):1015–1027

10. Baresi L, Guinea S (2007) Dynamo and self-healing BPEL compositions. In: 29th International
conference on software engineering-companion, ICSE 2007 Companion, pp 69–70

11. Baresi L, Guinea S, Pasquale L (2007) Self-healing BPEL processes with Dynamo and the JBoss
rule engine. In: ESSPE ’07: International workshop on Engineering of software services for pervasive
environments. ACM, New York, pp 11–20

12. Bigus JP, Schlosnagle DA, Pilgrim JR, Mills IWN, Diao Y (2002) Able: a toolkit for building multi-
agent autonomic systems. IBM Syst J 41(3):350–371

13. Blair GS, Coulson G, Andersen A, Blair L, Clarke M, Costa F, Duran-Limon H, Fitzpatrick T, Johnston
L, Moreira R, Parlavantzas N, Saikoski K (2001) The design and implementation of Open ORB 2.
IEEE Distributed Syst Online 2(6)

123

A survey on self-healing systems: approaches and systems

14. Blair GS, Coulson G, Blair L, Duran-Limon H, Grace P, Moreira R, Parlavantzas N (2002) Reflection,
self-awareness and self-healing in OpenORB. In: WOSS ’02: Proceedings of the first workshop on
Self-healing systems. ACM, New York, pp 9–14

15. Broy M (1997) Requirements engineering for embedded systems. In: Proceedings of the first workshop
formal design of safety critical embedded systems (FemSys)

16. Candea G, Cutler J, Fox A (2002) Improving availability with recursive micro-reboots: a soft-state
system case study. In: Dependable systems and networks: performance and dependability symposium
(DNS-PDS)

17. Cheng SW, Garlan D, Schmerl B, Steenkiste P, Hu N (2002) Software architecture-based adaptation
for grid computing. In: HPDC ’02: Proceedings of the 11th IEEE international symposium on high
performance distributed computing. IEEE Computer Society, Washington, DC, p 389

18. Cheng SW, Garlan D, Schmerl BR, Sousa JP, Spitnagel B, Steenkiste P (2002) Using architectural
style as a basis for system self-repair. In: WICSA 3: Proceedings of the IFIP 17th world computer
congress-TC2 Stream/3rd IEEE/IFIP conference on software architecture. Kluwer, The Netherlands,
pp 45–59

19. Cheng SW, Garlan D, Schmerl B (2006) Architecture-based self-adaptation in the presence of multiple
objectives. In: SEAMS ’06: Proceedings of the 2006 international workshop on self-adaptation and
self-managing systems. ACM, New York, pp 2–8

20. Clarke EM, Grumberg O (1987) Avoiding the state explosion problem in temporal logic model check-
ing. In: PODC Proceedings of the sixth annual ACM Symposium on Principles of distributed comput-
ing. ACM, New York, pp 294–303

21. Corsava S, Getov V (2003) Intelligent architecture for automatic resource allocation in computer
clusters. In: IPDPS ’03: Proceedings of the 17th international symposium on parallel and distributed
processing. IEEE Computer Society, Washington, DC, p 201.1

22. Coulouris G, Dollimore J, Kindberg T (1994) Distributed systems: concepts and design. Addison-
Wesley Longman Publishing Co., Inc., Boston

23. Dabrowski C, Mills K (2002) Understanding self-healing in service-discovery systems. In: WOSS ’02:
Proceedings of the first workshop on self-healing systems. ACM, New York, pp 15–20

24. Dashofy EM, van der Hoek A, Taylor RN (2002) Towards architecture-based self-healing systems. In:
WOSS ’02: Proceedings of the first workshop on Self-healing systems. ACM, New York, pp 21–26

25. Dijkstra EW (1974) Self-stabilizing systems in spite of distributed control. Commun ACM 17(11):
643–644

26. Dolev S, Schiller E (2004) Self-stabilizing group communication in directed networks. Acta Inform-
atica 40(9):609–636

27. Ellison R, Fisher D, Linger R, Lipson H, Longstaff T, Mead N (1999) Survivability: protecting your
critical systems. Internet Comput IEEE 3(6):55–63

28. Fuad MM, Deb D, Oudshoorn MJ (2006) Adding self-healing capabilities into legacy object oriented
application. In: ICAS ’06: Proceedings of the international conference on autonomic and autonomous
systems. IEEE Computer Society, Washington, p 51

29. Gabriel R (2008) On sustaining self. In: Self-sustaining systems: first workshop, S3 2008 Potsdam,
Germany, May 15–16, 2008 Proceedings. Springer, Berlin, pp 51–53

30. Ganek AG, Corbi TA (2003) The dawning of the autonomic computing era. IBM Syst J 42(1):5–18
31. Ghosh D, Sharman R, Raghav Rao H, Upadhyaya S (2007) Self-healing systems—survey and synthe-

sis. Decis Support Syst 42(4):2164–2185
32. Ghosh S (2006) Distributed systems: an algorithmic approach. Chapman & Hall/CRC, Boca Raton
33. Glass M, Lukasiewycz M, Streichert T, Haubelt C, Teich J (2007) Reliability-aware system synthesis.

Design, Automation and Test in Europe Conference & Exhibition, pp 1–6
34. Glass M, Lukasiewycz M, Reimann F, Haubelt C, Teich J (2008) Symbolic Reliability Analysis of

Self-healing Networked Embedded Systems. In: SAFECOMP ’08: Proceedings of the 27th interna-
tional conference on computer safety, reliability, and security. Springer, Berlin, pp 139–152

35. Griffith R, Kaiser G (2005) Manipulating managed execution runtimes to support self-healing systems.
SIGSOFT Softw Eng Notes 30(4):1–7

36. Halima RB, Drira K, Jmaiel M (2008) A QoS-oriented reconfigurable middleware for self-healing web
services. In: ICWS ’08: Proceedings of the 2008 IEEE international conference on web services. IEEE
Computer Society, Washington, pp 104–111

37. Haydarlou A, Overeinder B, Brazier F (2005) A self-healing approach for object-oriented applications.
In: Proceedings of the sixteenth international workshop on database and expert systems applications,
pp 191–195

123

H. Psaier, S. Dustdar

38. Herder JN, Bos H, Gras B, Homburg P, Tanenbaum AS (2006) MINIX 3: a highly reliable, self-
repairing operating system. SIGOPS Oper Syst Rev 40(3):80–89

39. Hirschfeld R, Rose K (2008) Self-sustaining systems: first workshop, S3 2008 Potsdam, Germany,
May 15–16, 2008. Revised Selected Papers. Springer, Berlin

40. Holderfield V, Huhns M (2003) A foundational analysis of software robustness using redundant agent
collaboration. Lecture notes in computer science, pp 355–369

41. Hong M, Huang G, Tsai W (2005) Towards self-healing systems via dependable architecture and
reflective middleware. In: Proceedings: 10th IEEE international workshop on object-oriented real-time
dependable systems, WORDS 2005, 2–4 February 2005, Sedona, Arizona. IEEE Computer Society,
Washington, DC, p 337

42. Huebscher MC, McCann JA (2008) A survey of autonomic computing—degrees, models, and appli-
cations. ACM Comput Surv 40(3):1–28

43. Huhns MN, Holderfield VT, Gutierrez RLZ (2003) Robust software via agent-based redundancy. In:
AAMAS ’03: Proceedings of the second international joint conference on autonomous agents and
multiagent systems. ACM, New York, pp 1018–1019

44. IBM (2005) An architectural blueprint for autonomic computing. IBM
45. Jennings N (2000) On agent-based software engineering. Artif Intell 117(2):277–296
46. Kaelbling LP (1993) Learning in embedded systems. The MIT Press, Cambridge
47. Kant L, Chen W (2004) Alarm model specification and dynamic multi-layer self-healing mechanisms

for commercial and ad-hoc wireless networks. In: 15th IEEE international symposium on personal,
indoor and mobile radio communications, PIMRC 2004, vol 2, pp 959–963

48. Kant L, Chen W (2005) Service survivability in wireless networks via multi-layer self-healing.
Wireless communications and networking conference, IEEE, vol 4, pp 2446–2452

49. Kephart J, Walsh W (2004) An artificial intelligence perspective on autonomic computing policies.
In: Proceedings fifth IEEE international workshop on policies for distributed systems and networks,
POLICY 2004, pp 3–12

50. Kephart JO, Chess DM (2003) The vision of autonomic computing. Comput IEEE Comput Soc Press
36(1):41–50

51. Koch D, Streichert T, Dittrich S, Strengert C, Haubelt C, Teich J (2006) An operating system
infrastructure for fault-tolerant reconfigurable networks. In: Proceedings of the 19th international con-
ference on architecture of computing systems (ARCS 2006), Frankfurt/Main, Germany. Springer,
Frankfurt, pp 202–216

52. Kon F, Rom’an M, Liu P, Mao J, Yamane T, Magalha C, Campbell RH (2000) Monitoring, security,
and dynamic configuration with the dynamicTAO reflective ORB. In: Middleware ’00: IFIP/ACM
international conference on distributed systems platforms. Springer, Secaucus, pp 121–143

53. Kopetz H (1997) Real-time systems: design principles for distributed embedded applications. Springer,
Berlin

54. Ledoux T (1999) OpenCorba: a reflektive open broker. In: Reflection ’99: proceedings of the second
international conference on meta-level architectures and reflection. Springer, London, pp 197–214

55. Linger R, Mead N, Lipson H (1998) Requirements definition for survivable network systems. In:
Proceedings of the 1998 international conference on requirements engineering (ICRE’98), pp 6–10

56. Maes P (1987) Concepts and experiments in computational reflection. ACM Sigplan Notices
22(12):147–155

57. Merideth M (2003) Enhancing survivability with proactive fault-containment. In: DSN Student Forum,
Citeseer

58. Modafferi S, Conforti E (2006) Methods for enabling recovery actions in Ws-BPEL. Lect Notes in
Comput Sci 4275:219

59. Modafferi S, Mussi E, Pernici B (2006) SH-BPEL: a self-healing plug-in for Ws-BPEL engines.
In: MW4SOC ’06: Proceedings of the 1st workshop on middleware for service oriented computing
(MW4SOC 2006). ACM, New York, pp 48–53

60. Moo-Mena F, Garcilazo-Ortiz J, Basto-D’ıaz L, Curi-Quintal F, Alonzo-Canul F (2008) Defining
a self-healing QoS-based infrastructure for web services applications. In: CSEWORKSHOPS ’08:
Proceedings of the 2008 11th IEEE international conference on computational science and engineer-
ing-workshops. IEEE Computer Society, Washington, DC, pp 215–220

61. Moser O, Rosenberg F, Dustdar S (2008) Non-intrusive monitoring and service adaptation for
Ws-BPEL. In: WWW ’08: Proceeding of the 17th international conference on World Wide Web.
ACM, New York, pp 815–824

123

A survey on self-healing systems: approaches and systems

62. Norman DA, Ortony A, Russell DM (2003) Affect and machine design: lessons for the development
of autonomous machines. IBM Syst J 42:38–44

63. Parashar M, Hariri S (2005) Autonomic computing: an overview. In: Unconventional programming
paradigms. Springer, Berlin, pp 247–259

64. Parnas DL (1972) On the criteria to be used in decomposing systems into modules. Commun ACM
15(12):1053–1058

65. Paul H (2001) Autonomic computing: IBM’s Perspective on the State of Information Technology.
International Business Machines Corporation, http://www.research.ibm.com/autonomic/

66. Picard RW (1997) Affective computing. The MIT Press, Cambridge
67. Pierce W (1965) Failure-tolerant computer design. Academic Press, New York
68. Razzaque MA, Dobson S, Nixon P (2007) Cross-layer architectures for autonomic communications.

J Netw Syst Manage 15(1):13–27
69. Rhea S, Geels D, Roscoe T, Kubiatowicz J (2004) Handling churn in a DHT. In: ATEC ’04: Proceedings

of the annual conference on USENIX Annual Technical Conference, USENIX Association, Berkeley,
CA, USA, pp 10–10

70. Rilling L (2006) Vigne: towards a self-healing grid operating system. In: Proceedings of Euro-Par
2006. Lecture notes in computer science, vol 4128. Springer, Dresden, pp 437–447

71. Salehie M, Tahvildari L (2005) Autonomic computing: emerging trends and open problems. SIGSOFT
Softw Eng Notes 30(4):1–7

72. Salehie M, Tahvildari L (2009) Self-adaptive software: landscape and research challenges. ACM Trans
Auton Adapt Syst 4(2):1–42

73. Shapiro MW (2005) Self-healing in modern operating systems. Queue 2(9):66–75
74. Sloman A, Croucher M (1981) Why robots will have emotions. In: Proceedings IJCAI
75. Sterritt R (2005) Autonomic computing. Innov Syst Softw Eng 1(1):79–88
76. Subramanian S, Thiran P, Narendra NC, Mostefaoui GK, Maamar Z (2008) On the enhancement

of BPEL engines for self-healing composite web services. In: SAINT ’08: Proceedings of the 2008
international symposium on applications and the internet. IEEE Computer Society, Washington, DC,
pp 33–39

77. Tanenbaum A, Herder J, Bos H (2006) Can we make operating systems reliable and secure? Computer
39(5):44–51

78. Tarr P, Ossher H, Harrison W, Sutton SM Jr (1999) N degrees of separation: multi-dimensional
separation of concerns. In: ICSE ’99: Proceedings of the 21st international conference on software
engineering. ACM, New York, pp 107–119

79. Tesauro G, Chess DM, Walsh WE, Das R, Segal A, Whalley I, Kephart JO, White SR (2004) A
multi-agent systems approach to autonomic computing. In: AAMAS ’04: Proceedings of the third
international joint conference on autonomous agents and multiagent systems. IEEE Computer Society,
Washington, pp 464–471

80. Venishetti SK, Akoglu A, Kalra R (2007) Hierarchical built-in self-testing and fpga based healing
methodology for system-on-a-chip. In: AHS ’07: Proceedings of the second NASA/ESA conference
on adaptive hardware and systems. IEEE Computer Society, Washington, DC, pp 717–724

81. White S, Hanson J, Whalley I, Chess D, Kephart J (2004) An architectural approach to autonomic
computing. In: Proceedings international conference on autonomic computing, pp 2–9

82. Winter R, Schiller J, Nikaein N, Bonnet C (2006) Crosstalk: cross-layer decision support based on
global knowledge. Commun Mag IEEE 44(1):93–99

83. Yuan W, Senior Nahrstedt K, Adve SV, Jones DL, Kravets RH (2006) GRACE-1: cross-layer adapta-
tion for multimedia quality and battery energy. IEEE Trans Mobile Comput 5(7):799–815

123

http://www.research.ibm.com/autonomic/

	A survey on self-healing systems: approaches and systems
	Abstract
	1 Introduction
	1.1 The complexity problem
	1.2 Autonomous behavior
	1.3 Self-healing research origins

	2 Self-healing principles
	2.1 What is self-healing?
	2.2 Self-healing loop
	2.3 Self-healing states
	2.4 Self-healing policies
	2.5 Failure classification
	2.6 System fitness and evolution

	3 Implemented approaches and applications
	3.1 Survey index and guide
	3.2 Embedded systems
	3.3 Operating systems
	3.4 Architecture-based
	3.5 Cross/multi-layer-based
	3.6 Multi agent-based
	3.7 Reflective-middleware
	3.8 Legacy application and AOP
	3.9 Discovery systems
	3.10 Web services and QoS-based

	4 Discussion of approaches
	4.1 Separation of concerns
	4.2 Intrusive versus non-intrusive
	4.3 Closed versus open
	4.4 Detecting and reporting suspicious behavior
	4.5 Diagnosing and policy selection
	4.6 Recovery techniques
	4.7 Overview

	5 Summary and outlook
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

