
SOCA (2013) 7:59–73
DOI 10.1007/s11761-012-0121-3

ORIGINAL RESEARCH PAPER

Domain-specific language for event-based compliance monitoring
in process-driven SOAs

Emmanuel Mulo · Uwe Zdun · Schahram Dustdar

Received: 7 October 2011 / Revised: 11 August 2012 / Accepted: 7 September 2012 / Published online: 26 September 2012
© Springer-Verlag London 2012

Abstract Organizations today are required to adhere to a
number of compliance concerns from laws, regulations and
policies. Compliance is achieved through defining and imple-
menting so-called controls in the organizations’ business
processes. Organizations that build their systems based on
the process-driven SOA paradigm realize business processes
through orchestration of services to handle the process’ busi-
ness activities. These business activities or groups of busi-
ness activities in some cases realize the compliance controls.
We propose an approach for implementing event-based com-
pliance monitoring infrastructure that observes such busi-
ness processes to verify that compliance is indeed adhered
to. Our approach is essentially a model-driven technique
for realizing this infrastructure. We implement a domain-
specific language for specification of compliance directives,
and we include code generation templates to generate compli-
ance monitoring code, which is leveraged by complex event
processing components to monitor for compliance. We eval-
uate the impact of our approach on the effort and productivity
of a developer who is specifying compliance directives.

Keywords Compliance · Domain-specific language ·
Event-based · Process-driven · Service-oriented architecture ·
Monitoring

1 Introduction

The service-oriented architecture (SOA) paradigm is today
very much utilized in implementations of enterprise infor-

E. Mulo (B) · S. Dustdar
Distributed Systems Group, Institute of Information Systems,
Vienna University of Technology, Vienna, Austria
e-mail: e.mulo@infosys.tuwien.ac.at

U. Zdun
Faculty of Computer Science, University of Vienna, Vienna, Austria

mation systems in organizations. SOA-based systems are
designed to have different functions encapsulated as services.
A process-driven SOA [1] additionally introduces a process
engine that orchestrates these services to perform the differ-
ent activities that make up a business process. In large-scale
process-driven SOA systems, multiple process instances are
executed and coordinated on multiple process engines [1,2].
All process instances are realized through invoking opera-
tions from a pool of services that are within and sometimes
beyond the boundary of an organization.

Process-driven SOA systems increasingly support organi-
zation operations and processes and, therefore, are subject to
a number of compliance concerns required of organizations.
Compliance concerns include, among other things, acts of
law from governments, or regulations drawn up by regula-
tory authorities, that govern the way organizations should
run their affairs. Non-adherence to these compliance con-
cerns may result in consequences such as loss of credibility,
financial loss, and litigation of an organization [3]. These
(compliance) concerns are implemented in the SOA systems
in the form of IT controls; the controls may either be preven-
tive, that is, prevent violations from occurring, or detective,
that is, detect the violations after they have occurred. In order
to ensure adherence to compliance, monitoring components
can provide an audit trail of the correct execution of pre-
ventive controls. In cases where preventive controls are hard
to implement, for example, failure of a system, service, or
human operation, monitoring components can play a more
active role by ensuring fast detection of compliance viola-
tions [4]; in other words, the monitoring component itself
is the compliance control. In many organizations, however,
implementation of compliance controls does not follow a
generic strategy; compliance is reached on a per case basis,
with ad hoc, hand-crafted solutions or niche products used for
specific compliance scenarios [3,5–7]. Additionally, these

123

60 SOCA (2013) 7:59–73

compliance controls are scattered throughout an organiza-
tion system without a clear architectural concept; in some
cases, controls are duplicated. This creates difficulties when
it comes to maintenance of compliance controls. Moreover,
compliance regulations change frequently, meaning the con-
trols have to be constantly updated as well. The goal of
this study is to address these issues through a model-driven
approach to implement a compliance monitoring component
within the scope of process-driven SOA systems.

Our main contributions are a structured approach and tool
support to realizing a compliance monitoring component
for process-driven SOAs through model-driven development
(MDD) techniques. Our approach essentially involves iter-
atively identifying the controls to be monitored, capturing
them (controls) through a domain-specific language (DSL)
that we have developed, and finally generating an event-based
compliance monitoring component. The resulting compo-
nent performs runtime monitoring of compliance controls
that are realized as process activities or subprocesses. Our
tool enables mapping of process workflows into patterns of
events that are (re)used within our DSL. We believe this
mapping scheme is a step in the direction toward automated
management of monitoring components. Considering that
business processes and their compliance controls are con-
stantly changing, we feel that our approach enables rapid
development and evolution of a compliance monitoring com-
ponent. In previous work [8], we demonstrated the feasibil-
ity of event-based compliance monitoring; we developed a
prototype of such a compliance monitoring component and
analyzed its performance and scalability by running test sce-
narios realistically mimicking a large-scale process-driven
SOA with event monitoring. In this work, we use a number of
scenarios from industry case studies to evaluate the impact of
our approach on effort and productivity of a developer when
coding compliance monitoring specifications.

The rest of this paper is structured as follows. Sect. 2 gives
background information concerning compliance and compli-
ance monitoring components. Also included in this section
are a number of illustrative business process compliance sce-
narios. Next, Sect. 3 explains our proposed approach, and in
Sect. 4, we evaluate our approach based on the scenarios
taken from industry case studies. Section 5 compares our
work to the related work, and finally Sects. 6 and 7 present
discussions and a conclusion to this work.

2 Business process compliance

In this section, we present background information concern-
ing business compliance and provide a scope for the kind
of compliance that we deal with in this article. We also
present limitations associated with the approach to imple-
menting compliance in organizations today and how these

Review of
Regulation /
Legislation

Consult
Norms /Standards

Implement
Controls

Manual
Controls

Report
Automated
Controls

Review of
Internal
Policies

Idenfity
Compliance
Concerns

Guidance
On Possible

Implementations

Implementation
Details

Fig. 1 Overview of business compliance assurance

may affect compliance monitoring. Additionally, we present
some background information into complex event process-
ing, a technique upon which the construction/generation of
our compliance monitoring component is based. Finally, we
present a number of illustrative scenarios for business process
compliance.

2.1 Compliance in organizations

Typically, when business compliance is discussed, one thinks
of the goal to ensure that the systems of an organization
comply with regulatory or legislative provisions or simi-
lar business provisions originating from parties external to
the organization. Common examples include regulations set
forth in the Basel II Accord,1 The Dutch Corporate Gover-
nance Code,2 and the Sarbanes-Oxley Act (SOX),3 to name
a few. These cover issues such as auditor independence,
corporate governance, and enhanced financial disclosure.
Compliance provisions may also originate internally from
organization policies concerning how the internal processes
are executed. We use the term compliance concerns as an
umbrella covering these internal and external provisions.
Figure 1 gives a typical high-level overview of steps an
organization goes through to realize compliance. In the dia-
gram, rectangles with rounded edges represent activities, and
arrows show transitions from one activity to the next. We also
use dotted lines to group activities under common themes.

Compliance concerns are related to risks an organization
and its stakeholders face in achieving their mission. They pro-
vide guidance regarding measures to take to prevent occur-
rence of these risks, for example, Section 404 of the SOX

1 http://www.bis.org/publ/bcbs107.htm.
2 http://www.commissiecorporategovernance.nl/Corporate_
Governance_Code.
3 http://www.gpo.gov/fdsys/pkg/CRPT-107hrpt610/pdf/
CRPT-107hrpt610.pdf.

123

http://www.bis.org/publ/bcbs107.htm
http://www.commissiecorporategovernance.nl/Corporate_Governance_Code
http://www.commissiecorporategovernance.nl/Corporate_Governance_Code
http://www.gpo.gov/fdsys/pkg/CRPT-107hrpt610/pdf/CRPT-107hrpt610.pdf
http://www.gpo.gov/fdsys/pkg/CRPT-107hrpt610/pdf/CRPT-107hrpt610.pdf

SOCA (2013) 7:59–73 61

Act requires public companies to annually assess and report
on the design and effectiveness of internal control over finan-
cial reporting. However, the specifics of how to implement
risk-reduction measures are not normally addressed in these
guidelines. These specifics have to be handled on a per orga-
nization basis.

Risk-reduction measures are normally implemented as
so-called controls [9]. A control is any measure taken to
assure a compliance concern is met. Controls may be broadly
classified into preventive controls and detective controls.
Preventive controls aim to avoid risks, whereas detective con-
trols warn of the occurrence of risks. Both classes of controls
can be realized as manual controls, automated controls or
hybrid controls (a combination of the previous two) [10]. For
instance, a door alarm system (manual), a software system
realizing segregation of duty requirements (automated), and
management reports on system errors/faults (hybrid) are all
implementations of controls. During risk management exer-
cises, organizations make decisions regarding required con-
trols and their implementation.

Organizations need not invent all controls from scratch.
A number of established norms or standards define and
describe standard controls that can be adapted and imple-
mented. The Control Objectives for Information and Related
Technologies (COBIT)4 framework, for example, describes
control objectives that guide an organization in making
choices about which controls to implement. Such norms and
standards are fairly generic and abstract and must be mapped
to a concrete systems implementation.

In our work, we focus on monitoring such compliance
controls (especially the automated and hybrid controls) in
the context of process-driven SOAs, which we discuss in the
next section.

2.2 Compliance and business processes

Business processes comprise a collection of related, struc-
tured business activities within or across organizations,
which produce a specific service or product for a particular
customer [11]. Within a process, there typically exists a com-
bination of manual and automated steps (activities/tasks).
Business activities may be either atomic or non-atomic [12].
Atomic activities are also known as tasks, whereas non-
atomic activities are termed subprocesses. Subprocesses con-
stitute a number of business activities executed in a specific
control flow. Upon completion of this flow, the subprocess
is said to have completed execution. Whereas a business
process is primarily aimed at satisfying a particular client
need, one of the major considerations taken into account
when designing processes is compliance concerns.

4 www.isaca.org/cobit/.

During the risk assessment exercises, an organization
identifies the compliance concerns that it is required to ful-
fill, and then makes decisions regarding which controls to
implement in order to address those concerns. Controls may
constitute or be applied to subprocesses or activities within a
business process, that is, parts of the process may be designed
and implemented such that they realize a control that fulfills
a particular regulation. Consider, for example, the case of
the well-known segregation of duty (SoD) control. In this
control, it is mandatory for certain activities to be executed
by two distinct persons in order to avoid fraud. The control
may be implemented in such a way that when the same per-
son attempts to execute conflicting activities, the system does
not allow this action to happen or allows it but reports this as
a violation of compliance.

Using the existing norms and standards that provide guid-
ance on which controls to use, an organization can make
choices on how to concretely implement the prescribed com-
pliance controls for their business processes. The implemen-
tation of controls usually does not follow a generic strategy
and hence business compliance is reached on a per-case basis,
that is, organizations use ad hoc, hand-crafted solutions for
specific compliance concerns [3,5–7]. This usually means
that a separate project is started and develops an individual,
custom solution for the compliance concern to be addressed.
Such solutions usually do not follow a clear architectural
concept and result in hard-coded controls spread over the
systems, possibly with dependencies to other controls. Con-
sequently, it becomes quite a task to ensure compliance and
keep up with constant changes in regulations and laws. In
this article, we present our approach as a generic strategy to
realize a runtime compliance monitoring component in the
context of process-oriented SOAs. Our approach essentially
follows a model-driven development paradigm for realizing
a runtime compliance monitoring component.

2.3 Compliance monitoring through complex event
processing

A number of generic monitoring solutions propose an exter-
nal component to which events are sent. In some cases, the
component records events in audit logs (files) and later ana-
lyzes them to detect anomalies in system behavior [2,13–15];
these are characterized as offline monitoring solutions. Other
solutions propose monitoring events in near real-time using
complex event processing (CEP) techniques [16–18]. This
approach is characterized as online monitoring and implies
that violations in the expected behavior of the system are
ideally detected sooner after they have occurred.

CEP is a set of tools and techniques for analyzing and con-
trolling a complex series of interrelated events [16]. Events
are observed as they occur and are correlated and aggre-
gated in order to discover and respond to certain event pat-

123

www.isaca.org/cobit/

62 SOCA (2013) 7:59–73

terns [18]. These techniques have a number of application
areas, including policy enforcement and regulatory compli-
ance [16,18]. Events represent the occurrence of an activ-
ity within a system. They may originate from a number of
sources, for example, RFID tags, network traffic data, and
enterprise application components, and they may contain
information, for example, the event source, or time of occur-
rence. This information enables us to analyze the events and
determine how they relate to each other.

Domain specialists are interested in events of significance
in their domain. In some cases, it is not possible to directly
observe such special events because they occur as a combi-
nation of a number of other events. However, through event
pattern languages (EPLs) [16] also known as stream query
languages [19], one can configure an event processing engine
to aggregate what are termed low-level events into complex
(high-level) events. Low-level events are not an abstraction
of other events and do not have semantic significance on their
own within a specific domain, whereas complex events are an
aggregated abstraction of a number of other low-level and/or
complex events [16,20]. EPL’s are the primary tool through
which CEP-based components can be configured to filter and
correlate low-level events to yield other higher-level, more
semantically significant events [21], that is, special events.

In previous work, we leveraged CEP techniques for
the realization of a compliance monitoring component for

process-driven SOAs [8]. We discovered some challenges
when using CEP for compliance monitoring, especially
regarding maintainability of the compliance controls. We
build on top of this work with our model-driven approach
to implementing compliance monitoring components.

2.4 Illustrative scenarios of business process compliance

In order to illustrate the relationship between compliance
and business processes, we present here a number of illustra-
tive scenarios from industry case studies of business process
compliance. We use the BPMN standard notation [12] for the
diagrams illustrating these scenarios.

2.4.1 Scenario 1: Loan application (LA) scenario

In this scenario, a customer goes to a bank to apply for a
loan. In Fig. 2, we present an excerpt of the process model
indicating steps typically followed. In this excerpt, a person
with the role Credit Broker performs a number of tasks upon
receiving a loan request. Upon completion, the loan applica-
tion may be delegated to a Supervisor or to a Post Processing
Clerk, depending on the size of the loan requested by the
applicant.

In this scenario, we consider three compliance regula-
tions that fall under the category of SoD requirements. This

L
o

an
P

ro
vi

d
er

P
o

st
P

ro
ce

ss
in

g
C

le
rk

C
re

d
it

B
ro

ke
r

Receive
Loan Request

Suspended?Access
Credit Portal

Check
Customer Bank

Privilege

Decline
BySuspended

BankingPrivilege
Yes

Request
Bank Information

No

All conditions
satisfied?

No

Decline
By Unsatisfied

Condition

Yes Build
Customer Loan File

Calculate
Threshold

Dispatch
Task

Threshold<1M

Yes

No

Access
Credit Portal

Check
Credit Worthiness

Check ok?

Yes

No Decline
ByBad

CreditWorthniness

Initialize
LoanForm

Delegate
To A Supervisor

Fig. 2 Excerpt of loan application process

123

SOCA (2013) 7:59–73 63

requirement essentially states that activities that pose a risk
of fraud or error should not be carried out by the same per-
son. In the loan application process, SoD accounts for two of
the compliance rules designed into the process. In Fig. 2, we
see that a loan application is initially processed by a Credit
Broker, who performs preliminary checks on the customer’s
application files, banking privileges, and then creates a loan
file. However, the next tasks of checking the customer’s credit
worthiness and approving the loan have to be performed by
a Post Processing Clerk. Additionally, if the loan exceeds
a threshold, in this case defined as EUR 1 million, the loan
application has to be verified by a Supervisor. One final com-
pliance rule implemented in the business process (although
not shown in the diagram) states that all final approvals
of loans have to be carried out by a person with the role
Manager.

2.4.2 Scenario 2: Travel booking (TB) scenario

In this scenario, we consider the business process from
a travel management agency (TMA) that handles travel
arrangements for corporations. Employees of corporations

that are TMA clients are able to arrange their travel through
services provided by TMA. TMA has signed contracts with
these corporations and has to monitor its applications to
ensure that employees using these services adhere to poli-
cies agreed upon. We consider two specific policies; first,
each corporation decides on preferred suppliers for specific
services in order to ease payments. Therefore, employees
arranging their travel are encouraged to use these preferred
suppliers unless it is absolutely necessary to choose a differ-
ent one. The other guideline for employees when arranging
travel is to arrange their travel whenever possible two weeks
in advance of the expected date of travel. Figure 3 shows the
business process model for this scenario.

2.4.3 Scenario 3: Claims handling (CH) scenario

In the claims handling scenario, an insurance company has to
monitor the process of fulfilling or denying insurance claims
from its customers. The insurance company would especially
be interested in keeping track of denied claims as these are
of interest to regulatory bodies. The process excerpt for the
claims handling business process is shown in Fig. 4.

T
ra

ve
lM

an
ag

em
en

t
A

g
en

cy

No

Yes

Get Travel
Schedule

Check Credit
Card

Card invalid? All
Reservations
Successful?

Flight Reservation
Yes

Hotel Reservation

Car Reservation

Inform
Customer

Generate
Confirmation

Number

Handle
Invalid Card

Fig. 3 Travel booking scenario

In
su

ra
n

ce
C

o
m

p
an

y

[follow-up]

Get Claim
Data

Clerk Checks
Claim [decline]

[approve]

[approve]

Follow-up Check File Claim

Compensate
Claim

[decline]

Fig. 4 Insurance claims handling

123

64 SOCA (2013) 7:59–73

Fig. 5 Conceptual overview of
approach

Compliance
Monitoring

Requirements
Documents

Code Generation
Templates

Executable /
Configuration

Code

DSL Specification
Compliance Rules

translated to

generate

Design Time Compliance
Specification

Runtime Compliance
Monitoring

In order to ensure the requirements in the scenarios are
adhered to, we implement business process monitors to
observe the scenarios during process execution. We use these
illustrative scenarios to present our approach in the next sec-
tion and in the evaluation of our approach in a later section.

3 Developing compliance monitoring components

3.1 Overview of compliance monitoring approach

In process-driven SOAs, services are orchestrated in order to
realize a business process, each service executing a particular
function. From the perspective of business operations, how-
ever, the business process is realized by composing a number
of business activities. Our approach is a systematic method
of realizing a monitoring infrastructure for observing com-
pliance in a process-driven SOA. Compliance of a business
process is determined by monitoring controls applied to the
process’ business activities. In our approach, we refer to orga-
nizations that already have in place controls and/or a method
of defining and documenting these controls for compliance.
We illustrate an overview of our approach in Fig. 5.

Essentially, we propose an MDD approach to develop-
ing a business process compliance monitoring component.
Our aim is to realize an event-based monitoring component
from these requirements. We provide a DSL with which a
developer can specify compliance monitoring directives.5

The developer draws these directives from the documen-
tation of controls and discussions with compliance domain
experts. The developer is able to specify controls, activities
to which they are applied, and data from a particular activ-
ity required to verify its control. Typically, each compliance
monitoring directive would comprise an event or pattern of

5 We use the terms directives and rules interchangeably.

events representing business activities, from which compli-
ance control data are extracted.

In addition to the DSL, we define code generation tem-
plates, which generate the compliance monitoring com-
ponent based on directives specified with the DSL. We
demonstrate our approach through an MDD framework.
Within this framework, we implement a DSL for specifying
the compliance directives, as well as the necessary code gen-
eration templates for generating the compliance monitoring
components.

3.2 Process monitoring domain

One of the first steps in developing a DSL is to analyze
the domain for which the DSL is being developed [22]. The
domain model in Fig. 6 captures the main concepts of the
business process monitoring domain. The model is illustrated
with UML class diagram notation.

During execution of a business process, the activities exe-
cuted as well as the order in which they occur depend on
actual data in the system.

A process monitor is typically configured to observe
occurrence of certain conditions within a specific subset of
the entire process execution. We capture this idea of a sub-
set of the process in the form of a Process Instance
Fragment class. Comprising each Process Instance
Fragment is a number of Activity Instance’s.
Each Activity Instance represents the occurrence of
either an Atomic Activity Instance, that is, a sin-
gle activity, or a group of activities (Activity Group
Instance). Moreover, each Activity Instance is
associated with specific data elements, for example, activ-
ity name, whose actual values may differ depending on the
process instance at execution time.
Activity Instance’s are also related to an

Activity Execution Order that specifies the order
in which a group of activities occurs. For our domain model,

123

SOCA (2013) 7:59–73 65

Fig. 6 Process monitoring
domain model

SEQUENCE
PARALLEL
OPTION

Activity Execution
Order

Process Instance
Fragment

Boolean Condition
1

Filter Assertion

Atomic Activity
Instance

Activity Group
Instance

Activity Instance

1.. *

1.. *

0..*

we currently define three possibleActivity Execution
Order options, that is, a sequential order (SEQUENCE)—
activities occur one after the other in a fixed order—a parallel
execution order (PARALLEL)—activities occur simultane-
ously, that is, all activities occur but do not have a fixed
order—an option execution order (OPTION)—activities
occur in a mutually exclusive manner, that is, strictly one of
the activities shall occur. We have chosen these three options
as they can express the most common workflow patterns that
occur in business processes. In Table 1, we show the five
elementary control flow concepts from the Workflow Man-
agement Coalition [23,24] that are found in most business
processes. We illustrate how these patterns are represented
using the activity execution order options.

Besides Activity Instance’s, a Process
Instance Fragment is associated with a number of
Boolean Condition’s, which specify constraints on data
elements (from Activity Instance’s) that are con-
sidered for monitoring. They (Boolean Condition’s)
are grouped into two kinds, Filter’s and Assertion’s.
Filter’s specify data categories or conditions that should
be ignored or considered in a monitored process frag-
ment. Assertion’s on the other hand represent conditions
that are expected to be true in the monitored (Activity
Instance) data.

3.3 Compliance monitoring domain-specific language
(DSL)

Based on this domain model for the process monitor-
ing domain, we derive the concrete syntax of our DSL
for specifying compliance monitoring directives for busi-
ness processes. We implemented a prototype model-driven
process monitoring framework to demonstrate our DSL. The
prototype is built on top of an MDD framework (Frag [25]).

Note that the concrete syntax takes most of its form from the
domain model in the previous section.

To explain our DSL sytax, we use the sample shown in
Fig. 7; this is a specification of the SoD process monitor
described in Sect. 2.4. As can be seen in the diagram, the
DSL typically has two distinguishable sections. The first
section is a definition section (can be thought of as dec-
larations), in which activities to be monitored are defined.
Here, one can define bothAtomicActivityInstance’s
and ActivityGroupInstance’s. AtomicActivity
Instance’s define single activities, whereas Activity
GroupInstance’s define a group of activities that may not
necessarily be adjacent to each other in the business process
definition. TheActivityGroupInstance also specifies
order of occurrence of activities, which may be sequential,
optional, or parallel. In Fig. 7, for instance, the SEQUENCE
order means the four activities listed are expected to execute
in a sequential order.

The second distinguishable section contains process mon-
itoring directives. Here, we specify the process subset that we
are interested in monitoring. A process monitoring directive
begins with the ProcessInstanceFragment keyword.
Each directive then has up to three subsections to be defined,
activities, filters, and assertions. Under activities, we use the
activity definitions from the declaration section. We may also
define activities directly under this subsection; however, this
limits the possibility to reuse such definitions in multiple
compliance rules.

Under the filters subsection, we specify a number of
conditions for limiting the type (and consequently amount)
of activity instances considered for a particular monitoring
directive. For instance, data may only be of interest below a
certain threshold value, and so, compliance monitoring com-
ponents would only observe these data values and ignore
the rest. In Fig. 7, the process monitoring directive consid-
ers only thoseCheckCreditWorthiness activities with

123

66 SOCA (2013) 7:59–73

Table 1 Mapping business process patterns to activity execution order

a loanAmount less than EUR 1 million and ignores the
rest.

The last subsection, assertions, is used to specify expected
values in monitored data. Should these expectations not be
fulfilled in actual runtime data, a compliance control has been
violated. For instance, in our sample when theloanAmount

value is less than EUR 1 million, it is expected (asser-
tions) that a person with the role Creditor executes the
first three activities and then another person with the role
PostProcessingClerk executes the last activity. If per-
sons with different roles than what is expected execute any
of these activities, this is reported as a compliance violation.

123

SOCA (2013) 7:59–73 67

Fig. 7 DSL specification of
SoD compliance monitor

Define/Declare activity instances
AtomicActivityInstance create VerifyBankingPrivileges
AtomicActivityInstance create AcquireBankInformation
AtomicActivityInstance create BuildCustomerLoanFile
AtomicActivityInstance create CheckCreditWorthiness
AtomicActivityInstance create EvalutateLoanRisk

Loan request initiate activity group
ActivityGroupInstance create LoanRequestInitiate\

-activityOrder SEQUENCE\
-activityList [list build\

VerifyBankingPrivileges\
AcquireBankInformation\
BuildCustomerLoanFile\
CheckCreditWorthiness]

Segregation of duty monitor for normal loans
ProcessInstanceFragment create NormalLoanProcessing \

-activityInstances LoanRequestInitiate
-filters [list build\

[BooleanCondition create -expression\
"CheckCreditWorthiness.loanAmount < 1000000"]]\

-assertions [list build\
[BooleanCondition create -expression "role = Creditor"\

-activities [list build\
VerifyBankingPrivileges\
AcquireBankInformation\
BuildCustomerLoanFile]]\

[BooleanCondition create -expression "role = PostProcessingClerk"\
-activities CheckCreditWorthiness]]

The DSL thus enables a developer to specify compliance
monitoring directives for (subsets of) a process instance to
which controls have been applied.

3.4 Compliance code transformation and generation

In addition to the DSL, the prototype comprises transforma-
tion templates for converting the DSL directives into code
for a compliance monitoring component. In this particular
implementation, our target platform was an event-based mon-
itoring component—the Esper event processing engine [26].
Therefore, our code transformation-and-generation tem-
plates transform DSL compliance monitoring statements
into corresponding event processing language (EPL) (cf.
Sect. 2.3) queries for the Esper engine.

Such code generation templates are specific to the type
of event processing engine or technology that one may be
using. They need to be implemented initially, and once done,
the technology-specific code can be quickly and repeatedly
generated. In Fig. 8, we illustrate a sample code generation
template as well as the resulting code that is generated when
this template is applied to the SoD compliance rule from
Fig. 7.

The PATTERN section of the template is where the activ-
ity execution order is specified. We map the activity execu-
tion order to event patterns using a mapping scheme that we
present in Table 2.

The resulting compliance monitoring code provides con-
figuration information to the event processing engine during
its initialization; as business processes are executed, the event
processing engine observes business activity events to deter-
mine compliance of the executing processes.

Note that the EPL is also a DSL specialized for the pur-
pose of defining queries over event-streams and is, there-
fore, capable of specifying compliance monitoring rules
as well. One may wonder why we need the compliance
monitoring DSL at all. The compliance monitoring DSL is
used to express compliance control monitoring directives
in terms that are in the process-driven SOA domain. This
design serves three purposes; first, the developer works with
process-driven SOA domain concepts and, therefore, is not
continuously translating SOA domain concepts into EPL
statements. Secondly, the code specified under the DSL can
be reused for different technology implementations. Incase
there was a different CEP engine to be used, the same
compliance code could be used with only the code genera-
tion templates requiring changing. And lastly, the developer
is better able to communicate and share implementation
source code with the (business process or compliance con-
trol) domain experts, bringing them closer to the imple-
mentation. Of course, this implies that a system developer
using the DSL is familiar with the basic concepts of process-
driven SOAs and perhaps has some experience implementing
them.

123

68 SOCA (2013) 7:59–73

Fig. 8 EPL code generation
template

Main Template for EP Rule

<~ self applyForeach processFragment [$processFragments get fragments] {
SELECT <~ $processFragment generateDataElements [self] ~>
FROM pattern [

<~ $processFragment generateProcessActivities [self] ~>
].win:length(<~ $processFragment activityCount ~>
WHERE <~ $processFragment generateAssertions [self] ~>
}~>

NormalLoanProcessing =
SELECT ver.role, che.role, che.loanAmount
FROM pattern [every ver=VerifyBankingPrivileges ->

acq=AcquireBankInformation(processId=ver.processId) ->
bui=BuildCustomerLoanFile(processId=ver.processId) ->
che=CheckCreditWorthiness(processId=ver.processId,

loanAmount < 1000000)].win:length(4)
WHERE (ver.role != 'CreditBroker' or

acq.role != 'CreditBroker' or
bui.role != 'CreditBroker') or
(che.role != 'PostProcessingClerk')

Table 2 Transforming activity execution order to event patterns

Activity execution order Event detection patterns

Single activity

SEQUENCE{A} (every A)

Sequence flow

SEQUENCE{A,B} (every A) → B

Parallel split

SEQUENCE{A, PARALLEL {B1,B2}} (every A)
→ (B1 and B2)

Synchronization

SEQUENCE{PARALLEL{B1,B2}, C} (every (B1 and B2))
→ C

Exclusive choice

SEQUENCE{A,OPTION{B,C,D}} (every A)
→ (B or C or D)

Simple merge

SEQUENCE{OPTION{B,C,D},E} (every (B or C or D))
→ E

In the next section, we present an evaluation of our
approach.

4 Evaluation of compliance monitoring approach

One of the challenges with respect to monitoring of compli-
ance is the ad hoc implementation of compliance controls,
in most cases using niche products to implement a particular
compliance requirement. CEP can today be considered as one
such niche product in compliance monitoring for business
processes (a technique known as business activity monitor-

ing (BAM) [16]). In this section, we evaluate our approach
based on the illustrative scenarios presented in Sect. 2.4. We
present a quantitative comparison of the DSL presented in
Sect. 3 alongside an EPL for realizing CEP-based moni-
toring; this comparison serves to highlight the differences
between our DSL and the EPL and to initiate a discussion
concerning the pros and cons of our proposed approach.

4.1 Evaluation method

We applied the goal–question–metric technique [27] to define
appropriate metrics for comparison of our DSLs. We selected
two main issues to compare in the DSLs; effort—how much
of the developer’s resources (e.g., time) are required to main-
tain compliance specifications—and productivity—how pro-
ductive is a developer who is using the DSLs for compliance
specifications.

To measure these qualities, we chose two size metrics to
compare programs specified by both DSLs. The size metrics
we utilize are number of variables (NV) and number of oper-
ations (NO). Variables refer to identifiers that indicate data to
be monitored for a particular compliance rule; Operations are
considered in the traditional sense, that is, an action or proce-
dure involving operands/variables. Size metrics are consid-
ered as relatively good predictors of maintenance effort even
though they are not the sole predictor [28]. Considered from
this angle, NV and NO both provide indicators of effort and
productivity of programmers using our compliance specifi-
cation DSLs. Once we decided on the metrics, we applied
them to the compliance rules from our illustrative scenarios.
We applied the metrics to both the EPL and DSL rules.

123

SOCA (2013) 7:59–73 69

Table 3 Comparison of compliance program sizes for EPL versus DSL

EPL DSL

NV (NVu) NO NV (NVu) NO

LA Rule 1 23 (16) 18 10 (4) 3

LA Rule 2 17 (11) 9 6 (6) 2

LA Rule 3 19 (13) 10 6 (5) 1

LA Reused – – 6 (6) 0

TB Rule 1 21 (14) 16 10 (10) 3

TB Reused – – 5 (5) 0

CH Rule 1 13 (12) 10 7 (6) 1

Totals 93 (66) 63 50 (42) 10

4.2 Evaluation results

In Table 3, we present the results from applying the NV and
NO metrics to our set of compliance rules based on the sce-
narios from Sect. 2.4. Note that in the NV–column, we have a
value NVu in brackets. The NVu count represents the number
of unique variables in a rule. We perform this count as well
to provide further analysis and/or comparisons.

From the results presented in the table, we observe a num-
ber of things; when we compare the NV for the EPL and the
DSL, the EPL in most cases has double the value of NV as
compared to the DSL. The EPL is a verbose language and
does not provide possibilities for reusing code. The DSL on
the other hand enables extraction of some common business
process patterns and possibility to reuse them in multiple
rules. We include a count of NV from reused rules in the
bottom row of the table (EPL does not have reuse features).
This reuse drastically reduces the NV that are needed by the
DSL for each rule.

The difference in the NO count between EPL and DSL is
even greater, with the EPL count almost six times that of the
DSL on average. The EPL is a more generic language and,
therefore, uses a greater number of operators / operations to
realize certain monitoring requirements. We can see exam-
ples of this in Fig. 8, where the EPL incorporates Boolean
operations (or), equality operators (=, !=), and tim-
ing operators (->). Since our DSL is more specialized,
a lot of operations are implicitly captured in a declarative
textual language form that is closely related to the domain.
Moreover, lots of default values are assumed during code
generation, which is not the case with the EPL. As an example
(see Fig. 7), instead of using multiple followed by (->)
operators, we express this with the declarative command
SEQUENCE, to indicate that all activities listed occur in a
sequence, following the order in which they are listed.

Overall, we would like to argue that the characteristics
of our DSL syntax are in tune with the mental working
style or approach of a programmer, that is, through refer-
encing short-term memory for tasks at hand and long-term

memory to make broader connections [29]. With fewer vari-
ables and operations to consider, the programmer is better
able to quickly understand and maintain the source code.
The reuse feature also fits within this model, described in
Henderson-Sellers [30] as chunking and tracing, that is, the
programmer typically chunks together related pieces of infor-
mation and mentally refers to it from one point of view. This
is very much what the DSL provides with the reuse feature.

4.3 Limitations and threats to validity

There are a number of issues that we consider to be possible
limitations and/or threats to the validity of the results that we
obtained during our experiments. We consider these from two
angles, that is, threats related to the data that we used in the
experiment, and threats related to the method we followed to
carry out the experiment.

When we refer to data, we consider the compliance rules
as well as their implementation. We have a number of compli-
ance rules in our experiment; however, it is always a question
whether there is enough of them to make more general con-
clusions. The number of rules, therefore, poses a threat to
the generalizability of our proposed approach. In addition,
one could argue that the implementation of the compliance
rules in the two different languages is also a threat, because
there is the possibility of bias, in favor of the DSL, in the
implementations. We minimized the effect of this threat by
reviewing the compliance rules in both DSLs to eliminate
any unnecessary code.

Regarding the method we followed in carrying out the
experiment, the first threat we can identify is that of the choice
of the metric. While Li and Henry clearly state that size met-
rics are predictors of maintenance effort, they also point out
that these metrics are not the sole predictors [28], that is,
they should be considered in conjunction with other metrics.
Oman and Hagemeister [31] actually propose combining a
set of metrics (considered to have influence on maintenance
effort) into a single index of maintainability. In a more ideal
situation, we could consider multiple metrics for evaluation.
We were, however, limited by the choice of a metric that
could provide an analysis of both DSLs side by side. More-
over, most metrics we came across are designed with proce-
dural and/or object-oriented languages in mind. We did not
come across metrics that have been explicitly designed with
a focus on declarative languages of the kind that we analyzed
in this work.

5 Related work

In a very general sense, all forms of monitoring are related
to compliance of some sort. Monitoring is concerned with
observing the state of a system to ensure that it fulfills a

123

70 SOCA (2013) 7:59–73

particular goal and to inform an interested party when things
go wrong. With regard to our work, the purpose of moni-
toring is to ensure that our business processes actually exe-
cute compliance controls as expected at runtime. Whereas
the compliance controls are built into the system at design
and implementation time, monitoring provides the required
runtime validation and ensures that compliance of business
processes is auditable [3]. In this section, we discuss a num-
ber of other related works aimed at ensuring or monitoring
for compliance at runtime.

5.1 Compliance monitoring approaches

The works by Mahbub and Spanoudakis [32], Giblin et al.
[33,34], Sadiq et al. [6], and Rozinat and van der Aalst [35]
are directly related to monitoring and checking for com-
pliance in business processes. Sadiq et al. [6] propose an
approach for incorporating compliance at design time. They
propose a method for incorporating compliance controls into
a business process. Their approach involves defining com-
pliance controls in Formal Constraint Language and then
incorporating this into process models through annotations.
They aim to support process designers to effectively incor-
porate compliance controls into business processes. This
complements our approach in the sense that processes for
which our approach creates runtime monitoring infrastruc-
ture are designed with such compliance controls embedded.
However, the runtime monitoring still offers validation and
ensures that processes are auditable, which are important
issues in compliance.

In Mahbub and Spanoudakis [32], the authors propose an
approach similar to ours in that they provide a mapping from
business-level information to monitoring patterns. In their
work, however, they map from BPEL4WS to event calculus.
The differences in mapping between the two approaches may
have some implications on how they are converted into a
running monitor. Expressing the patterns using event calculus
informs of the changes that happen in the system through
time, whereas expressing the patterns using event algebra as
we do simply states what are the operations performed on
the events.

The approach in Giblin et al. [33,34] aims for runtime
monitoring for compliance. The authors propose REALM, a
meta-model for the specification of compliance regulations
in a technology-agnostic manner. A REALM model consists
of a concept model that captures concepts and relationships
of the domain in which regulations are being applied, a com-
pliance rule set that represents regulatory requirements in
a real-time temporal object logic, and meta-data providing
information about the regulations, for example, source and
enactment dates. They propose a framework that uses the
REALM specification to generate technology-specific cor-
relation rules for runtime monitoring. Rather than attempt to

capture compliance rules, our approach assumes that compli-
ance controls are already defined within a business process,
for example, using methods like in Sadiq et al. [6]. However,
our approach also provides the mapping from the modeled
business process to a set of queries that are used for correla-
tion and monitoring of events.

Rozinat and van der Aalst [35] present an approach for
conformance checking of business processes. While the pre-
viously discussed approaches target design time and runtime
compliance checking, this approach is more retrospective
with respect to execution time, that is, checking for con-
formance after business processes have already been exe-
cuted. The authors mine event logs and process models to
check conformance from two angles, the fitness, that is, how
close do the actual execution logs match with the process
model, and the appropriateness, that is, how well does the
model describe the actual process execution recovered in
the execution logs. This conformance check (specifically the
fitness conformance) is similar to how we approach com-
pliance checking; however, we do not consider an entire
process in our checks. Instead, we consider a subset/excerpt
of activities that are specifically in a process for the purpose
of checking compliance. The authors, however, do raise an
interesting qualitative issue concerning the appropriateness
of models. In our mappings from business activities to event
detection patterns, we provide all possible combinations. In
cases where there would be multiple parallel activities, the
possible combinations from the mappings would be expo-
nential, and yet not all possible combinations shall exist in
the actual execution of the process.

5.2 Generic business process monitoring approaches

Regarding more generic approaches for monitoring busi-
ness processes and SOA, that is, not specifically monitor-
ing as applied to compliance checking, we consider some
approaches that incorporate monitoring logic into business
processes ([13,15,36–38]), other leverage CEP ([14,39]),
and finally business protocol monitoring ([40,41]). Baresi
et al. [36] present an approach to monitor service compo-
sitions, that is, business processes. They embed annotations
into BPEL code, which annotations are later transformed by a
preprocessor into BPEL statements. In addition, they imple-
ment a monitoring Web service. This Web service is a gate-
way to an external server component that monitors a process
execution. While this approach has the benefit of sticking to
the standard services paradigm, the nature of Web services, as
the authors also recognize, is to be stateless. This implies that
it is not possible for the monitoring Web service to maintain
state while monitoring an entire process; yet, state is required
for monitoring a service composition over a period of time.
We encountered similar issues in our implementation of the

123

SOCA (2013) 7:59–73 71

monitoring infrastructure and instead opted to use a messag-
ing queue as a gateway rather than a Web service.

In both approaches by Erradi et al. [38] and Baresi et al.
[37], the monitoring logic is also embedded into the process
control flow in a similar manner to what is done in Baresi
et al. [36]. However, these two approaches are extensions
to the WS-Policy specification. Erradi et al. [38] develop
Manageable and Adaptive Service Compositions (MASC),
a policy-based middleware that executes WS-Policy4MASC
assertions. WS-Policy4MASC is the authors’ extension to
the WS-Policy Framework—the extension enables incor-
porating new monitoring and control policy assertions.
Baresi et al. [37] propose Web Service Constraint Language
(WS-CoL), a domain-independent language for expressing
monitoring policies for WS-BPEL processes. WS-CoL is
compliant with the WS-Policy specification. Their approach
proposes weaving monitoring directives into a WS-BPEL
specification such that calls to a monitoring manager are
attached to parts of the specification. This weaving is done
at deployment time to keep a separation between the WS-
BPEL code and the WS-CoL monitoring constraints. When-
ever these constraints are encountered (at runtime), the
monitoring manager performs constraint checking and then
calls the relevant service. In both these approaches, the
monitoring logic is tightly coupled with the actual running
system.

Muehlen and Rosemann [13] present a process monitoring
approach that aims to not only monitor the process execution
but also the economic impact of processes on a business. This
approach achieves this by taking three views of process mon-
itoring, the process view, resource view, and objects view.
They present an architecture for a process monitoring and
control system. The essential component for the monitoring
is an evaluation method library that contains algorithms for
performing the calculations based on monitored data. The
library is extensible with the possibility for one to plug in
customized evaluation algorithms.

The work from Grigori et al. [15] proposes an integrated
business process intelligence toolsuite for managing process
execution quality. One of the components of the tool is the
business process cockpit (BPC) [42] that offers an interface
for business users to monitor different perspectives (e.g.,
services, resources) of a business processes as the process
executes. The BPC monitoring achieves this by periodically
reading data from audit logs from the integrated toolsuite.
A user needs to configure alerts that determine information
of interest for monitoring. The BPC component alerts the
user or can execute other actions. The alerts are similar to our
the query rules that we use to configure our event process-
ing engine to monitor for events. However, event processing
provides continuous monitoring rather than the periodic style
of the BPC. In addition, it is not clear whether it is possible
for the alerts to define queries similar to ours in the sense of

mapping patterns of events to a series of service invocations,
for example.

5.3 CEP-based monitoring approaches

Although not explicitly stated, the work from McGregor et al.
[14] provides a form of CEP monitor for QoS compliance.
The monitoring solution provides a logging service inter-
face, to which data from the service being monitored are
passed. This data are forwarded to an internal data construc-
tor agent that computes summary data based on previously
logged state information for the same service. This summary
data may then be checked against an original definition of
the Web service capabilities to identify any discrepancies.
They do not state in their approach whether it is possible
to configure the agents that perform processing on the state
information concerning the Web services. In our case, queries
are used for such configuration and can be easily changed and
updated depending on what kind of monitoring is required.
Vaculín and Sycara [39] also propose CEP for semantic mon-
itoring of Web services. They achieve this by extending an
event algebra to enable specification of composite events.
These concepts are similar to low-level service invocation
events and high-level business events. However, they focus
on monitoring for semantic Web services. They do not filter
events based on syntax and parameters; rather they define an
event ontology, and whenever a primitive event is fired, it is
actually an instance of the ontology class representing the
event type on which semantic filtering is performed.

6 Discussion

We propose a systematic approach to map the compliance
controls (activities or subprocesses) that are defined in busi-
ness processes into monitoring queries that can check for this
compliance at runtime. We now discuss some of the advan-
tages and limitations of this approach.

When applying our approach, we think there is a clear
separation of issues concerning the system functionality from
those concerning compliance assurance. As a result, mainte-
nance overheads that are incurred without this clear separa-
tion are reduced. This separation characteristic is also present
in related works (Sect. 5). We assume that business special-
ists have already incorporated their choices on compliance
controls into the business process designs, and we make a
mapping of these choices to the technical implementation
of monitoring logic. Other works like Giblin et al. [33,34]
tackle expressing these compliance controls (as compliance
rule sets [34]) and then mapping them to the technical imple-
mentation.

Organizations have to continuously adapt their processes
and systems to match ever-changing compliance require-

123

72 SOCA (2013) 7:59–73

ments. Our approach provides a clear change strategy: When-
ever a compliant business process is changed, the change
impact affects the activity execution order, which in turn
affect a set of CEP rules. Hence, the explicit trace links in our
approach foster understandability, changeability, and main-
tainability of our event-based compliance solutions.

The identification of common activity execution order
patterns might foster reuse of compliance rules. Whenever
another business process can be mapped to the same sequence
of technical events, we can identify the same business events.
Hence, even if the business process activities are not the same
but can be mapped to the same event trail, reuse of existing
compliance rules is possible.

We propose to emit service invocation events to moni-
tor business processes. These events have a standard for-
mat and only change the values of parameters depending on
the service invoked. In an organization with many services
(as is the case in large-scale SOAs), we are able to reuse
the event emitting code across services. The approach pro-
posed by Giblin et al. [34] expresses compliance regulations
in a technology-agnostic manner and finally generates the
technology-specific correlation rules. This improves reuse in
situations where the runtime monitoring technology might
change.

Although our focus is on monitoring process-driven
SOAs, we feel that our approach is usable even in a situ-
ation where there exists ad hoc implementations of compli-
ance regulations. This is due to the fact that the monitoring
is event-based, and so, regardless of the technology in use, if
it is possible to emit events, one only has to ensure that the
format of the event is appropriate. This is easily done using
wrappers or transforming adaptors. Therefore, it is already
possible to use this approach for monitoring during compli-
ance even during a transition from ad hoc to more systematic
methods of implementing compliance controls.

The compliance detection rules and queries used in CEP
tools are, in most cases, written in simple query languages.
They are thus relatively easy to understand by technical
personnel. Erradi et al. [38] and Baresi et al. [37] use
WS-Policy-based languages that are expressed in XML—
making these languages readable and perhaps even providing
opportunities for automated processing and transformations.
The other monitoring approaches use more complicated
expression languages. Giblin et al.[33,34] use a compliance
rule set based on temporal object logic, while Vaculín and
Sycara [39] uses an event algebra to aggregate events.

We provide a mapping for control flows to event detection
patterns. We feel that such a mapping provides a good basis
for automating the process of realizing the compliance mon-
itoring infrastructure. However, such a mapping of BPMN
control flows to executable diagrams applies to private
(internal) business processes. Our approach is, therefore, lim-
ited to realizing the monitoring infrastructure for internal

business processes. There might be some challenges applying
it in a setting with cross-organizational business processes,
stemming from the fact that business process execution
(event) data are generally not shared across organizations.
The organizations only externalize a predefined interface to
partner organizations. Therefore, without access to the event
data from within an organization, we are not able to express
the event patterns and consequently are unable to generate a
monitoring solution.

7 Summary and conclusion

Compliance with regulations, laws, and policies is a require-
ment for organizations to avoid negative consequences.
These organizations thus have to monitor their information
systems to ensure that they still adhere to these compliance
concerns. Considering that many organizations today imple-
ment their systems based on process-driven SOAs, we are
proposing an approach for monitoring business processes for
compliance in such process-driven SOAs.

We propose a structured approach for realizing compli-
ance monitoring components for business processes. We
assume that compliance controls are implemented as busi-
ness activities or groups of business activities, and in effect,
we monitor for the execution of these compliance controls.
We evaluate our approach through a number of scenarios
in order to determine the impact of our approach and tool
support on the productivity and effort a developer puts into
specifying compliance monitoring directives.

Acknowledgments This work was supported by funds from the
European Commission (contract No. 215175 for the FP7-ICT-2007-1
project COMPAS).

References

1. Zdun U, Hentrich C, Dustdar S (2007) Modeling process-driven
and service-oriented architectures using patterns and pattern prim-
itives. ACM Trans Web 1(3):14

2. Kung P, Hagen C, Rodel M, Seifert S (2005) Business process
monitoring & measurement in a large bank: challenges and selected
approaches. In: Proceedings of the 16th international workshop on
database and expert systems applications, pp 955–961

3. Cannon JC, Byers M (2006) Compliance deconstructed. Queue
4(7):30–37

4. Anderson R (2008) Security engineering. Wiley, New York
5. O’Grady S (2004) SOA meets compliance: compliance ori-

ented architecture. http://redmonk.com/public/COA_final.pdf.
Accessed April 2010

6. Sadiq SW, Governatori G, Namiri K (2007) Modeling control
objectives for business process compliance. In: Alonso G, Dadam
P, Rosemann M (eds) BPM. Lecture notes in computer science, vol
4714. Springer, Berlin, pp 149–164

7. Bonazzi R, Hussami L, Pigneur Y (2010) Compliance management
is becoming a major issue in is design. In: D’Atri A, Saccà D

123

http://redmonk.com/public/COA_final.pdf

SOCA (2013) 7:59–73 73

(eds) Information systems: people, organizations, institutions, and
technologies. Physica-Verlag, Heidelberg, pp 391–398

8. Mulo E, Zdun U, Dustdar S (2009) Monitoring web service event
trails for business compliance. In: SOCA, IEEE, pp 1–8

9. Stoneburner G, Goguen A, Feringa A (2002) National institute of
standards and technology special publications 800–30: risk man-
agement guide for information technology Systems

10. IT Governance Institute (ITGI) (2006) IT control objectives for
Sarbanes-Oxley. 2nd edn. Information Systems Audit and Control
Association (ISACA) Inc

11. Havey M (2005) Essential business process modeling. O’Reilly
Media, Inc., USA

12. Object Management Group/Business Process Management Initia-
tive (2008) Business process modeling notation (bpmn) version
1.0

13. Zur Muehlen M, Rosemann M (2000) Workflow-based process
monitoring and controlling-technical and organizational issues. In:
Proceedings of the 33rd annual hawaii international conference on
system, sciences, vol 2, pp 10

14. McGregor C, Kumaran S (2002) Business process monitoring using
web services in B2B e-commerce. In: Proceedings of the inter-
national parallel and distributed processing symposium (IPDPS
2002), pp 219–226

15. Grigori D, Casati F, Castellanos M, Dayal U, Sayal M, Shan MC
(2004) Business process intelligence. Comput Ind 53(3):321–343

16. Luckham DC (2002) The power of events: an introduction to com-
plex event processing in distributed enterprise systems. Addison-
Wesley, Reading

17. Greiner T, Düster W, Pouatcha F, von Ammon R, Brandl HM,
Guschakowski D (2006) Business activity monitoring of norisbank
taking the example of the application easycredit and the future
adoption of complex event processing (CEP). In: Proceedings of
the 4th international symposium on principles and practice of pro-
gramming in Java (PPPJ ’06), ACM, New York, pp 237–242

18. Rozsnyai S, Vecera R, Schiefer J, Schatten A (2007) Event cloud—
searching for correlated business events. In: The 9th IEEE inter-
national conference on e-commerce technology and the 4th IEEE
international conference on enterprise computing, e-commerce and
e-services (CEC/EEE 2007), pp 409–420

19. Wei M, Ari I, Li J, Dekhil M (2007) ReCEPtor: sensing complex
events in data streams for service-oriented architectures. Technical
report HPL-2007-176, HP Labs

20. Brandl HM (2007) Complex event processing in the context of busi-
ness activity monitoring. University of Applied Sciences Regens-
burg, Master’s thesis

21. Wu E, Diao Y, Rizvi S (2006) High-performance complex event
processing over streams. In: Proceedings of the ACM SIGMOD
international conference on management of data (SIGMOD ’06),
ACM, New York, pp 407–418

22. Völter M (2009) Md* best practices. J Object Technol 8(6):79–102
23. Workflow Management Coalition Specification (1999) Workflow

management coalition terminology & glossary (Document No.
WFMC-TC-1011). Workflow Management Coalition Specification

24. Wohed P, van der Aalst WMP, Dumas M, ter Hofstede AHM,
Russell N (2006) On the suitability of bpmn for business process
modelling. In: Dustdar S, Fiadeiro JL, Sheth AP (eds) Business
process management. Lecture notes in computer science, vol 4102.
Springer, Berlin, pp 161–176

25. Zdun U (2010) A DSL toolkit for deferring architectural decisions
in DSL-based software design. Inf Softw Technol 52(7):733–748

26. EsperTech (2009) Esper reference documentation version 3.2.0.
EsperTech Inc

27. Basili V, Caldiera G, Rombach H (1994) The goal question metric
approach. Encycl Softw Eng 1:528–532

28. Li W, Henry SM (1993) Object-oriented metrics that predict main-
tainability. J Syst Softw 23(2):111–122

29. Hatton L (1998) Does oo sync with how we think? IEEE Softw
15(3):46–54

30. Henderson-Sellers B (1996) Object-oriented metrics: measures
of complexity. Prentice Hall object-oriented series, Prentice Hall
PTR,

31. Oman P, Hagemeister J (1992) Metrics for assessing a software
system’s maintainability. In: Proceerdings of the 1992, conference
on software maintenance, pp 337–344

32. Mahbub K, Spanoudakis G (2004) A framework for requirements
monitoring of service based systems. In: Aiello M, Aoyama M,
Curbera F, Papazoglou MP (eds) ACM, ICSOC, pp 84–93

33. Giblin C, Liu AY, Zhou X (2005) Regulations expressed as logical
models (REALM). In: A.I.O.S. Press (ed) Proceedings of the 18th
annual conference on legal knowledge and information systems
(JURIX ’05), pp 37–48

34. Giblin C, Müller S, Pfitzmann B (2006) From regulatory policies to
event monitoring rules: towards model-driven compliance automa-
tion. Technical report RZ 3662, IBM Research

35. Rozinat A, van der Aalst WMP (2008) Conformance checking of
processes based on monitoring real behavior. Inf Syst 33(1):64–95

36. Baresi L, Ghezzi C, Guinea S (2004) Smart monitors for com-
posed services. In: Proceedings of the 2nd international conference
on Service oriented computing (ICSOC ’04), ACM, New York,
193–202

37. Baresi L, Guinea S, Plebani P (2006) Lecture notes in computer
science. In: WS-policy for service monitoring. Springer, Berlin,
pp. 72–83

38. Erradi A, Maheshwari P, Tosic V (2007) WS-policy based monitor-
ing of composite web services. In: 5th IEEE European conference
on web services (ECOWS ’07), pp 99–108

39. Vaculin R, Sycara K (2007) Specifying and monitoring composite
events for semantic web services. In: 5th IEEE European confer-
ence on web services (ECOWS ’07), pp 87–96

40. Li Z, Jin Y, Han J (2006) A runtime monitoring and validation
framework for web service interactions. In: The Australian soft-
ware engineering conference (ASWEC ’06), pp 70–79

41. Benatallah B, Casati F, Toumani F (2004) Analysis and manage-
ment of web service protocols. In: Proceedings of the 23rd inter-
national conference on conceptual modeling (ER ’04), Shanghai,
pp 524–541

42. Sayal M, Casati F, Dayal U, Shan MC (2002) Business process
cockpit. In: VLDB, Morgan Kaufmann, pp 880–883

123

	Domain-specific language for event-based compliance monitoring in process-driven SOAs
	Abstract
	1 Introduction
	2 Business process compliance
	2.1 Compliance in organizations
	2.2 Compliance and business processes
	2.3 Compliance monitoring through complex event processing
	2.4 Illustrative scenarios of business process compliance
	2.4.1 Scenario 1: Loan application (LA) scenario
	2.4.2 Scenario 2: Travel booking (TB) scenario
	2.4.3 Scenario 3: Claims handling (CH) scenario

	3 Developing compliance monitoring components
	3.1 Overview of compliance monitoring approach
	3.2 Process monitoring domain
	3.3 Compliance monitoring domain-specific language (DSL)
	3.4 Compliance code transformation and generation

	4 Evaluation of compliance monitoring approach
	4.1 Evaluation method
	4.2 Evaluation results
	4.3 Limitations and threats to validity

	5 Related work
	5.1 Compliance monitoring approaches
	5.2 Generic business process monitoring approaches
	5.3 CEP-based monitoring approaches

	6 Discussion
	7 Summary and conclusion
	Acknowledgments
	References

