
DISSERTATION

QoS-Aware Composition of Adaptive Service-Oriented
Systems

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines
Doktors der technischen Wissenschaften

unter der Leitung von

Univ.-Prof. Dr. Schahram Dustdar
Distributed Systems Group

Institut für Informationssysteme (E184)
Technische Universität Wien

und

Prof. M. Brian Blake, PhD
Department of Computer Science

University of Notre Dame, IN, USA

eingereicht an der

Technischen Universität Wien
Fakultät für Informatik

von

Florian Rosenberg
Matr.Nr.: 9955548
Hippgasse 5/13
A-1160 Vienna

Wien, Mai 2009

Abstract

Service-Oriented Computing (SOC) increasingly gains momentum in academia and indus-
try as a means to develop adaptive distributed software applications in a loosely coupled way.
Software services, as the main entities in SOC, have some distinct properties such as platform-
independence or a uniform interface description enabling an easier integration and use within
and across organizational boundaries. One of the main assets of service-orientation is compos-
ability to develop higher-level services, so-called composite services, by re-using well-known
functionality provided by other services in a low-cost and rapid development process. How-
ever, in distributed environments, the use of services without any quality guarantees from the
service providers can negatively affect a composite service by raising intermittent failures or
having a slow performance of one of the services. One of the main problems is the lack of
an integrated Quality of Service (QoS) model combined with an automated monitoring tech-
nique. The availability of accurate and up-to-date QoS information enables a QoS-aware com-
position and optimization of composite services by automatically selecting well-performing
services and dynamically replace services that reduce the performance or lead to failures in
a composition. However, existing QoS-aware composition approaches mainly focus on the
optimization aspect to find the best composition in terms of QoS. Therefore, QoS should be
seamlessly integrated into multiple layers of the SOC stack, such as choreography, orches-
tration and execution. This enables an end-to-end view on QoS and allows a better integra-
tion and optimization throughout the application lifecycle to achieve the vision of adaptive
service-oriented systems.

This thesis contributes a set of methods and tools to address these issues. Firstly, it proposes
an extensible multi-layer QoS model for services and an automated QoS monitoring approach.
Secondly, it describes the integration of Service Level Agreements (SLAs) into choreographies
and proposes an automated mapping to orchestrations annotated with QoS policies to enable
SLA enforcement. Thirdly, it addresses a set of issues related to the overall development
lifecycle of QoS-aware service composition. Specifically, a domain-specific language, called
VCL, is introduced to enable the specification of QoS-aware composite services with a focus
on hard and soft constraints in form of constraint hierarchies. Based on VCL, a set of methods
and algorithms are presented to generate an executable composite service that is optimized
with regard to the QoS constraints specified by the user. To this end, this thesis also introduces
a novel Web service runtime environment, called VRESCO, which implements a number of
important SOC concepts (such as dynamic binding or invocation) that are foundational for the
presented QoS-aware service composition approach.

iii

Kurzfassung

Service-Oriented Computing (SOC) gilt als aufstrebende Disziplin in der Forschung sowie
Industrie und befasst sich mit den Möglichkeiten lose-gekoppelte, verteilte und adaptive Soft-
waresysteme zu entwickeln. Software Services bilden die Kernbausteine im SOC und zeichnen
sich u.a. durch ihre Plattformunabhängigkeit und einer einheitlichen Schnittstelle aus. Da-
durch wird eine einfachere Integration und Benutzung über Unternehmensgrenzen hinweg
ermöglicht. Eine der wichtigsten Eigenschaften ist die Komponierbarkeit (composability) um
funktional höherwertige Services durch Wiederverwendung existierender Services einfach
und rasch zu implementieren. In verteilten Szenarien besteht allerdings das Problem, dass
Serviceanbieter keine Qualitätsgarantien in Form von Dienstgüteattributen – im folgenden
auch Quality of Service oder abgekürzt QoS genannt – zur Verfügung stellen (wie Antwort-
zeit, Verfügbarkeit, usw.). Dies kann vor allem in Kompositionen, die verschiedenste Services
diverser Anbieter verwenden, zum Problem werden, da die Performance und Verfügbarkeit
der einzelnen Services auch die gesamte Komposition gefährden kann. Ein Hauptproblem ist
das Fehlen eines umfassenden QoS Modells und Techniken zur Messung verschiedener QoS
Attribute. Die Verfügbarkeit akkurater QoS Information ermöglicht eine QoS-getriebene und
optimierte Komposition durch automatisches Selektieren und Ersetzen von Services. Existie-
rende Ansätze fokussieren hauptsächlich auf die Optimierung von Kompositionen hinsicht-
lich deren QoS. Es ist aber umso wichtiger die ganzheitliche Sicht und Integration von QoS
Eigenschaften über die verschiedenen Ebenen wie Choreographie, Komposition und Ausfüh-
rung eines Service-orientierten Systems zu betrachten. Dies bietet den Vorteil einer End-to-
End Sicht auf QoS und ermöglicht eine bessere Integration und Optimierung über den gan-
zen Applikationslebenszyklus um die Vision von adaptiven Service-orientierten Systemen zu
verwirklichen.

Diese Arbeit leistet einen Beitrag zur Lösung der oben genannten Probleme. Erstens wird
ein erweiterbares QoS-Modell sowie ein Ansatz und das dazugehörige Werkzeug vorgestellt,
um diese laufzeit-spezifischen QoS-Attribute automatisch messen zu können. Zweitens wird
ein Verfahren vorgestellt wie Service Level Agreements (SLAs) in Choreographien eingebun-
den werden können. Diese werden in der Folge automatisch auf Kompositionen für die ver-
schiedenen Partner abgebildet. Drittens wird ein Verfahren präsentiert, dass die Spezifikation
von QoS-getriebenen Kompositionen verbessert. Dazu wird eine domain-spezifische Sprache
VCL (Vienna Composition Language) beschrieben, die es erlaubt den gewünschten QoS einer
Komposition in Form von harten und weichen Constraints zu spezifizieren und somit eine
weitaus flexiblere Form der Spezifikation zu ermöglichen. Aufbauend darauf werden Ver-
fahren und Algorithmen präsentiert um auf Basis von VCL ausführbare und QoS-optimierte
Kompositionen zu erstellen die den Constraints in der Spezifikation entsprechen. Um die-
se Ausführung zu realisieren wird eine neuartige Web Service Laufzeitumgebung, genannt
VRESCO, vorgestellt, die typische SOC Konzepte implementiert und damit die Grundlage
für die QoS-getriebene Komposition darstellt.

iv

Acknowledgments

A PhD thesis is never the result of a single person’s effort and it would not have been
possible without the support of many different people. First and foremost, I would like to
thank my adviser Prof. Schahram Dustdar for giving me the chance to do a PhD thesis in his
Distributed Systems Group (DSG). He created an environment that allowed me to work on
new ideas and he kept me on track at the right time to turn them into reality. Additionally, I
would also like to thank Prof. M. Brian Blake from the University of Notre Dame for being my
second adviser and examiner.

I would also like to thank my colleagues in our group, especially the core members of the
VRESCO team, Philipp Leitner and Anton Michlmayr. It was a great time working together
with you on various papers, hacks and other things. I also had the honor to work with extraor-
dinary masters students: Predrag Celikovic, Christian Enzi, Andreas Huber, Thomas Laner
and Oliver Moser contributed a lot to this thesis while working on joint papers or prototypes
with me. I’m also very grateful for the great time I had during my two stays at the IBM T.J.
Watson Research Center in New York. The Component Systems Group, especially Francisco
Curbera, Matthew Duftler and Rania Khalaf, provided a great environment and were a main
source of inspiration for many things we did there. Additionally, I would like to thank our
DSG secretaries for keeping all the administrative stuff away from us.

My deepest and sincere thanks goes to my parents Franz and Christine who supported me
emotionally and financially throughout my whole life. My sister Verena for her support and
the fun weekends we could enjoy together by keeping me away from work. Last but not least,
I would like to thank the most important person in my life, my beloved partner Andrea, for
her indescribable support during all the years we have been together. All things we have
experienced in different places of the world so far will never be unforgotten. This thesis is
dedicated to you!

Florian Rosenberg
Vienna, Austria, May 2009

v

Für Andrea und meine Familie

vi

Publications

Parts of the work presented in this dissertation have been published in the following confer-
ence, journal and workshop papers. A full list of papers published by the author of this thesis
can be found at the end of this dissertation.

• F. Rosenberg, C. Platzer, and S. Dustdar. Bootstrapping Performance and Dependability
Attributes of Web Services. In Proceedings of the IEEE International Conference on Web
Services (ICWS’06), Chicago, USA, pages 205–212. IEEE Computer Society, Sept. 2006.
doi:10.1109/ICWS.2006.39.

• C. Platzer, F. Rosenberg, and S. Dustdar. Securing Web Services: Practical Usage of Stan-
dards and Specifications, chapter Enhancing Web Service Discovery and Monitoring with
Quality of Service Information. Idea Group Inc. (IGI), Nov. 2007.

• A. Michlmayr, F. Rosenberg, C. Platzer, M. Treiber, and S. Dustdar. Towards Recov-
ering the Broken SOA Triangle – A Software Engineering Perspective. In Proceedings
of the 2nd International Workshop on Service Oriented Software Engineering (IW-SOSWE’07),
Dubrovnik, Croatia, pages 22–28. ACM Press, 2007. doi:10.1145/1294928.1294934.

• F. Rosenberg, C. Enzi, A. Michlmayr, C. Platzer, and S. Dustdar. Integrating Quality of
Service Aspects in Top-Down Business Process Development using WS-CDL and WS-
BPEL. In Proceedings of the 11th IEEE International Enterprise Distributed Object Computing
Conference (EDOC’07), Annapolis, Maryland, USA., pages 15–26. IEEE Computer Society,
Oct. 2007. doi:10.1109/EDOC.2007.23.

• O. Moser, F. Rosenberg, and S. Dustdar. Non-Intrusive Monitoring and Adaptation for
WS-BPEL. In Proceedings of the 17th International International World Wide Web Conference
(WWW’08), Beijing, China, pages 815–824. ACM Press, Apr. 2008. doi:10.1145/

1367497.1367607.

• O. Moser, F. Rosenberg, and S. Dustdar. VieDAME – Flexible and Robust BPEL Processes
through Monitoring and Adaptation (Informal Demo Paper). In Proceedings of the 30th
International Conference on Software Engineering (ICSE’08), Leipzig, Germany, pages 917–
918. ACM Press, May 2008. doi:10.1145/1370175.1370186.

• F. Rosenberg, P. Leitner, A. Michlmayr, and S. Dustdar. Integrated Metadata Sup-
port for Web Service Runtimes. In Proceedings of the Middleware for Web Services Work-
shop (MWS’08), co-located with the 12th IEEE International Distributed Object Computing

vii

http://dx.doi.org/10.1109/ICWS.2006.39
http://dx.doi.org/10.1145/1294928.1294934
http://dx.doi.org/10.1109/EDOC.2007.23
http://dx.doi.org/10.1145/1367497.1367607
http://dx.doi.org/10.1145/1367497.1367607
http://dx.doi.org/10.1145/1370175.1370186

Conference (EDOC’08), Munich, Germany. IEEE Computer Society, Sept. 2008. doi:

10.1109/EDOCW.2008.38.

• F. Rosenberg, A. Michlmayr, and S. Dustdar. Top-Down Business Process Development
and Execution using Quality of Service Aspects. Enterprise Information Systems, pages
459–475, November 2008. doi:10.1080/17517570802395626.

• F. Rosenberg, P. Leitner, A. Michlmayr, P. Celikovic, and S. Dustdar. Towards Compo-
sition as a Service - A Quality of Service Driven Approach. In Proceedings of the First
IEEE Workshop on Information and Software as Services (WISS’09), co-located with the 25th
International Conference on Data Engineering (ICDE’09), Shanghai, China. IEEE Computer
Society, Mar. 2009. doi:10.1109/ICDE.2009.153.

• F. Rosenberg, P. Celikovic, A. Michlmayr, P. Leitner, and S. Dustdar. An End-to-End Ap-
proach for QoS-Aware Service Composition. In Proceedings of the 13th IEEE International
Enterprise Distributed Object Computing Conference (EDOC’09), Auckland, New Zealand,
2009.

• A. Michlmayr, F. Rosenberg, P. Leitner, and S. Dustdar. End-to-End Support for QoS-
Aware Service Selection, Invocation and Mediation in VRESCO. Technical Report TUV-
184-2009-03, Technical University Vienna, June 2009. Available from: http://www.
infosys.tuwien.ac.at/Staff/rosenberg/papers/TUV-1841-2009-03.pdf.

viii

http://dx.doi.org/10.1109/EDOCW.2008.38
http://dx.doi.org/10.1109/EDOCW.2008.38
http://dx.doi.org/10.1080/17517570802395626
http://dx.doi.org/10.1109/ICDE.2009.153
http://www.infosys.tuwien.ac.at/Staff/rosenberg/papers/TUV-1841-2009-03.pdf
http://www.infosys.tuwien.ac.at/Staff/rosenberg/papers/TUV-1841-2009-03.pdf

Contents

List of Figures xiii

List of Tables xv

Listings xvii

Abbreviations xix

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Definition . 3

1.2.1 Key Research Issues . 4
1.2.2 Research Questions . 5

1.3 Contributions . 6
1.4 Organization of the Thesis . 9

2 Related Work 11
2.1 Quality of Service Models . 11
2.2 QoS Monitoring . 13
2.3 Choreography Modeling and Transformation . 15
2.4 Service Composition Approaches . 17

2.4.1 QoS-Aware Composition and Optimization 17
2.4.2 DSLs for Service Composition . 20
2.4.3 Other Service Composition Approaches 21

I QoS Integration in Service-Oriented Systems 23

3 A Multi-Layer QoS Model for Service-Oriented Systems 25
3.1 Motivation . 25
3.2 Service Layer . 27

3.2.1 Performance . 27
3.2.2 Dependability . 30
3.2.3 Security and Trust . 31
3.2.4 Cost and Payment . 32

ix

x Contents

3.2.5 Summary of QoS Attributes . 33

3.3 Choreography Layer . 34

3.4 Orchestration Layer . 35

3.4.1 Integration of QoS Policies . 36

3.4.2 Aggregation of Service Layer QoS . 39

3.5 Summary . 42

4 Monitoring and Measuring Web Service QoS Attributes 43

4.1 Motivation . 43

4.2 Overview of Monitoring Approaches . 44

4.2.1 Provider-Side Instrumentation . 44

4.2.2 SOAP Intermediaries . 45

4.2.3 Probing . 45

4.2.4 Sniffing . 45

4.3 Client-Side Monitoring Approach . 46

4.3.1 QUATSCH Toolkit . 46

4.3.2 AOP-based Evaluation . 52

4.3.3 Interceptor-based Evaluation . 53

4.3.4 TCP Sniffing and Reassembly . 54

4.3.5 Implementation Aspects . 57

4.4 Evaluation . 57

4.5 Discussion and Limitations . 61

5 Transformation of SLA-Aware Choreographies into Orchestrations 63

5.1 Motivation . 63

5.2 Illustrative Example . 64

5.3 Background and Basic Concepts . 65

5.3.1 An Overview of WS-CDL . 66

5.3.2 An Overview of WS-BPEL . 68

5.4 Transformation and QoS Integration Approach 68

5.4.1 Overview . 68

5.4.2 Mapping WS-CDL to BPEL . 70

5.4.3 Generating WSDL Descriptions . 73

5.4.4 SLA/QoS Integration . 73

5.5 Architecture and Execution Environment . 80

5.5.1 Modeling Phase . 80

5.5.2 Execution Phase . 81

5.6 Discussion . 85

Contents xi

II QoS-Aware Service Composition and Execution 87

6 VRESCO – A Runtime for Adaptive Service-Oriented Systems 89
6.1 Motivation and Overview . 89
6.2 A Metadata Model for Services . 91

6.2.1 Illustrative Example . 91
6.2.2 Metadata Model . 93
6.2.3 Service Model and Metadata Model Mapping 95

6.3 Core Runtime Services . 97
6.3.1 Overview . 97
6.3.2 VRESCO Query Language . 99
6.3.3 VRESCO Mapping Framework . 103
6.3.4 Dynamic Binding and Invocation with DAIOS 105

6.4 Evaluation and Discussion . 109
6.4.1 Querying Performance . 109
6.4.2 Mediation Performance . 109

7 VCL - A Constraint-Based and QoS-Aware Composition Language 111
7.1 Motivation . 111
7.2 Vienna Composition Language . 112

7.2.1 Overview and Structure . 113
7.2.2 Grammar and Language Constructs . 115

7.3 Implementation . 121
7.4 Evaluation . 122

8 Composition as a Service using VCL 125
8.1 Motivation . 125

8.1.1 CaaS Overview . 126
8.1.2 Formal Composition Model . 127

8.2 Feature Resolution and Pre-filtering . 128
8.3 Generating Structured Compositions . 130

8.3.1 Abstract Dependency Graph . 131
8.3.2 Generating the Structured Composition 132

8.4 QoS-Aware Optimization . 133
8.4.1 QoS Aggregation . 134
8.4.2 Constraint Optimization Problem . 134
8.4.3 Integer Programming Approach . 136

8.5 Generation and Deployment of the Composite Service 137
8.6 Implementation and Evaluation . 139

8.6.1 Feature Resolution . 140
8.6.2 Structured Composition Generation . 140

xii Contents

8.6.3 QoS-Aware Optimization . 141
8.6.4 Composite Service Generation and Deployment 142
8.6.5 End-to-End Performance . 143

8.7 Discussion . 144

9 Conclusions and Future Research 145
9.1 Summary . 145
9.2 Assessment of the Research Questions . 146
9.3 Outlook and Future Research . 148

Bibliography 151

A QUATSCH Tool Support 167

B VCL Example Listing 169

C Curriculum Vitae 175

List of Figures

1.1 SOA Triangle . 2
1.2 The Big Picture . 6

3.1 Service Layer QoS Taxonomy . 27
3.2 Service Invocation Timeline . 28
3.3 Composition Patterns . 40

4.1 System Architecture . 47
4.2 QUATSCH Class Diagram . 50
4.3 Aspect for Service Invocations (simplified) . 52
4.4 TCP Message Flow . 55
4.5 Execution Time Approximation for the QoSTimingServiceCXF Service . . . 58
4.6 Execution Time Approximation for the QoSTimingServiceRPC Service . . . 59
4.7 Execution vs. Response Time of the ISBNCheck Service 60
4.8 Throughput Evaluation of QoSTimingServiceRPC 60

5.1 BTO Case Study . 65
5.2 Modeling and Transformation Approach . 69
5.3 System Architecture . 81
5.4 VieDAME enhanced BPEL environment . 82
5.5 VieDAME Overall System Architecture . 83

6.1 VRESCo Overview . 90
6.2 Number Portability Process . 92
6.3 VRESCo Metadata Model . 94
6.4 Service Model and Metadata Mapping . 96
6.5 VRESCO Metadata Model – Mapping Example 97
6.6 VRESCO Query Processing Architecture . 100
6.7 VRESCO Mediation Scenario (partly from [78]) 103
6.8 VMF Architecture . 104
6.9 DAIOS Architecture . 106
6.10 Mediation Performance . 110

7.1 VCL Language Schema . 114

xiii

xiv List of Figures

7.2 VCL Parsing and Model Creation Performance 122

8.1 Architectural Overview of Composition as a Service with VCL 127
8.2 Annotated Abstract Dependency Graph . 132
8.3 Structured Composition Graph . 133
8.4 Feature Resolution Performance . 140
8.5 Structured Composition Generation Performance 141
8.6 Optimization Performance (IP) . 142
8.7 Composite Service Generation Performance . 143
8.8 End-to-End Performance for 10 Service Candidates 144

A.1 QUATSCH UI - Add Service . 167
A.2 QUATSCH UI - Dynamic Charts . 168

List of Tables

3.1 Summary of Service Layer QoS Attributes . 33
3.2 QoS Attributes and Aggregation Formulas . 41

5.1 WS-CDL to BPEL Mapping . 71
5.2 WS-CDL to WSDL Mapping . 74
5.3 SLA Operator Mapping . 78

6.1 VQL Expressions . 101
6.2 VQL Mapping Semantics . 102
6.3 Mapping Functions . 104
6.4 Rebinding Strategies . 108

7.1 Statements for the Business Protocol Specification 119

8.1 WWF Generation . 138
8.2 COP Performance . 142

xv

Listings

3.1 SLA Parameter Definitions . 35
3.2 Service Level Objective Example . 36
3.3 WS-QoSPolicy Assertions . 37
3.4 WS-QoSPolicy Schema Excerpt . 38
3.5 Assertion Example . 39

4.1 Dynamic Invocation Code . 51
4.2 Response Time Pointcut for Axis . 53

5.1 Workunit Example . 67
5.2 Interaction Activity . 67
5.3 Choreography Example . 70
5.4 WS-CDL Description Type . 74
5.5 SLA Integration in WS-CDL . 76
5.6 WSLA Example for Pattern 1 . 77
5.7 Mapping Result for Pattern 1 . 77
5.8 WSLA Example for Pattern 2 . 78
5.9 Mapping Result for Pattern 2 . 79
5.10 Policy Integration in BPEL . 80

6.1 VQL Sample Query . 102
6.2 VMF Mapping Example . 105
6.3 DAIOS Service Invocation . 107

7.1 VCL Grammar . 115
7.2 Feature Definition . 116
7.3 Global Constraints . 117
7.4 Feature Constraints . 118
7.5 Business Protocol Specification Example . 120
7.6 VCL MGrammar Example . 121

B.1 Telco Example Implementation . 169
B.2 Structured Composition Representation . 173

xvii

Abbreviations

AI . Artificial Intelligence
AOP Aspect-Oriented Programming
CaaS Composition as a Service
COP Constraint Optimization Problem
CSP Constraint Satisfaction Problem
DAG Directed Acyclic Graph
DAL Data Access Layer
DAO Data Access Objects
DSL Domain-Specific Language
IETF Internet Engineering Task Force
IP . Integer Programming
ITU International Telecommunication Union
JSON JavaScript Object Notation
MCDM Multiple Criteria Decision Making
MCOP Multi-Constrained Optimal Path
MDA Model-Driven Architecture
MIP Mixed Integer Programming
MMKP Multidimensional Multi-Choice Knapsack Problem
QoS Quality of Service
RCSP Resource Constrained Project Scheduling Problem
RFC Request for Comments
SLO Service Level Objective
SMS Short Message Service
SOA Service-Oriented Architecture
SOAP Simple Object Access Protocol
SOC Service-Oriented Computing
SSL Secure Socket Layer
TCP Transmission Control Protocol
UDDI Universal Description Discovery and Integration
VCL Vienna Composition Language
VMF VRESCO Mapping Framework
VPN Virtual Private Network
VQL VRESCO Query Language
VRESCo Vienna Runtime Environment for Service-Oriented Computing

xix

xx List of Abbreviations

WS-BPEL Web Service Business Process Execution Language
WS-CDL Web Service Choreography Description Language
WS-QDL Web Service Quality Definition Language
WSDL Web Service Description Language
WSLA Web Service Level Agreements
WSOL Web Service Offering Language
XAML eXtensible Application Markup Language
XML eXtensible Markup Language

Chapter 1

Introduction

It’s supposed to be hard! If it wasn’t hard, everyone would do it. The hard. . . is what
makes it great!" - Jimmy Dugan

Contents
1.1 Motivation . 1

1.2 Problem Definition . 3

1.2.1 Key Research Issues . 4

1.2.2 Research Questions . 5

1.3 Contributions . 6

1.4 Organization of the Thesis . 9

1.1 Motivation

Over the last years, the increasing distribution of software systems has led to an enormous
rise in application complexity. This increase in complexity has a multitude of reasons, among
them, the enormous need to integrate and connect heterogeneous applications and resources
within and across organizational boundaries. However, most legacy systems and applica-
tions were not designed to be integrated and adapted to new application scenarios, therefore,
requiring new paradigms and approaches to cope with these challenges.

The concept of service-orientation as a design paradigm provides the necessary conceptual
foundations to deal with the increasing complexity and integration challenges by promoting
the development of autonomous and loosely coupled software entities called services. A ser-
vice is usually characterized by several distinct properties such as loose coupling, well-defined
service contracts as well as the fact that services are based on standards and are independent
of any particular implementation technology [103, 166].

In general, Service-Oriented Computing (SOC) is seen as an emerging discipline promoting
science, research, and technology related to services [44, 117]. The overall motivation behind
SOC is the idea that businesses offer their application functionality as services over the In-
ternet and other companies or users can integrate and compose these business services into

1

1.1 Motivation

their applications. This concept is manifested in an architectural style that is commonly re-
ferred to as Service-Oriented Architecture (SOA). In Figure 1.1, the core stakeholders of an
SOA are depicted: a service provider publishes a specific service contract which describes a
service in a service registry ("Register"). A service requester (the client) can then query a ser-
vice from the service registry ("Find") and dynamically bind to one of the services that were
returned by the search query. This SOA triangle can be implemented, for example, by using
existing technologies from the Web services stack [166]. These include SOAP (formerly known
as Simple Object Access Protocol) [158] as a transport protocol, WSDL (Web Service Descrip-
tion Language) [157] as a service description language to specify service contracts and UDDI
(Universal Description Discovery and Integration) [106] as a registry for storing services and
its metadata. It has to be noted that Web services are only one technology for implement-
ing an SOA. However, the concepts presented in this thesis can also be applied to other SOA
technologies.

Service
Contract

Service
Registry

Service
Provider

Service
Requester Bind

RegisterFind

Figure 1.1: SOA Triangle

One of the core principles of service-orientation is the idea of composing these network-
available services by discovering and dynamically invoking them rather than building ap-
plications from scratch or reusing other applications [44]. The process of building service-
oriented applications from existing services is known as service composition or orchestration,
the result of the composition process is called a composite service [45]. WS-BPEL (Web Ser-
vice Business Process Execution Language) or BPEL for short [107] is the de-facto standard
orchestration language in the Web service area. In contrast to orchestration, the concept of
choreography describes the message interchanges between participants in service-oriented sys-
tems and provides a global model of all the participants and their message exchanges without
requiring a central coordinator [16,172]. An orchestration specifies the executable behavior of
each participant in the choreography for example by using BPEL. Despite some critique [15],
the Web Service Choreography Description Language (WS-CDL) is one of the first examples
for describing the global model of service interactions [161]. Both choreography and orches-
tration underlie the general area of service-oriented software engineering and thus represent
different design choices when implementing service-oriented systems. The concrete scenario
determines whether an explicit top-down approach to choreography and derived partner or-
chestrations is required and useful or a bottom-up approach is sufficient.

2

Chapter 1: Introduction

Irrespective of the design and modeling approach, a core requirement for service-oriented
systems is a certain degree of self-adaptivity [42, 104]. According to Cheng et al. [34], "a self-
adaptive system is able to modify its behavior according to changes in its environment". A
key enabler for realizing adaptive behavior for service-oriented systems in general, and ser-
vice compositions in particular, is the availability of Quality of Service (QoS) data. The term
QoS has its origin in the networking community where it is defined by Crawley et al. [36] as
"a set of service requirements to be met by the network while transporting a flow" (where a
flow represents a stream of IP packets from source to destination). In the SOC community,
QoS comprises all non-functional attributes of a service, ranging from performance-specific
attributes to security and cost-related data. In general, QoS can be grouped into deterministic
and non-deterministic attributes [81]. Deterministic QoS attributes, on the one hand, indicate
that their value is known before a service is invoked, including price or the supported security
protocols. On the other hand, their non-deterministic counterpart includes all attributes that
are uncertain at service invocation time, for example the service response time. Therefore, the
availability of accurate non-deterministic QoS information plays a crucial role during devel-
opment and execution of a composite application. Firstly, QoS enables a QoS-aware dynamic
binding to concrete services that are available in registries known at runtime. Secondly, QoS
enables an optimization of composite services in terms of its overall QoS and adaptation of
services whenever QoS changes. We denote a composite service leveraging QoS to enable
adaptive behavior as QoS-aware composite service and the engineering process as QoS-aware
service composition.

In general, this thesis addresses different facets within the lifecycle of developing and opti-
mizing QoS-aware composite applications in SOA environments. In the following, we focus
specifically on research issues addressed in this thesis and provide a coherent framework to
illustrate and interlink these problems and their contributions.

1.2 Problem Definition

When developing QoS-aware service-oriented applications, several distinctive software layers
can be used to master the development complexity and provide a logical application structure.
A common architectural approach for implementing service-oriented systems is the use of a
layered architecture [48] as shown in Figure 1.2.

The choreography layer defines an abstraction where all participants in a service-oriented sys-
tem agree on the publicly observable behavior in terms of messages that are exchanged among
partners in a business process. Typically, such a choreography layer is most adequate when
using a top-down approach for developing a system because it defines a common agreement
among the participants.

The orchestration layer focuses on the internal behavior of each participant in the chore-
ography that is required to realize and implement a business process. Following Zdun et
al. [173, 174], we distinguish between two different types of processes: a macroflow represents

3

1.2 Problem Definition

higher-level business processes and microflows address the process flow within macroflow pro-
cess activities. This conceptual distinction is important for two reasons. Firstly, it enables the
design of business processes at the right level of granularity. Macroflows capture long-running
processes whereas microflows implement short running processes more on a technical level
(composite services). Secondly, this distinction helps to separate business problems from the
technical/application space.

The service layer comprises all atomic services that are available for the upper layers to in-
tegrate them in compositions or use them as part of the choreography description. These
services can be, among others, public services, corporate services or simple wrapper services
for legacy systems. These services are managed by the execution layer.

The execution layer combines all aspects related to the SOA triangle functionalities such as
publish-find-bind, the dynamic invocation of services and the execution of composite services
and business processes. Additionally, QoS monitoring techniques are implemented in the
execution layer to incorporate up-to-date QoS information of all deployed services.

1.2.1 Key Research Issues

However, following such a layered design approach does not per se imply that these applica-
tions provide QoS-awareness and adaptive behavior. An example of such adaptive behavior
could be an automatic replacement of services in a composition with low accuracy. Current
approaches and runtimes have a lack of flexibility to realize such adaptive behavior across the
full services lifecycle. This has a multitude of reasons and requires a number of research issues
to be addressed.

QoS Integration and Monitoring. A major concern when implementing flexible service-
oriented systems is the availability of QoS information for atomic services. QoS issues have
received a lot of attention over the last years (e.g., [87, 88, 176]), however, no coherent and
extensible model for addressing and integrating QoS on various layers exists (choreography,
orchestration, and service layer).

In terms of modeling service-oriented systems, a number of approaches exist, such as chore-
ography modeling leveraging different languages [40, 41, 171]. However, non of these ap-
proaches considers QoS aspects from the beginning of the modeling phase. An integration of
QoS in early design phases of the choreography can reduce the burden of an integration at a
later stage in the development process.

Besides the ability to specify QoS, it is of utmost importance that QoS attributes can be
monitored continuously by using non-intrusive monitoring mechanisms (i.e., no need to know
any service internals, the service interface description should be sufficient). In general, the
availability of a QoS model, the integration of QoS into modeling approaches and automated
monitoring capabilities are crucial aspects to increase adaptivity of service-oriented systems.

4

Chapter 1: Introduction

QoS-Aware Composition and Execution. On the orchestration layer, several existing work-
flow or composition languages such as WS-BPEL [107] or the Microsoft Windows Workflow
Foundation [96] can be used. However, these approaches are purely static and once the com-
position is fully specified and deployed, no adaptive behavior is available allowing a com-
position to change at runtime (e.g., dynamically select another service because the QoS of
an existing one is decreasing). These "static" languages do not support a flexible specifi-
cation and execution of QoS-aware composite services. Most existing works on QoS-aware
composition focus purely on the optimization part of the problem which is known to be NP-
hard [4, 9, 26, 59, 65, 66, 170, 175, 176]. Moreover, these approaches only allow the specification
of hard QoS constraints in a composition (globally or for a specific service) such that, in many
cases, solutions cannot be determined that fulfill all QoS requirements. In general, the prob-
lem of QoS-aware service composition comprises a much broader range of necessary tasks to
solve the problem from an end-to-end perspective.

Integrated Service Runtime Environment. Successfully addressing the aforementioned is-
sues requires a strong runtime support. The main problem with current runtimes is the fact
that they do not fully implement the SOA triangle from Figure 1.1. In theory, this triangle
is designed to enable adaptivity for applications implementing this model. In practice, how-
ever, this model is mostly implemented in a point-to-point way where the requester interacts
with the provider without dynamically discovering and binding to a service. This simplified
model is mainly used due to a lack of flexible SOA runtimes that provide support for the orig-
inal SOA triangle as part of the middleware or runtime environment [93]. Therefore, a Web
service runtime is required to provide native and integrated support for service-oriented soft-
ware engineering. This includes issues such as publishing and managing services, dynamic
binding, and service discovery. An integrated end-to-end environment is required to enable
QoS-aware composition and adaptation.

1.2.2 Research Questions

The aforementioned problems raise the need for a set of methods and a framework to effec-
tively develop QoS-aware service-oriented systems. In particular, this thesis is guided by the
following two main research questions including a set of subquestions to further structure the
main questions.

Q1: What is a method and supporting system for managing QoS issues in service-oriented systems
that operate across the full services lifecycle (i.e., modeling, development, and runtime)?

- Which QoS aspects have to be considered to address different lifecycle phases?

- How can QoS be effectively monitored to support the full services lifecycle?

- Which methods facilitate modeling support for QoS in service-oriented systems?

5

1.3 Contributions

Q2: Does a QoS-aware language and supporting runtime environment effectively facilitate composi-
tion and adaptation of QoS-aware service-oriented systems?

- Which methods provide a flexible and effective way to specify QoS-aware composi-
tions?

- What kind of runtime support mechanisms are required to address composition and
adaptation in QoS-aware systems?

1.3 Contributions

In regard to the aforementioned problems, the contributions of this thesis are summarized by
presenting a research and integration architecture to interrelate the contributions to manifest
the "big picture" of this thesis. The architecture is depicted in Figure 1.2 and comprises three
different layers. We have annotated the architecture to associate the specific contributions to
the corresponding layers and use curly braces to define their scope.

M
ac

ro
flo

w

Ex
ec

ut
io

n
La

ye
r

Ch
or

eo
gr

ap
hy

La
ye

r

QoS
Monitor

Composition
Engine

QoS QoS

Party 2 Party 3

Party 1
SLA

SLA

SLA

QoS
Policies

VRESCo
Runtime

M
ic

ro
flo

w

O
rc

he
st

ra
tio

n
La

ye
r

Contribution 1
Multi-Layer QoS Model

Contribution 2
Flexible QoS Monitoring

Contribution 3
Transformation of SLA-
Aware Choreographies
into Orchestrations

Contribution 4
End-to-End Approach for
QoS-Aware Composition

Contribution 5
VRESCo Runtime Environment

Se
rv

ic
e

La
ye

r

QoS
QoSQoSQoS

QoS

Figure 1.2: The Big Picture

6

Chapter 1: Introduction

Multi-Layer QoS Model. The first contribution of this thesis is a QoS model comprising
multiple layers from the SOC stack. On the service layer, we consider elementary QoS at-
tributes such as the response time of a service or the supported security protocol. On the
orchestration layer, QoS policies can be specified to define QoS guarantees for various partner
invocations in an orchestration. Additionally, QoS attributes from the service layer are aggre-
gated to calculate the QoS of a composite service. On the choreography layer, QoS is expressed
on a higher level in form of Service Level Agreements (SLAs) between two partners. These
SLAs are defined by combining multiple fine-grained QoS attributes into Service Level Objec-
tives (SLOs) that have to be guaranteed by the service provider. The presented QoS model has
been successfully used for several approaches published in [124, 131, 134, 136].

Flexible QoS Monitoring. Alongside with the aforementioned QoS model, this thesis con-
tributes a novel client-side QoS monitoring approach for Web services called QUATSCH. It al-
lows to monitor performance-specific QoS attributes such as response time, latency or through-
put continuously from a client-side perspective without requiring access to service provider
internals. The approach combines dynamic invocation of services and aspect-oriented pro-
gramming (AOP) techniques [72, 73] with low-level TCP packet capturing and analysis to
calculate the server-side execution time of a service operation. Since a service is treated as
a black-box, the QoS monitor can be used as a suitable third-party tool for QoS monitoring.
The QUATSCH approach has been published in [124, 136] and successfully integrated in other
systems, such as VRESCO (Vienna Runtime Environment for Service-Oriented Computing),
which is described later in this thesis. A different approach for real-time monitoring of QoS
attributes within the context of business processes, was designed and implemented as non-
intrusive monitoring solution for a WS-BPEL engine by leveraging AOP techniques [99, 100].

Transformation of SLA-Aware Choreographies into Orchestrations. In order to support
the development of QoS-aware service-oriented systems, we present a top-down modeling
approach by considering non-functional aspects (QoS) from the beginning of the modeling
phase as a first-class citizen. In this regard, we use WS-CDL as a choreography description
language and leverage SLAs (specified in WSLA [61]) as the main technique for capturing
the outcome of the QoS negotiations between different service providers in the global model.
This global model is used to automatically generate the necessary orchestration stubs for each
partner in the choreography in WS-BPEL notation. These orchestrations are automatically
annotated with QoS attributes in form of QoS policies by using WS-Policy [165]. Furthermore,
we leverage VieDAME [99, 100] as an execution engine for enacting the orchestrations and
enforcing QoS policies. This contribution has been published in [131, 134].

End-to-End Approach for QoS-Aware Composition. Besides modeling the global view on
the choreography layer, this thesis puts a strong emphasis on the composition layer. Firstly,
we contribute a domain-specific language (DSL) called VCL (Vienna Composition Language)

7

1.3 Contributions

allowing a constraint-based specification of functional and non-functional requirements that
each service in the composition has to fulfill. We put a particular focus on the specification
of global and local QoS constraints (hard and soft constraints). The former specify constraints
for the overall composition whereas the latter specify constraints for a single service in the
composition. The proposed QoS constraint specification follows the theory of constraint hi-
erarchies [23] to allow a fine-grained distinction of the importance of a QoS constraint and
to reduce the risk of specifying an over-constrained composition (i.e., a composition with ex-
isting contradictory constraints in the problem space). Secondly, we present a Composition
as a Service (CAAS) approach based on VCL allowing a semi-automated generation, execu-
tion and deployment of QoS-aware composite services. The approach combines a set of tech-
niques, such as data flow analysis, a constraint optimization approach, Integer Programming
(IP) and the generation of a executable composition. These approaches have been published
in [129, 132].

VRESCo Runtime Environment. We contribute VRESCO (Vienna Runtime Environment
for Service-Oriented Computing), a novel runtime and programming model based on an ex-
tensible service metadata model [133]. It addresses typical software engineering related issues
in SOC, such as publishing services, dynamic binding and invocation [93], service media-
tion, and service discovery by using a type-safe query mechanism. The VRESCO approach
comprises many aspects within the SOC stack, however, we can only briefly describe the
overall VRESCO system and focus on the service metadata model, the query language and
the mediation framework. The QoS-aware composition approach described above, uses the
VRESCO runtime, especially the service metadata model as a foundation. Additionally, the
above mentioned QoS monitoring approach has been integrated to enable QoS-awareness of
services published in VRESCO. The VRESCO work relevant for this thesis has been published
in [91, 93, 133].

It is important to note that most proof-of-concept implementations described in this thesis
use technologies from the Web services stack as a means to implement an SOA. However, most
concepts would also apply to other technologies that can be used to realize service-oriented
systems. For example, our composition approach is focused around SOAP-based Web services
and uses the Windows Workflow Foundation as an execution platform. The same QoS-aware
composition concepts could be applied to RESTful services [120] and the Bite composition
environment [130], co-developed as part of two internships at IBM Research, or BPEL for
REST [118].

Please also note that all relevant publications co-authored by the author of this thesis are
referenced in this chapter and are explicitly listed in the Publications section (page vii). This
thesis mainly summarizes these publications and in the remainder of this thesis they are used
without being referenced individually.

8

Chapter 1: Introduction

1.4 Organization of the Thesis

This thesis is organized as follows: Chapter 2 presents the related work classified into the core
areas described earlier as part of the contributions. We compare the contributions described
in this thesis with existing work in the respective areas. Then, the thesis is split in two major
parts:

Part I comprises the contributions related to the integration of QoS into service-oriented
systems. Chapter 3 describes the multi-layer QoS model that forms the basis for all further
approaches described in this thesis. Chapter 4 describes the QoS monitoring approach which
is later used and integrated into the VRESCO environment. Chapter 5 presents the transfor-
mation of SLA-aware choreographies into orchestrations using WS-CDL and WS-BPEL.

Part II comprises the contributions related to QoS-aware service composition and execu-
tion. Chapter 6 introduces the VRESCO runtime and discusses the service metadata model in
detail as it forms the basis for the QoS-aware composition approach. Chapter 7 presents the
domain-specific language called VCL, which is used as the main language for specifying QoS-
aware compositions. Chapter 8 builds upon VCL and describes the QoS-aware composition
approach to achieve "Composition as a Service" (CAAS) as the final contribution.

Finally, Chapter 9 concludes this thesis and outlines some future work in this area.

9

Chapter 2

Related Work

This section presents the related work according to the main areas aligned with the contribu-
tions of this thesis: QoS models, QoS monitoring, choreography modeling and transformation,
and service composition in general with a particular focus on QoS-aware service composition.

Contents
2.1 Quality of Service Models . 11

2.2 QoS Monitoring . 13

2.3 Choreography Modeling and Transformation 15

2.4 Service Composition Approaches . 17

2.4.1 QoS-Aware Composition and Optimization 17

2.4.2 DSLs for Service Composition . 20

2.4.3 Other Service Composition Approaches 21

2.1 Quality of Service Models

In general, there is no formal definition for QoS, however, several definitions exist in the
telecommunications domain where QoS is mainly used to define certain communication level
properties of networks (such as throughput or error rate). One of the first definitions appeared
in 1995 in the International Telecommunication Union (ITU) standard X.902 [62] where they
define QoS as follows: "A set of quality requirements on the collective behavior of one or more
objects". Several QoS attributes describe the speed and reliability of data transmission, e.g.,
error rate, transit delay or throughput.

Numerous other QoS definitions have emerged especially in the networking community, in
particular related to ATM (Asynchronous Transfer Mode) networks. These networks are able
to provide QoS guarantees on a transport-level such as bit rate, delay or jitter. The Internet
Engineering Task Force (IETF) addresses these definitions in various RFCs related to ATM,
e.g., RFC 1932 [35] and RFC 1946 [63].

11

2.1 Quality of Service Models

In the context of multimedia, Vogel et al. [155] define QoS with a particular focus on the
application-level using real-time communication: "The set of those quantitative and qualita-
tive characteristics of a distributed multimedia system, which are necessary in order to achieve
the required functionality of an application".

The importance of QoS in the area of service-oriented systems has been initially discussed
in early 2000 by several researchers [38, 83, 87, 125] by leveraging the knowledge from earlier
networking-related QoS attributes. Additionally, application- and business related QoS at-
tributes have been addressed to cope with the need for providing quality attributes of loosely
coupled distributed services. Up to now, QoS issues in SOC have received a lot of attention,
in particular, QoS-aware service selection and composition have been core areas of research.

Ran [125] was one of the first who has proposed a QoS model and a UDDI extension for as-
sociating QoS information to specific Web services. The model comprises QoS categories, such
as runtime-related QoS, transactional QoS attributes and several other categories. QoS infor-
mation of a Web service is included when publishing a service in the UDDI registry. Unfortu-
nately, Ran does not describe whether QoS information can be updated once it is published,
therefore, leading to static QoS information that quickly becomes obsolete. Additionally, that
paper does not specify how runtime-related QoS attributes are calculated or monitored.

Tian et al. [144,145] have defined a QoS model for Web services representing a combination
of XML schema and ontologies. They distinguish between server QoS (e.g., processing time
or availability), transport QoS (e.g., delay, jitter, throughput), security and transactions. Ex-
tensibility is supported by using an extension element in XML schema. Each QoS attribute
in the aforementioned categories has a reference to an ontology where custom metrics can be
defined.

In the workflow domain, Cardoso et al. [29] present a QoS model for workflows and Web
processes that mainly consists of task cost, task time and task reliability. Besides the QoS
model, the authors also present a stochastic workflow reduction algorithm to aggregate atomic
QoS attributes of each task in the workflow to calculate the overall workflow QoS.

In 2005, OASIS established a technical committee [105] for defining a Web Services Quality
Model, thus, highlighting the importance of QoS for Web services in general. The ambition of
the committee is to develop a quality model for Web services and in the long run a WS Qual-
ity Definition Language (WS-QDL) to describe quality aspects of Web services by using an
XML-based language. The current committee draft defines several quality categories. For ex-
ample, the category Service Level Measurement Quality defines attributes such as response time
or throughput whereas the category Security Quality defines all security-related QoS aspects.
Currently, their work is still a draft and it remains unclear how the model can be implemented
and used with real Web services.

Ontologies for representing Web service QoS have also been proposed. The approach pre-
sented in [116] describes an ontology which captures QoS attributes, their metrics, the relation-
ship to other attributes and several other aspects. Unfortunately, the authors do not present
any details whether their QoS ontology is integrated into existing registries or any other tech-
nology allowing to retrieve the actual QoS values. The QoS ontology presented in [178] is

12

Chapter 2: Related Work

similar to the one presented in [116]. Additionally, the authors present a matchmaking ap-
proach allowing to determine all compatible QoS descriptions for a given one.

Common to all the aforementioned approaches is the fact that QoS is seen only from one
perspective, mostly from an atomic service point of view. The model that we propose in
this thesis considers multiple viewpoints on QoS. Therefore, we enable the use of QoS on
different layers from the SOC stack such as the service, orchestration and choreography layer.
Additionally, most approaches do not indicate how QoS attributes are measured and updated
to avoid having outdated QoS values associated with certain services. We address these issues
by proposing an integrated QoS framework as part of our VRESCO runtime environment and
additionally use a QoS monitor to accurately measure performance-specific attributes.

2.2 QoS Monitoring

An accurate QoS monitoring approach for atomic services and service compositions is im-
portant for numerous reasons. Firstly, it enables to assess, rank and select service providers
based on certain QoS attributes. Secondly, it opens a wide range of new application scenarios
and possibilities for improving the stability and adaptability of distributed service-oriented
systems.

An overview of QoS monitoring approaches for Web service based systems is presented
by Thio et al. [143]. The authors discuss possible techniques such as low-level sniffing or a
proxy-based solution to perform the monitoring. The prototype system presented in this pa-
per adopts an approach where the SOAP engine library is modified in the sense that the code
is instrumented with logging statements to emit the necessary information for QoS measure-
ment. A major drawback of this approach is the dependency on the modified SOAP library
and the resulting maintenance and distribution of the modified library.

Mani and Nagarajan [83] present a set of QoS attributes and discuss possible bottlenecks
that might influence the QoS. They also outline a monitoring approach for response time by
manually instrumenting the generated Web service proxy to perform the measurement. The
drawback with this approach is the manual instrumentation of generated Web service client
stubs which makes it impractical for automated monitoring and for systems that use dynamic
(and stub-less) Web service invocations [80].

Wickramage and Weerawarana [167] elaborate how SOAP requests are typically processed
by modern Web service frameworks such as Apache CXF [6]. They define 15 distinguishable
time periods a SOAP request goes through before completing a round trip. Our monitoring
approach utilizes this knowledge, however, we do not make use of all 15 time periods because
not all of them are of interest to service consumers and can be determined from a client-side
perspective.

Song and Lee [139] propose a simulation based Web service performance analysis tool called
sPAC. It allows to analyze the performance of Web processes (i.e., a composition) by using
simulation code. Their approach invokes a Web service once under low load conditions and

13

2.2 QoS Monitoring

then transforms these testing results into a simulation model. Our work focuses also on the
performance aspects of Web services whereas we do not use simulation code, we perform our
evaluation on real Web services with the advantage that we do not require access to the Web
service implementation.

Zeng et al. [177] present a model-driven QoS monitoring approach for observable QoS met-
rics. An observable QoS metric is one that can be computed based on monitoring operational
service events. Their approach is integrated into their SOA environment and provides declar-
ative service QoS monitoring by leveraging ECA (Event-Condition-Action) rules to define for
which service what kind of QoS should be monitored. In contrast to our work, Zeng et al.
extend a full-blown SOA infrastructure to perform the monitoring, whereas we provide a
monitoring tool that can be used to monitor QoS from a third-party perspective. However,
besides IT-level QoS attributes, their approach also supports monitoring of business-related
QoS.

Barbon et al. [11] describe a monitoring approach for WS-BPEL processes enabling runtime
checking of various domain-specific situations of interest (e.g., the number of rejected credit
card payments). Additionally, their approach also supports statistical analysis of properties
and timing-specific information. Fei et al. [52] present a distributed framework for QoS mon-
itoring based on their QoS management system called Q-Peer. The monitoring is based on
policies (using WS-Policy [165]) to specify what metric should be monitored, either applied
to atomic services or compositions. The authors use SOAP intermediaries to apply their poli-
cies by using dedicated monitoring peers. Contrary to our monitoring approach, these two
approaches focus on monitoring of business-relevant QoS, whereas our approach is designed
to monitor performance and dependability related QoS attributes.

Jurca et al. [69, 70] present a reputation-based approach for monitoring Web service QoS.
The authors argue that most existing monitoring approaches based on message interception,
provider-based monitoring or client-side probing have their drawbacks. These include scal-
ability problems, lack of trustworthiness and they are too error-prone. Therefore, their ap-
proach uses client feedback as a reputation mechanism. The feedback is collected using a
trusted center which then aggregates the feedback to generate QoS reports. In contrast to
our approach, the authors have quite high requirements on the infrastructure and the service
provider, e.g., the provisioning and negotiation of SLAs with consumers, a UDDI repository,
and an SLA repository. In fact, this functionality is hardly available, therefore, we use a client-
side approach based on probing without any requirement except a public access to the WSDL
file from the monitoring host.

Baresi et al. [12–14] present a general framework called Dynamo for monitoring compos-
ite services. They do not solely focus on monitoring QoS, however, they focus on a general
assertion-based language, called WSCoL, which is based on the WS-Policy framework [165] to
define monitoring assertions. It allows to define the functionality and the required QoS as pre-
and postconditions on partner invocations in a composition. An example assertion could be
a check whether a given return value of a BPEL invoke is within a given range. Compared to
Dynamo, our monitoring solution focuses solely on QoS by treating a service as a black-box.

14

Chapter 2: Related Work

Thus, there is no need to put QoS monitoring assertions on the composite service specification
since we have a pre-defined QoS model defining the attributes which are monitored.

Al-Masri and Mahmoud [2] investigated how QoS can improve Web service discovery and
ranking to deliver better results and generate a higher user experience. They use a client-side
probing technique to determine the QoS of a Web service (e.g., availability, response time,
etc.). Based on the probed QoS data, a client can then use a QoS-based discovery to retrieve
the best service that matches their criteria. Compared to our monitoring approach, their work
does not allow to calculate the service-side execution time, therefore, using response time as
a discovery criteria can lead to unwanted results. For example, if the probing entity has a
slow network connection, it can distort the results. Additionally, Al-Masri and Mahmoud
presented an experimental study investigating the availability of Web services on the World
Wide Web [3]. They applied well-known crawling techniques to search for WSDL files in
registries and search engines. Moreover, they performed a series of tests such as validation of
the WSDL interface, measurement and probing of QoS attributes to determine if the service is
usable.

Truong et al. [148] present a QoS classification, measurement and monitoring approach for
dependent grid services. Grid services are computational resources requiring different meth-
ods for monitoring various grid resources. These include machines, network paths, middle-
ware and applications which have different requirements on the measurement methods. In
contrast to our approach, their paper focuses on different grid services and resources, there-
fore, different monitoring techniques of arbitrary complexity need to be combined (e.g., ping
vs. analyzing log files).

2.3 Choreography Modeling and Transformation

Integrating SLA and QoS aspects in top-down development of service-oriented systems, es-
pecially choreographies, has not yet received much attention whereas modeling of choreogra-
phies is subject to various research activities (e.g., [41,171]). We mainly discuss existing chore-
ography modeling and transformation approaches as well as extensions of current Web service
standards to include QoS attributes and SLAs and the integration of policies in BPEL.

Mendling and Hafner [89] define mapping rules for deriving BPEL processes from a WS-
CDL choreography description. For each WS-CDL ordering structure and activity the corre-
sponding BPEL construct is determined. These mapping rules define the basis for the map-
ping rules used throughout the top-down modeling process in Chapter 5. The mapping of
WS-CDL to BPEL is referenced in detail, whereas the generation of WSDL interfaces used in
the BPEL process is not addressed explicitly. In contrast to the work presented in this thesis,
no explicit endpoint projection rules are defined to determine which ordering structures are
relevant for the participants in the choreography. Finally, we also define mapping rules for
the generation of WSDL descriptions which correspond to the service interface descriptions
of the derived BPEL processes.

15

2.3 Choreography Modeling and Transformation

Dyaz et al. [46] use an intermediary model for the generation of BPEL processes from a WS-
CDL choreography description focusing on Web services where time constraints play a critical
role. A choreography description is first transformed into a timed automaton model which is
verified and validated for correctness using formal model checking techniques. This model
is then further used to generate BPEL processes. In contrast to our work, their focus is laid
on the generation and verification of the timed automaton model. Detailed mapping rules
for the derivation of BPEL processes from this model are not specified. In the context of top-
down modeling, it seems more appropriate to perform a direct mapping between WS-CDL
and BPEL instead of using an intermediary model.

Pi4soa [122] is a toolset from π4 Technologies and one of the first WS-CDL implementations.
They provide a Eclipse-based designer tool which we used for modeling our choreographies,
and a possibility to generate Java services from a WS-CDL document. In contrast to pi4soa, our
work considers QoS from the beginning of the development. It might be interesting to include
the SLA/QoS related aspects into the pi4soa Eclipse plugin to enable a combined modeling of
choreographies and SLA between the partners in the choreography.

Decker et al. [40,41] propose a new extension to BPEL, called BPEL4Chor that allows model-
ing of choreographies within BPEL by leveraging an interconnected interface behavior model,
whereas WS-CDL represents an interaction model. As stated in [41], it has not been inves-
tigated yet which of these two approaches is more appropriate for human modelers. While
we follow a top-down approach by transforming WS-CDL into BPEL, the authors propose a
bottom-up approach by introducing a new choreography layer on top of BPEL. However, in
contrast to our work, the integration of QoS into choreographies is not addressed.

In the area of SLAs, Dan et al. [39] describe the WSLA (Web Service Level Agreement) frame-
work [55] to formally define electronic contracts between business partners. WSLA provides
the language and the necessary foundations for capturing different SLA parameters and their
metrics to define guarantees and obligations among the parties in the agreement. We leverage
WSLA and associate these SLAs with the corresponding partners on the choreography layer.

Another SLA framework is WS-Agreement [55], a specification from the Open Grid Forum.
It can be seen as the evolution of WSLA by defining a language and a protocol for establishing
agreements and interfaces to monitor agreement compliance at runtime. One of the advan-
tages of WS-Agreement is its extensibility by allowing the specification of domain-dependent
metrics and business values such as cost or penalties. WS-Agreement offers a basic negotiation
mechanism by simply allowing an offer to be accepted or rejected.

Unger et al. [149] present a formal model and mechanism to aggregate SLAs in business
processes. The authors attach SLAs to WS-BPEL partner links to associate them with the corre-
sponding partner Web services within the process. Then the aggregation algorithm computes
an overall SLA for the process. Contrary to our work, Unger et al. attach SLA directly to BPEL
processes, whereas, we use SLAs on the choreography layer and decompose them into QoS
policies that are then directly attached to the partner links in a WS-BPEL process. This allows
the process engine to enforce these policies and trigger necessary actions in case of degrading
QoS.

16

Chapter 2: Related Work

2.4 Service Composition Approaches

A vast number of service composition approaches have been proposed in literature. In this
section, we review selected works based on their relevance for our approach. In particular, we
focus on QoS-aware composition approaches, DSLs in the context of SOA and composition as
well as some selected papers that take a different approach to service composition.

2.4.1 QoS-Aware Composition and Optimization

In this section we present a broad overview of existing work in the area of QoS-aware opti-
mization. Almost all presented approaches share the goal to find an optimized composition
with respect to several QoS constraints (e.g., minimizing the overall response time while max-
imizing the availability). A major difference between the QoS-aware composition approach
presented in this thesis and all works highlighted below is the fact that our approach explic-
itly enables the user to specify hard and soft QoS constraints in form of constraint hierarchies
to specify the importance of a constraint. In existing approaches, QoS is typically considered
as hard constraint which may lead to over-constrained systems [17]. As a consequence, it is
difficult to satisfy dynamic composition requests from users if the service QoS values do not
match (e.g., required response time of 1500 msec but a service has 1502 msec).

To the best of our knowledge, Guan et al. [57] are the first who proposed a framework for
QoS-guided service composition using constraint hierarchies as a formalism for specifying
QoS. Their idea of modeling functional requirements as hard constraints and using constraint
hierarchies to model QoS has some commonalities with the work presented in this thesis, how-
ever, the authors only support a small set of QoS attributes and their approach has very limited
support for well-known composition constructs. They use a branch and bound algorithm that
is only capable of solving sequential compositions, whereas, our approach supports various
composition constructs (AND, XOR split, loops, sequences, etc). Additionally, the authors do
not elaborate on the performance of their approach.

Zeng et al. [175,176] present a QoS-aware composition approach based on state diagrams to
model a composition. A composition is split into multiple execution paths, each considered to
be a directed acyclic graph (DAG). For local optimization they use Multiple Criteria Decision
Making (MCDM) to choose a service which fulfills all requirements and has the highest score.
Global optimization is achieved by using a naive global planning approach (high runtime
complexity) and an Integer Programming (IP) solution. Additionally, the authors describe
an approach to re-plan and re-optimize a composition based on the fact that QoS can change
over time. Therefore, a composition is split into regions according to the state of the tasks that
allow a re-planning by adding constraints of what has already been accomplished to optimize
services that still have to be executed. In our work, we do not require a user to fully specify a
composition as a state diagram, however, we provide VCL to specify the functional and QoS
constraints, and the business protocol. In line with their approach, we also use IP to solve
the optimization problem, however, we use a different approach to aggregate QoS (since we

17

2.4 Service Composition Approaches

support different control-flow composition constructs) and to model the IP problem due to
the fact that we use a constraint hierarchy based approach.

Canfora et al. [26] propose an approach to solve the QoS-aware composition problem by
applying genetic algorithms. The genome represents the composition problem by using an
integer array where the number of items equals the number of distinct abstract services. Each
item, in turn, contains an index to the array of the concrete services matching that abstract ser-
vice. The crossover operator is a standard two-point crossover, while the mutation operator
randomly selects an abstract service (position in the genome) and randomly replaces the cor-
responding concrete service with another one from the pool of available concrete services. The
selection problem is modeled as a dynamic fitness function with the goal to optimize the QoS
attributes. Additionally, the fitness function must penalize individuals that do not meet the
QoS constraints. The approach is evaluated by comparing it to well-known integer program-
ming techniques. The authors also describe an approach that allows re-planning of existing
service compositions based on slicing [27]. In contrast to their work, we model the problem
as constraint optimization problem as well as an IP problem with support for QoS constraints
hierarchies (hard and soft constraints).

Ardagna and Pernici [8,9] propose a QoS-aware optimization approach using dynamic ser-
vice selection that is based on the MAIS architecture [121]. The composition leverages WS-
BPEL where each service in the process can be subject to global and local constraints which
are fulfilled at runtime through adaptive re-optimization. The authors apply loop peeling
techniques to optimize loop iterations and negotiation techniques to find a feasible solution
to the optimization problem. The authors claim that they solve the optimization problem, in
particular the fulfillment of global constraints, under more stringent conditions. Similar to
their approach, we also allow to specify local and global constraints that are optimized, how-
ever, we propose a simple DSL to specify these constraints. This gives the developer a greater
flexibility in specifying the dynamic QoS-aware composite service.

An efficient global optimization approach for QoS-aware service composition supporting
global constraints on a composition level is proposed by Alrifai and Risse [4]. In contrast to
other existing approaches, the authors decompose global QoS constraints into local constraints
with conservative upper and lower bounds. These local constraints are resolved by using
an efficient distributed local selection strategy. The crucial aspect is the mapping of global
constraints to so-called quality levels which determine a benefit value for using a quality level
as local constraint. This is solved by using MIP (Mixed Integer Programming) to find an
assignment of local constraints which are used for the local selection. Although this approach
is very efficient compared to existing work supporting only hard constraints, it does not allow
to specify global soft constraints and can be used only in scenarios where solutions are likely
to be found. Moreover, it is very limited in terms of the supported composition constructs
because it only supports sequential compositions.

Jaeger et al. [65–67] present an approach for calculating the QoS of a composite service by
using an aggregation approach that is based on the well-known workflow patterns by Wil
van der Aalst et al. [150]. The authors analyze all workflow patterns for their suitability and

18

Chapter 2: Related Work

applicability to composition and then derive a set of seven abstractions that are well-suited
for compositions, so-called composition patterns. Additionally, the authors define a simple QoS
model consisting of execution time, cost, encryption, throughput, and uptime probability in-
cluding QoS aggregation formulas for each pattern. The computation of the overall QoS of
a composition is then realized by performing a stepwise graph transformation. It identifies
a pattern in a graph, calculates the QoS according to pre-defined aggregation functions and
replaces the calculated pattern with a single node in the graph. The process is repeated until
the graph is completely processed and only one single node remains. For optimizing a compo-
sition, the authors analyze two classes of algorithms, namely the 0/1-Knapsack problem and
the Resource Constrained Project Scheduling Problem (RCSP). For both algorithms, a number
of heuristics are defined to solve the problems more efficiently. Their approach was influen-
tial for our approach as we leverage their aggregation concept, however, we use a different
algorithm to calculate the aggregated QoS.

Yu et al. [170] discuss algorithms for Web service selection with end-to-end QoS constraints.
Their approach is based on several composition patterns similar to [67] and they group their
algorithms according to flows that have a sequential structure and others that solve the com-
position problem for general flows (i.e., flows with splits, loops etc). Based on this distinction,
two models are devised to solve the service selection problem: a combinatorial model that
defines the problem as Multidimensional Multi-Choice Knapsack Problem (MMKP) and the
graph model that defines the problem as a Multi-Constrained Optimal Path (MCOP) prob-
lem. These models allow the specification of user-defined utility functions to optimize some
application-specific parameters and to enable the specification of multiple QoS criteria taking
global QoS into account. In the case of the combinatorial model, the authors use a MMKP algo-
rithm that is known to be NP-complete, therefore, heuristics are applied to solve the problem
in polynomial time. For the general flow structure, the authors use an IP approach (also NP
complete), thus they again apply different heuristics to reduce the time complexity. Compared
to our work, the proposed algorithms and heuristics only deal with hard constraints, soft-
constraints are not supported. Currently, we do not apply any heuristics to our algorithms,
however, some of their heuristics may also be applicable to constraint hierarchies. However,
our IP solution presented in this work is currently fast enough without any heuristics.

Blake and Cummings [22] elaborate on the use of SLAs for effective workflow composition.
They propose an approach to annotate Web services with SLA information such as cost, re-
sponse time, uptime, etc. At composition time, these SLA measures need to be aggregated to
ensure that they meet the specified user thresholds. The proposed algorithm constructs the
workflow by selecting services that match the user constraints and have the most effective
SLA measures. Their work can be seen complementary, however, our QoS-aware composition
approach focuses on user QoS constraints for a composite and determines an optimal solution
within the boundaries given by the user QoS constraints.

Brandic et al. [24] describe Amadeus, a QoS-aware Grid workflow system that supports a
comprehensive set of QoS requirements. In addition to performance and economical aspects,
also legal and security aspects are considered. The Amadeus environment comprises: (1) a

19

2.4 Service Composition Approaches

Visualization and Specification component; (2) a Planning, Negotiation and Execution com-
ponent called QoS-aware Grid Workflow Engine (QWE); and (3) a set of Grid resources. A user
may specify the workflow with Teuta (a UML-based workflow editor) by composing prede-
fined workflow elements. Different QoS properties such as execution time, price and location
affinity may be specified to indicate the user’s QoS requirements. For the static planning ap-
proach mixed-integer linear programming is applied. Similar to our approach, the authors
use an IP to model and solve the problem, however, their approach optimizes a workflow at
design time, runtime optimization and adaptive behavior is not supported. Additionally, their
approach requires a fully-specified workflow using a graphical language, whereas we use a
textual DSL to specify a QoS-aware composition.

Mukhija et al. [101] present the Dino framework that is targeted for the use in open dynamic
environments. Their main argument is that no global view on a service composition is avail-
able in dynamic environments, therefore, each service specifies which other services it requires
for its own execution. The service composition is formed at runtime by the infrastructure. A
key aspect is the fact that service requirements can change dynamically (triggered for example
by changes in the application context). Dino also supports QoS-aware service composition by
describing it formally using an ontology. QoS is computed by using the actual and estimated
QoS values that are monitored by the Dino broker. QoS computation is modeled by using a
continuous-time Markov chain that enables the association of probability values to express
the confidence of the QoS specification. Contrary to our work, their approach focuses on ad-
hoc service composition without having a global view on the composition problem using a
broker-based approach by leveraging an efficient local selection of services.

2.4.2 DSLs for Service Composition

Domain-specific languages (DSLs) have a long history, not only in software engineering, also
in other areas such as document generation. A well-known example of a DSL is the document
typesetting tool TEX. van Deursen et al. [153] define a DSL as follows: "A domain-specific
language (DSL) is a programming language or executable specification language that offers,
through appropriate notations and abstractions, expressive power focused on, and usually
restricted to, a particular problem domain."

Recently, DSLs have become very popular within the context of Model-Driven Architec-
ture (MDA) and in the field of SOC. However, applying DSLs for QoS-aware composition of
service-oriented systems, as we propose in this thesis, is a relatively new idea.

Oberortner et al. [113] discuss the use of DSLs for SOAs in general, with a special focus
on model-driven development and process-driven SOAs [173]. The authors differentiate be-
tween DSLs for domain experts (high-level DSLs) and DSLs for technical experts (low-level
DSL). According to their classification, VCL can be classified somewhere in the middle. On
the one hand, it abstracts from low-level semantic and syntactic issues such as constructs in
WS-BPEL or any other composition language and provides a high-level approach to specify
QoS requirements. On the other hand, it still requires some technical understanding to be

20

Chapter 2: Related Work

practically usable (e.g., how data is passed to the composition).
In [114], the aforementioned authors present a DSL for specifying QoS and SLA require-

ments, especially for their use in model-driven software development (MDSD). Their DSL is
tailored to multiple stakeholders, i.e., non-technical experts versus technical experts, therefore
providing a high-level and low-level DSL. Their approach is to capture the SLA requirements
and corresponding actions in the high-level DSL and then use the low-level DSL to define
how QoS is measured. They use the low-level DSL to generate interceptors for Apache CXF
to perform the QoS measurement. In contrast to their approach, VCL is a DSL for the purpose
of specifying QoS-aware compositions. To this end, it allows composite service developers to
specify their functional and non-functional requirements in form of constraints.

In [154], the author describes the WebDSL approach, a domain-specific language for dy-
namic Web applications. It allows the specification of domain models, presentation logic,
page flows and access control [56]. Similar to our approach, WebDSL abstracts from the com-
plexity of the underlying execution languages and runtimes (JSF, Hibernate and Seam in their
approach). Besides abstracting from the underlying runtime, in our approach we additionally
introduce an optimization layer in between the language specification and the generation of
the executable composition to optimize the local and global QoS constraints that have been
specified by the user.

2.4.3 Other Service Composition Approaches

Casati et al. [30] present eFlow, a dynamic and adaptive environment for defining, monitor-
ing and enacting composite e-services (modeled through business processes). The main goal
is a dynamic service selection based on selection policies and dynamic process adaptation.
Adaptation is supported on process instance and process definition level. Contrary to our
composition and adaptation approach, eFlow only supports adaptation of tasks in the process
based on functional criteria, non-functional aspects are not supported. Our approach supports
both, functional and non-functional adaptation of compositions.

JOpera [119], developed at the ETH Zürich, provides a visual composition language which
focuses on an interactive environment allowing users to visually specify, design and test their
compositions. This approach does not focus on pure SOAP-based services, it also handles
arbitrary Java or Enterprise JavaBeans and RESTful services. In contrast to their approach,
we go into a different direction by providing a semi-automated approach using a textual DSL
that gives developers a simple language to rapidly develop and deploy a composition without
requiring any composition infrastructure.

In [76], the authors discuss an approach for interleaving planning and execution of service
compositions by means of a special language called XSRL (XML Service Request Language).
It enables users to specify goals and constraints for a (pre-compiled) composite service where
the services are dynamically bound in the composition, e.g., by using UDDI (Universal De-
scription Discovery and Integration). Their approach is based on AI (Artificial Intelligence)
planning and constraint satisfaction techniques to fulfill a service request. In contrast, we

21

2.4 Service Composition Approaches

focus on providing a language and runtime to specify and deploy a composite service with
various constraints in terms of functionality and QoS. Once a composite service is deployed
our approach is still able to re-bind to another service once the QoS changes since the initial
deployment of the composition.

Charfi and Mezini [32,33] present AO4BPEL, an aspect-oriented workflow language for Web
service composition with the goal to increase flexibility and adaptability of BPEL processes at
runtime. As one application of AO4BPEL, they propose a process container framework to pro-
vide middleware support for WS-BPEL processes. Non-functional properties such as security,
reliable messaging or transactions for BPEL activities can be declaratively specified using a
deployment descriptor. Compared to their approach, our approach increases flexibility and
adaptability of composite applications by providing native support for dynamic invocation,
QoS-aware rebinding, and automated invocation-level mediation by using a novel program-
ming model within the VRESCO environment.

22

Part I

QoS Integration in
Service-Oriented Systems

23

Chapter 3

A Multi-Layer QoS Model for
Service-Oriented Systems

This section introduces a multi-layer QoS model for service-oriented systems. It is the foun-
dation for the SLA-aware choreographies presented in Chapter 5 and the QoS-aware compo-
sition approach presented in the second part of this thesis.

Contents
3.1 Motivation . 25

3.2 Service Layer . 27

3.2.1 Performance . 27

3.2.2 Dependability . 30

3.2.3 Security and Trust . 31

3.2.4 Cost and Payment . 32

3.2.5 Summary of QoS Attributes . 33

3.3 Choreography Layer . 34

3.4 Orchestration Layer . 35

3.4.1 Integration of QoS Policies . 36

3.4.2 Aggregation of Service Layer QoS . 39

3.5 Summary . 42

3.1 Motivation

Besides considering functional aspects of software systems, non-functional attributes such as
performance, dependability, security, safety or usability play a crucial role in the lifecycle and
success of a software system. These non-functional attributes are often referred to as "qual-
ity attributes" or "quality goals" in literature about software engineering or software archi-
tecture [18, 141]. In the SOC community, these quality attributes are manifested by the term
"Quality of Service" or QoS for short [87].

25

3.1 Motivation

The importance of QoS for service-oriented systems is based on the fact that most service-
oriented applications use highly-distributed and loosely coupled software services available
over the network. These services are invoked by thousands of users concurrently that are
often unknown at design or deployment time. Therefore, it is of utmost importance, that
services provide, besides their functional interface description (e.g., a WSDL document), a
description of non-functional aspects. The QoS attributes of a service can either be classified as
deterministic or non-deterministic [81]. The former indicates that their value is known before a
service is invoked, including price or penalty rate whereas the latter includes all attributes that
are uncertain at service invocation time, for example service availability. Dealing with non-
deterministic attributes is more complex since it requires to perform calculations based on data
gathered during runtime monitoring. In this thesis, we mainly focus on non-deterministic
attributes, since they are essential to realize adaptive behavior in service-oriented systems.
However, we also introduce and handle deterministic attributes.

Typically, the design of service-oriented systems comprises multiple layers as seen in Fig-
ure 1.2. In this chapter we propose a QoS model encompassing multiple layers from the SOC
stack. We do not claim that this model is complete, however, it is designed in an extensible
way by allowing to add new QoS attributes without much effort.

Firstly, we describe the lowest layer of the QoS model, the Service Layer because it defines
all the atomic QoS attributes needed for the other layers. Secondly, we describe the top layer
in our model, the Choreography Layer, followed by the Orchestration Layer.

Service Layer. The lowest layer of the SOC stack represents all atomic services within a service-
oriented system. On this layer, various QoS attributes are defined, such as response time
or accuracy. Each QoS attribute defined on this layer can be used in the upper layers
(such as orchestration or choreography) in an aggregated form to define polices and/or
SLAs (Service Level Agreements).

Choreography Layer. A choreography represents the global model and viewpoint of all par-
ticipants and its policies among multiple partners participating in the business process.
It describes multi-party peer-to-peer interactions with a strong focus on the data ex-
changed between multiple partners in the process [151]. A choreography model, such as
expressed by WS-CDL [161] is a non-executable description. QoS in its atomic form as
used on the service layer is not enough to represent complex quality guarantees between
two partners. Therefore, we leverage SLAs [61] on this layer to capture guarantees and
obligations between two partners.

Orchestration (or Composition) Layer. An orchestration or composition represents an executable
assembly of services from the service layer by specifying a set of services including their
control and/or data flow [84,115]. Popular languages for specifying an orchestration are
WS-BPEL [107] or the Windows Workflow Foundation [96]. As discussed in the intro-
duction, we distinguish between macroflows and microflows. The former requires the
integration of QoS policies as a means to specify what QoS is expected from a macroflow

26

Chapter 3: A Multi-Layer QoS Model for Service-Oriented Systems

activity (derived from the SLA associated with the choreography) whereas the microflow
requires an aggregation of QoS attributes to represent the overall QoS of all the individ-
ual services in the composition. Therefore, we provide a set of aggregation rules for the
QoS attributes from the service layer.

3.2 Service Layer

On the service layer, QoS attributes are classified into various QoS classes. The core taxonomy
introduces four basic classes as visualized in Figure 3.1.

QoSClass

Performance Dependability Security and
Trust

Cost and
Payment

- Execution time
- Latency
- Response time
- Round trip time
- Scalability
- Throughput

- Availability
- Accuracy
- Robustness

- Security
- Reputation

- Price
- Penalty

- Reliable Messaging

Figure 3.1: Service Layer QoS Taxonomy

In the following, we depict the pre-defined QoS classes and describe each related attribute
in detail. For all measurable QoS attributes (the classes Performance and Dependability), we
present a novel and automated monitoring technique in Chapter 4.

3.2.1 Performance

Performance-related QoS comprises a group of attributes related to observable and measur-
able runtime performance of a service, such as response time or throughput. It is important to
distinguish between user-specific attributes such as response time and latency because they
depend on both, the users location regarding the distance to the service and the network con-
nection (i.e., modem vs T1). This important distinction is considered later in Chapter 4 when
introducing our monitoring approach.

In Figure 3.2, we depict a typical service invocation of a client c, a service s and an op-
eration o by splitting it into its elementary time frames. These time frames show a subset
of performance-related QoS attributes that are of interest for a given service. The values
{tci|0 ≤ i ≤ 3} and {tpi|0 ≤ i ≤ 3} represent client-side (c) and provider-side (p) timestamps
that can be gathered through instrumentation of the underlying runtime system.

27

3.2 Service Layer

Consumer

qw ql ql qwqptqw qw

qrt

qrtt

qex
NetworkNetwork Provider Consumer

tp0 tp1 tp2 tp3tc0 tc1 tc2 tc3

Figure 3.2: Service Invocation Timeline

In the following, we describe each attribute in detail. For each timing-related attribute, we
present the formula to illustrate how one single QoS attribute value is calculated. However,
when monitoring QoS attributes in real-world environments, we usually take the average of n
measurements to get a better approximation of the attribute. Each formula is either consumer-
or provider-specific, therefore, we denote a formula representing a consumer-specific QoS
attribute with a parameter c in the definition.

Processing Time: Given a service s and an operation o, the processing time on the server is
defined as follows:

qpt(s, o) = tp2 − tp1 (3.1)

It denotes the time needed to execute an operation for a specific service request. The value
is calculated by using the timestamps tp1 and tp2 taken before and after the processing phase
on the server (see Figure 3.2 for details). The processing time does not include any network
communication and is, therefore, an atomic attribute with the smallest granularity.

Wrapping Time: The wrapping time of a given service s and an operation o is the time
needed to wrap and unwrap an XML message on both, the client- and server-side. We do
not consider the wrapping time as a QoS attribute on its own, however, it is needed to calcu-
late other QoS attributes. On the server-side, the wrapping time qwp is defined as follows:

qwp(s, o) = tp1 − tp0 + tp3 − tp2 (3.2)

On the client-side, the wrapping time qwc is defined as follows:

qwc(c, s, o) = tc1 − tc0 + tc3 − tc2 (3.3)

The actual wrapping time value is heavily influenced by the Web service framework (more
specifically the XML parser) and even the operating system itself. In [167], the authors even
split this time into three sub-values where receiving, (re-)construction and sending of a mes-
sage are distinguished. For our purpose it does not matter if the delay is caused by the XML

28

Chapter 3: A Multi-Layer QoS Model for Service-Oriented Systems

parser or the socket connection for reading and writing the message. If non-XML based Web
service technologies are used, such as RESTful services [120, 126] based on JSON (JavaScript
Object Notation), the wrapping time does not reflect XML messages. Nevertheless, wrapping
still occurs, however, in a different context because JSON requests also have to be wrapped to
implementation specific objects (such as Java or Ruby objects).

Execution Time: The execution time of a service s and an operation o is defined as the time-
span that the service provider needs to process a request. It starts with unwrapping the XML
structure, processing the result and wrapping the answer into an XML response that is sent
back to the requester. It is calculated as follows:

qex(s, o) = qpt + qwp (3.4)

Latency: The latency (or network latency) of a service s and an operation o represents the
timespan a service request (the XML message) from a client c needs to reach its destination.
During the transmission of a service request, we typically have two latency values, one for
the outgoing service request (viewed from a client-side perspective) and one for the incoming
service request. We use the average of both latency values:

ql(c, s, o) =
tp0 − tc1 + tc2 − tp3

2
(3.5)

The latency is influenced by the network connection type, routing, network utilization and
request size.

Response Time: The response time of a service s and an operation o is the time needed for
sending a message from a given client c to s until the response message returns back to the
client. The response time is consumer-specific, therefore, it is not possible to specify a globally
valid value for each client. The response time is calculated by using the following formula:

qrt(c, s, o) = qex(s, o) + 2 ∗ ql(s, o) (3.6)

Round Trip Time: The round trip time of a service s and an operation o represents the overall
time that is consumed from the moment a request is issued at the client c to the moment
the answer is received and successfully processed (i.e., the user or application can see the
response). It comprises all values on both, consumer and provider-side. The round trip time
is calculated as follows:

qrtt(c, s, o) = qwc(s, o) + qrt(s, o) (3.7)

Throughput: The throughput of a service s denotes the number of Web service requests r for
an operation o that can be successfully processed by s and returned to client c within a given
time interval [t0, t1]. It is calculated using the following formula:

qtp(c, s, o) =
r

t1 − t0
(3.8)

29

3.2 Service Layer

The throughput depends mainly on the hardware power (CPU, memory, IO subsystem) and
the network bandwidth of the service provider. It is measured by sending several requests in
parallel (e.g., 10000) for a given period of time (e.g., 10 seconds) and then count how many
valid requests come back to the requester to calculate a throughput value for a time interval
of one second (e.g., 10000

10 = 1000 operations per second).

Scalability: The term scalability is frequently used in the context of system performance,
however, as stated in [43], it is poorly defined and poorly understood. One good definition
that fits into our context is from Smith and Williams [138]: "Scalability is the ability of a system
to continue to meet its response time or throughput objectives as the demand for the software
functions increases." Following their definition, we calculate the scalability specific to a client
c of a service s and an operation o using the following formula:

qsc(c, s, o,m) =

1
n

n∑
i=1

qrtti(s, o)

1
m

m∑
i=1

qrtt(Throughput)i
(s, o)

(3.9)

Basically, the scalability expresses the ratio between the average round trip time (over n mea-
surements) in the numerator and the average round trip time measured during a throughput
test of m parallel requests in the denominator. The expression qrtt(Throughput) refers to the
round-trip time during a throughput measurement. If the service s is not scalable and gets
overloaded by the high number of parallel request m, the round trip time during the through-
put tests increases (denominator), thus, leading to a decrease in the overall scalability.

3.2.2 Dependability

Aviẑienis et al. [10] define dependability of a system as "the ability to avoid service failures
that are more frequent and more severe than is acceptable". It evolved to an integrated concept
for distributed systems encompassing attributes such as availability, reliability or integrity. In
our approach, we only consider those attributes for Web services which are relevant from a
consumer’s perspective, such as availability, accuracy, etc. In contrast to performance-specific
QoS attributes, dependability-related QoS attributes are measured on the service level not on
the operation level.

Availability: The availability qav defines the probability that a service s is up and running
and produces correct results. The availability is calculated using the following formula:

qav(s) = 1− td
t1 − t0

(3.10)

The variables t0 and t1 represent timestamps for the overall uptime of the service, whereas td
denotes the downtime of a service in seconds.

30

Chapter 3: A Multi-Layer QoS Model for Service-Oriented Systems

Accuracy: The accuracy qac of a service s is defined as the success rate produced by s. It is
calculated by recording all invocations within a given time interval and relate it to all failed
requests during that interval. The following formula expresses this relationship:

qac(s) = 1− rf
rt

(3.11)

The variable rf denotes the number of failed requests, whereas rt expresses the number of
total requests within the observation period.

Robustness: The robustness qro of a service s defines the probability that a system can react
properly to invalid, incomplete or conflicting input messages. It can be measured by tracking
all incorrect input messages and put them in relation with all valid responses from a given
point in time:

qro(s) =
1
rt

n∑
i=1

f(respi(s)) (3.12)

We use a helper function respi(s) to denotes the i-th response produced by service s where
n is the total number of requests issued to s. The utility function f(m), where m denotes a
response message, is used to evaluate whether the response was correct for a given input. It
is calculated using the following formula:

f(m) =

{
1, isV alid(m)
0, ¬isV alid(m)

(3.13)

The function isV alid(m) checks whether a response is correct in terms of syntax and se-
mantic. The validity checks do not consider any service-specific semantic or exceptions. The
robustness property only requires that a service handles malformed input in a way that it does
not crash or continue to return wrong messages and is able to react appropriately and resume
using its expected behavior.

Reliable Messaging: Guaranteed message delivery between requesters and providers is the
core idea behind reliable messaging (RM). The Web service stack for example defines the WS-
Reliability standard [109] to define how reliable messaging can be achieved in an application
agnostic way (i.e., the application does not notice that RM is available). We define reliable
messaging simple by using the following function:

qrm(s) =

{
true, RM available for s
false, RM not available for s

(3.14)

3.2.3 Security and Trust

Security is an important issue in SOC [47], however, it does not receive much attention in
current research. Many services consume and produce plain text messages, even for important
and confidential data and no service-level security mechanisms are used. Currently, most

31

3.2 Service Layer

security solutions in SOC consist of establishing a VPN (Virtual Private Network) among the
providers and consumers of certain services. Another commonly used method is SSL (Secure
Socket Layer) as transport-level security. The same is true for trust, currently no assembled
solution exists to define trust among services, expect the OASIS WS-Trust specification [111],
however, it is not widely adopted. Reflecting security and trust related QoS for services is
important to enable discovery of trusted and secure services, otherwise, no one would use a
credit card service in a real-world application without proper encryption and transport-level
security.

Security: The security attribute qsec(s) defines the security mechanism that is supported by
service s. These values can be None (for no security support), UsernamePassword, X.509,
SAML or Kerberos. The security mechanisms that can be used are basically aligned with the
security tokens that can be specified as part of the WS-Security framework [112].

Reputation: The reputation qrep(s) of a service s is a measure for the trustworthiness of a ser-
vice as rated by the service consumers [81]. Typically, consumers have a different experience
and trust when using a service, thus, simple reputation mechanisms such as user-feedback
allowing to express this experience using different metrics. Assuming numerical reputation
values such as [1, 5] (1 is the worst, 5 the best), we can calculate the average reputation of a
service s over n values ri as follows:

qrep(s) =
1
n

n∑
i=1

ri (3.15)

3.2.4 Cost and Payment

Cost and payment represent QoS attributes that are related to monetary costs when invoking
and using services. Since cost is a main business value for optimizing service-oriented sys-
tems, in particular service compositions, we address the specification of related QoS attributes
in this category.

Cost: The cost qc(s, o) of a service s represents the monetary value that is associated with
a specific service operation o when invoking it. Typically, cost is calculated per invocation,
however, more advanced pricing strategies can be implemented and defined in SLAs, such as
usage contingents (e.g., 100 EUR for the first 1000 invocations, then 80 EUR for the next 1000).
As complex pricing strategies are usually modeled on a higher level, we simply assume that a
cost value can be assigned to a service to achieve optimization of composite services without
the awareness of all details specified in an SLA.

Penalty: The penalty qpl(s, o) of a service s and an operation o is the monetary value that the
provider has to pay to the consumer in case a QoS value, as negotiated in an SLA, is violated.

32

Chapter 3: A Multi-Layer QoS Model for Service-Oriented Systems

Similar to cost, a penalty is usually negotiated on an SLA level, however, we define it as a QoS
attribute on the service layer to ensure that a QoS-aware optimization strategy can leverage
this attribute to minimize the penalty if desired.

Attribute Symbol Dimension Unit Deterministic

Performance

Processing Time qpt desc µs no

Execution Time qex desc µs no

Latency ql desc µs no

Response Time qrt desc µs no

Round Trip Time qrtt desc µs no

Throughput qtp asc operation/sec no

Scalability qsc asc percent no

Dependability

Availability qav asc percent no

Accuracy qac asc percent no

Robustness qro asc percent no

Reliable Messaging qrm exact {true, false} yes

Security and Trust

Security qsec exact {None, UsernamePassword,
X.509, Kerberos, . . . }

yes

Reputation qrep user-defined user-defined no

Cost and Payment

Cost qc desc monetary value yes

Penalty qpl desc monetary value yes

Table 3.1: Summary of Service Layer QoS Attributes

3.2.5 Summary of QoS Attributes

Table 3.1 summarizes the available QoS attributes and also denotes their dimension, the unit
and whether an attribute is deterministic. The dimension column indicates the QoS attribute
dimension expressing whether a ascending, descending or exact QoS value is generally better.
For example, a lower response time is generally better, therefore the response time has descend-
ing dimension (abbreviated as desc). The throughput, for example, has a ascending dimension

33

3.3 Choreography Layer

(abbreviated as asc) whereas reliable messaging has an exact dimension meaning that either
it is supported or not. These dimensions are especially important when using QoS attributes
in a composition because they indirectly influence the QoS-aware optimization (e.g., while
the response time of a composition should generally be minimized, the throughput should be
maximized). The unit column denotes the unit of measurement for each QoS attribute (e.g.,
µs or msec for performance related attributes). The final column indicates whether a QoS
attribute is deterministic or non-deterministic [81].

3.3 Choreography Layer

The top layer of the QoS model aligns QoS in general with choreographies. The main goal is to
express guarantees and obligations in terms of QoS between contractual parties on a high level
of abstraction. The contractual agreements between two partners are commonly referred to as
SLA [71]. Contrary to choreographies, which define a global viewpoint among multiple part-
ners, SLAs are mutually defined between two partners. As a consequence, multiple SLA are
needed between partners in a choreography (cf. Figure 1.2). Our multi-layer QoS model does
not enforce any particular SLA dialect (e.g., WSLA [61], WS-Agreement [55], SLang [137] or
the Web Service Offering Language (WSOL) proposed by Tosic et al. [147]). For our prototype
implementation of integrating SLAs into choreographies, we use WSLA as an SLA language,
therefore, we briefly introduce SLA-specific concepts within the scope of WSLA.

SLAs can describe different arbitrary information about the agreement itself, however, there
is a common understanding in literature what an SLA, specifically related to SOC, should
contain [71]. WSLA accommodates this common structure by defining three major sections:

• Parties: This section identifies and defines all contractual parties including their identifi-
cation information and all related technical properties such as the interface descriptions
or service endpoints.

• Service Descriptions: This section defines all service characteristics (e.g., operation names)
and the observable parameters (referred to as SLA parameters) as well as the metrics that
are used to monitor a service.

• Obligations: The third section defines constraints for various guarantees on SLA param-
eters defined in the previous section. Such obligations are expressed by Service Level
Objectives (SLOs) using a combination of various QoS parameters.

We briefly introduce two simple examples to illustrate the definition of an SLA parameter
and an SLO. An example definition of an SLA parameter ExecutionTime (lines 1–3) and
Throughput (lines 5–7) is given in the following Listing 3.1.

Based on the above SLA parameter definition, these parameters can now be used to define
a specific SLO on a given service. In Listing 3.2, an objective called ServicePerformance is
defined to express, as the name implies, the performance of a HardwareSupplier service (line 2)

34

Chapter 3: A Multi-Layer QoS Model for Service-Oriented Systems

� �
1 <SLAParameter name="ExecutionTime" type="ExecutionTime" unit="msec">
2 <Metric>ExecutionTimeMetric</Metric>
3 </SLAParameter>
4

5 <SLAParameter name="Throughput" type="Throughput" unit="ops">
6 <Metric>OperationsPerSecondMetric</Metric>
7 </SLAParameter>� �

Listing 3.1: SLA Parameter Definitions

as a combination of throughput and execution time. More specifically, it states that the exe-
cution time has to be less than 1500 msec (lines 9–14) and the throughput has to be greater
or equal to 130 operation per second (lines 15–20). The validity of the SLO can be expressed
using the Validity element (lines 3–6), thus enabling the definition of different SLOs for
different time slots. The optional EvaluationEvent in line 23 defines that the SLO should
be evaluated, in this case whenever a new value is detected (element text NewValue). WSLA
provides a set of operators, functions and predicates to define SLOs. Whenever an SLO is
violated by the service provider, numerous action guarantees can be defined (not shown in the
listing) to react appropriately to these violations, e.g., by charging a pre-negotiated penalty
rate to the provider. However, WSLA does not define how these violations as well as pricing
and penalty models can be handled. One approach would be a rule-based implementation,
e.g., using distributed business rules [102, 135] among the involved parties.

� �
1 <ServiceLevelObjective name="ServicePerformance">
2 <Obliged>HardwareSupplier</Obliged>
3 <Validity>
4 <Start>2009-01-01T00:00:00.000+01:00</Start>
5 <End>2009-12-31T00:00:00.000+01:00</End>
6 </Validity>
7 <Expression>
8 <And>
9 <Expression>

10 <Predicate xsi:type="wsla:Less">
11 <SLAParameter>ExecutionTime</SLAParameter>
12 <Value>1500</Value>
13 </Predicate>
14 </Expression>
15 <Expression>
16 <Predicate xsi:type="wsla:GreaterEqual">
17 <SLAParameter>Throughput</SLAParameter>
18 <Value>130</Value>
19 </Predicate>
20 </Expression>
21 </And>
22 </Expression>
23 <EvaluationEvent>NewValue</EvaluationEvent>
24 </ServiceLevelObjective>� �

Listing 3.2: Service Level Objective Example

35

3.4 Orchestration Layer

In general, the information specified as part of the SLA can be seen as a contract between the
service provider and the consumer. Therefore, SLOs in the contract need to be monitored and
enforced by the runtime environment. However, from an SLA description it is hard to identify
and enforce which SLOs affect which parts of the business process (especially the interactions
with the partners). Therefore, we have identified a mapping between SLAs on this layer, to
concrete QoS policies on the orchestration layer. The policy language is based on common Web
service standards and is described in the next section. As already mentioned, our approach
does not enforce any particular SLA dialect, however, an agreement on a common set of QoS
attributes is required. In our approach, we use the set of attributes defined on the service layer.
Unfortunately, a service provider will only use a subset of our service layer QoS attributes in
an SLA, as some values depend on non-controllable elements, such as the network connection
from the service consumer to the provider. Therefore, a real-world SLA will exclude all QoS
attributes that include network communication (such as latency, response time or round trip
time).

3.4 Orchestration Layer

In our quality model, the orchestration layer comprises the business processes (macroflows)
and all its compositions (microflows) as shown in Figure 1.2. The main goal of the QoS inte-
gration on this layer is twofold:

• SLAs specified between partners on the choreography layer (see Section 3.3) need to be
associated with the corresponding parts of the business process to enable SLA enforce-
ment. To achieve this integration we use QoS policies, specified using WS-Policy [165], to
achieve a loosely coupled integration into business processes.

• In order to enable validation of SLA values, accurate QoS information for each service is
needed. These values are obtained through service monitoring, however, they need to
be aggregated to reflect the QoS of a composition. Aggregation is performed based on
well-defined composition patterns [67, 150].

3.4.1 Integration of QoS Policies

Long-running business processes (or macroflows) are typically implemented using a work-
flow system such as YAWL [152] or more recently using a WS-BPEL engine such as Ac-
tiveBPEL [1]. WS-BPEL has become the de-facto standard language for process orchestration
within the Web services stack. Commonly, these systems do not provide native support for
specifying and enforcing SLAs. Typically, a process invokes services from multiple partners,
therefore, we assume that SLAs are defined among the partners. However, at runtime the
process engine invokes a service from a specific provider as part of the process definition but
is not aware of the negotiated SLOs that need to be checked against the observable QoS value.
Therefore, the relevant SLA specific information from the choreography layer is mapped to

36

Chapter 3: A Multi-Layer QoS Model for Service-Oriented Systems

QoS policies that can then be attached to business processes. We present this mapping in
detail in Chapter 5.

3.4.1.1 WS-Policy

The Web services stack defines an extensible framework, called WS-Policy with the goal to de-
fine "a framework and model for expressing policies that refer to domain-specific capabilities,
requirements, and general characteristics of entities in a Web-services-based system" [165].
Generally, a policy in WS-Policy terminology is a collection of policy alternatives which itself
is a collection of policy assertions. Policy assertions define requirements, capabilities, or other
properties of a policy subject (e.g., an endpoint, message, operation, etc). Policy assertions ex-
press domain-specific semantics (e.g., transactions or security) and are defined in separate
specifications. A policy expression is an XML Infoset representation of a policy whereby
four major elements are used to define a policy expression: Policy, All, ExactlyOne,
PolicyReference. The first three elements are referred to as policy operators and are used
to define policies (Policy element) or combine policy assertions (All and ExactlyOne)
whereas the fourth is used to reference a policy expression, either as standalone policy or
within another policy expression. Additionally, an XML attribute wsp:Optional can be used
to specify optional policy assertions.

3.4.1.2 WS-QoSPolicy

Currently, the WS-Policy specification focuses on security using WS-Security Policy [110] and
reliable messaging using WS-RM Policy [108], whereas other QoS related policies are currently
not available. In order to achieve an automated mapping from SLAs to QoS policies, we need
to extend the WS-Policy framework to enable support for the definition of QoS policies.

The WS-QoSPolicy defines an assertion model for the service layer QoS attributes which
are not influenced by non-controllable behavior for the service provider such as the network
communication. The normative outline of the new policy assertions is shown in Listing 3.3.� �

1 <qosp:[QoS]Assertion unit="xs:string" predicate="tns:PredicateType"
2 value="xs:integer|xs:double|xs:string"/>� �

Listing 3.3: WS-QoSPolicy Assertions

The value [QoS] acts as a placeholder for concrete assertions, such as ExecutionTime or
Throughput. The unit attribute defines the measurement unit for each attribute. We simply
use a string to denote the unit because we have a small and finite set of QoS attributes and the
units for these attributes are clearly defined. The predicate defines the logical expression that
is used for the QoS value comparison and is bound to the following values: Greater, Less,
Equal, GreaterEqual, LessEqual (defined by the PredicateType schema element). The
policy assertion value can either be a string, a double or an integer. In Listing 3.4, a small

37

3.4 Orchestration Layer

excerpt of the WS-QoSPolicy is depicted. It shows the definition of the ExecutionTime-

Assertion (lines 11–17) and the ThroughputAssertion (lines 18–24) and the available
predicates (lines 28–36).� �

1 <?xml version="1.0" encoding="UTF-8"?>
2 <xs:schema xmlns:tns="http://vresco.vitalab.tuwien.ac.at/wsqospolicy"
3 xmlns:xs="http://www.w3.org/2001/XMLSchema"
4 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
5 targetNamespace="http://vresco.vitalab.tuwien.ac.at/wsqospolicy"
6 elementFormDefault="qualified"
7 attributeFormDefault="unqualified" version="1.0">
8 <xs:import namespace="http://schemas.xmlsoap.org/ws/2004/09/policy"
9 schemaLocation="ws-policy.xsd"/>

10

11 <xs:element name="ExecutionTimeAssertion">
12 <xs:complexType>
13 <xs:attribute name="value" type="xs:integer" use="required"/>
14 <xs:attribute name="unit" type="xs:string" use="required"/>
15 <xs:attribute name="predicate" type="tns:PredicateType" use="required"/>
16 </xs:complexType>
17 </xs:element>
18 <xs:element name="ThroughputAssertion">
19 <xs:complexType>
20 <xs:attribute name="value" type="xs:double" use="required"/>
21 <xs:attribute name="unit" type="xs:string" use="required"/>
22 <xs:attribute name="predicate" type="tns:PredicateType" use="required"/>
23 </xs:complexType>
24 </xs:element>
25

26 <!-- other elements cut for readability -->
27

28 <xs:simpleType name="PredicateType">
29 <xs:restriction base="xs:string">
30 <xs:enumeration value="Greater"/>
31 <xs:enumeration value="Less"/>
32 <xs:enumeration value="Equal"/>
33 <xs:enumeration value="GreaterEqual"/>
34 <xs:enumeration value="LessEqual"/>
35 </xs:restriction>
36 </xs:simpleType>
37 </xs:schema>� �

Listing 3.4: WS-QoSPolicy Schema Excerpt

A concrete example for two such policy assertions is illustrated in Listing 3.5. This example
basically reassembles the SLO from Listing 3.2.

Based on these policy assertions, QoS requirements for services can be integrated in busi-
ness processes using the WS-QoSPolicy. It is then up to the process engine to handle these
assertions properly, e.g., by emitting events to the SLA enforcement service to notify that a
specific value is violated. This information can then be correlated with the information in the
SLA to define appropriate actions. To this end, this approach can form the basis for effective
SLA enforcement, however, this thesis does not address enforcement on its own, it rather fo-
cuses on the integration of SLA and QoS in the modeling process and on the optimization and

38

Chapter 3: A Multi-Layer QoS Model for Service-Oriented Systems

� �
1 <wsp:Policy>
2 <wsp:All>
3 <qosp:ExecutionTimeAssertion unit="msec" predicate="Less" value="1500"/>
4 <qosp:ThroughputAssertion unit="ops" predicate="GreaterEqual" value="130"/>
5 </wsp:All>
6 </wsp:Policy>� �

Listing 3.5: Assertion Example

adaptation of QoS-aware compositions on lower levels.

3.4.2 Aggregation of Service Layer QoS

In order to calculate the QoS of a composite service on the microflow level, a set of well-
defined composition patterns needs to be identified within the overall composition. For each
of these patterns a QoS aggregation rule can be applied to calculate the QoS of a pattern and,
by applying it recursively, the overall QoS of a composition. In [150], van der Aalst et al. have
defined a catalog of workflow patterns which typically occur in modern workflow systems.
These patterns are not directly applicable to typical composition scenarios because they con-
tain many patterns that are not relevant for QoS aggregation. Additionally, workflow patterns
are elementary units such as splits or joins, however, in order to perform QoS aggregation a
structured pattern is needed that combines for example a split and a join in one pattern.

3.4.2.1 Composition Patterns

Jaeger et al. [67, 68] have identified a set of theoretically implementable composition patterns
from van der Aalst’s pattern catalog. Initially, they have identified seven patterns [67,68], later
extending it to nine possible patterns [64]. These composition patterns range from simple se-
quences of activities and loops to parallel or conditional executions with different semantics.
The following subset of composition patterns is used in our approach and visualized in Fig-
ure 3.3 for two reasons: Firstly, the domain-specific language VCL, for specifying QoS-aware
compositions, that we contribute in this thesis does not support complex composition pat-
terns. Additionally, the underlying composition language that we use to actually execute a
VCL composition does not support them either. Secondly, these four composition patterns
used in our approach are usually sufficient to express common compositional logic.

Pattern 1: Sequence. Defines a sequential execution of n services in a composition. The length
of a sequence has to be at least greater than one. The pattern is shown in Figure 3.3a.

Pattern 2: Loop. A loop defines a repetitive execution of its body a given number of n times.
The pattern is shown in Figure 3.3b.

Pattern 3: AND split/AND join. An AND split specifies a parallel execution of n different
branches. The AND join represents a barrier that waits for all n parallel executions to

39

3.4 Orchestration Layer

complete before continuing with the subsequent activities in the composition. The pat-
tern is shown in Figure 3.3c.

Pattern 4: XOR split/XOR join. An XOR split chooses one out of n branches (based on a con-
dition) that is executed. The final XOR join waits for exactly one branch to finish before
continuing with the execution of subsequent activities in the composition. It is typically
used to model conditional execution (if-then) as known from traditional program-
ming languages. The pattern is shown in Figure 3.3d.

f1

fn

(...)

(a) Sequence

loop

end

(...)

(b) Loop

AND
split

 (...) (...)

AND
join

(c) AND split/AND
join

XOR
split

 (...) (...)

XOR
join

(d) XOR split/XOR
join

Figure 3.3: Composition Patterns

3.4.2.2 Aggregation Rules

Based on the above mentioned composition patterns, a unique aggregation formula is needed
to calculate the QoS attribute value of a pattern that is then used recursively to calculate the
overall QoS of the composition. The atomic aggregation formulas for each composition pat-
tern are presented in Table 3.2. These patterns are then used by the aggregation algorithms for
our QoS-aware Composition as a Service (CaaS) approach presented in Chapter 8.

For defining the aggregation rules, we use the following notation. A pattern in a compo-
sition consists of a set of n activities (or features as it is called in VRESCO – see Chapter 6)
F = {f1, f2, . . . fn}. We assume that loops and conditionals (XOR-XOR pattern) are annotated
at design time to reflect the loop count and the execution probability. For the loop count,
we use the variable c in the aggregation rules. In the XOR split, we re-use fi to represent all
possible branches, each with a probability pi where

∑n
i pi = 1. Additionally, we use the QoS

attribute as a function on a feature fi ∈ F to get its QoS value. For example qtp(f1) retrieves the
throughput value of a feature f1 in a composition. It is important to note that the annotations
for loops and the XOR-XOR pattern are used at design time in our QoS-aware composition
approach to initially aggregate the QoS and generate and optimized composition w.r.t. the

40

Chapter 3: A Multi-Layer QoS Model for Service-Oriented Systems

Attribute Sequence Loop XOR-XOR AND-AND

Performance

Response
Timea (qrt)

Pn
i=1 qrt(fi) qrt(f) ∗ c

Pn
i=1 pi ∗ qrt(fi) max{qrt(f1), .., qrt(fn)}

Throughput
(qtp)

min{qtp(f1), .., qtp(fn)} qtp(f)
Pn

i=1 pi ∗ qtp(fi) min{qtp(f1), .., qtp(fn)}

Scalability
(qsc)

min{qsc(f1), .., qsc(fn)} qsc(f)c Pn
i=1 pi ∗ qsc(fi) min{qsc(f1), .., qsc(fn)}

Dependability

Availabilityb

(qav)

Qn
i=1 qav(fi) qav(f)c Pn

i=1 pi ∗ qav(fi)
Qn

i=1 qav(fi)

Reliable
Messaging
(qrm)

q′rm =

(
true ∀1<i≤nqrm(fi) = true

false ∃fi∈F qrm(fi) = false

Security and Trust

Security
(qsec)

q′sec =

(
X.509 ∀1<i≤nqsec(fi) = X.509

None otherwise

Reputation
(qrep)

1
n

Pn
i=1 qrep(fi) qrep(f)

Pn
i=1 pi ∗ qrep(fi)

1
n

Pn
i=1 qrep(fi)

Cost and Payment

Price (qp)
Pn

i=1 qp(fi) qp(s) ∗ c
Pn

i=1 pi ∗ qp(fi)
Pn

i=1 qp(fi)

Penalty (qpl)
Pn

i=1 qpl(fi) qpl(s) ∗ c
Pn

i=1 pi ∗ qpl(fi)
Pn

i=1 qpl(fi)

aThe same aggregation rule is used for execution time, latency, processing time and round trip time.
bThe same aggregation rule is used for accuracy and robustness.

Table 3.2: QoS Attributes and Aggregation Formulas

structure of the composition and the annotations of the QoS values. Once a composition is de-
ployed and running, these annotated values will be adapted based on execution monitoring
of the composition to accurately reflect historical loop counts and XOR branching decisions.

In case of security, we simply assume that if one service in the composition requires a
specific security protocol (e.g., X.509), then all services in the composition have to support
the same security protocol. In the formula in Table 3.2, we only formally define it for the
case of X.509, however, it is the same for all other possible security attributes (e.g., such as
UsernamePassword). In case of reliable messaging, the same restriction applies. A more

41

3.5 Summary

sophisticated handling of security in Web service compositions is left for future work.

3.5 Summary

In this chapter we have introduced the multi-layer QoS model that forms the basis for the
further chapters presented in this thesis. The multi-layer model combines some of the basic
modeling concepts in SOC, namely choreography, orchestration and services as the core en-
tities. Each layer has different requirements and goals, especially w.r.t. their specification of
non-functional properties of the overall system. Our model takes these different requirements
into account and presents an extensible model for the Web services stack. Firstly, we presented
a detailed set of QoS attributes and their definitions grouped into four basic categories. Based
on the service layer QoS, we have outlined the specification of SLAs on the choreography
layer as the most general way of modeling non-functional guarantees in SOA-based systems.
The definition of SLAs during the choreography modeling enables a mapping of these SLAs
to concrete QoS policies on the orchestration layer. An orchestration engine can then enforce
these QoS policies and define appropriate actions for dealing with violated policies. The QoS
policies are specified using WS-QoSPolicy, a custom extension to the WS-Policy framework.
Orthogonal to the concept of defining QoS policies is the pattern-based aggregation of QoS
attributes on the orchestration layer. Such an aggregation is necessary to calculate the QoS
of the overall composition or for specific parts of the composition. This is especially helpful
when optimizing a composition in terms of QoS as done in the second part of this thesis where
certain user-defined QoS constraints have to be enforced.

42

Chapter 4

Monitoring and Measuring Web Service
QoS Attributes

This chapter introduces a client-side QoS monitoring approach that is used to bootstrap and
evaluate performance and dependability related QoS attributes of Web services in a black-box
manner.

Contents
4.1 Motivation . 43

4.2 Overview of Monitoring Approaches . 44

4.2.1 Provider-Side Instrumentation . 44

4.2.2 SOAP Intermediaries . 45

4.2.3 Probing . 45

4.2.4 Sniffing . 45

4.3 Client-Side Monitoring Approach . 46

4.3.1 QUATSCH Toolkit . 46

4.3.2 AOP-based Evaluation . 52

4.3.3 Interceptor-based Evaluation . 53

4.3.4 TCP Sniffing and Reassembly . 54

4.3.5 Implementation Aspects . 57

4.4 Evaluation . 57

4.5 Discussion and Limitations . 61

4.1 Motivation

Efficient and automated monitoring of Web service QoS attributes is a crucial aspect enabling a
large number of application scenarios such as QoS-aware Web service selection, composition
and optimization. Currently, most Web services do not provide QoS information as part of
their interface contract, simply because there is no "external" entity to bootstrap and assess

43

4.2 Overview of Monitoring Approaches

QoS information and attach it to a service. However, in case they do, it cannot be guaranteed
that this information is accurate and can be trusted.

In this chapter, we present a client-side monitoring approach and a tool called QUATSCH.
This approach treats a Web service as a black-box and invokes it just as a regular Web service
client would do. A novelty of this approach is the fact that the server-side execution time (cf.
with Figure 3.2 in Chapter 3) can be estimated by using low-level TCP sniffing and analysis
without requiring access to any service internals. This makes the tool a reasonable candidate
to validate the service provider processing time that is often guaranteed as part of an SLA.

An alternative approach for monitoring Web service QoS within compositions is imple-
mented as part of the VieDAME system. This non-intrusive approach monitors performance-
specific QoS attributes within a WS-BPEL process execution and allows to trigger adaptations
based on the measured QoS. It leverages aspect-oriented programming (AOP) to retrieve the
monitoring data from the process engine without instrumenting the business process code
nor changing the code of the process engine. For a brief description of VieDAME, we refer to
Chapter 5 and for a detailed description to [99].

4.2 Overview of Monitoring Approaches

A number of different approaches for QoS monitoring exist, each of them has its advan-
tages and drawbacks [143]. In this section, we give a brief conceptual overview of available
approaches for monitoring atomic Web services (not compositions) which are applicable in
service-oriented systems.

A general design consideration when implementing a QoS monitoring approach is the de-
cision whether to monitor on the service-side or from the client-side. Server-side monitoring is
easier and less cumbersome as the Web service source code is typically available and can be
directly instrumented with performance measurement code. Additionally, the measurement
accuracy is typically higher and several QoS attributes can be calculated more precisely (e.g.,
throughput). However, by applying a server-side approach it is not possible to measure the
network latency and therefore the "real" QoS experience delivered to a service consumer such
as the response time (not just the execution time on the server). An alternative is a pure client-
side approach, where only the WSDL interface of the Web service is available. Therefore, such
an approach requires other ways to measure the execution time qex or the processing time qpt

since these attributes cannot be directly measured or calculated without analyzing the TCP
traffic.

4.2.1 Provider-Side Instrumentation

Instrumenting the service implementation at the provider is a simple approach to measure
various dependability-specific QoS attributes. In general, one has to distinguish between in-
strumenting the service code directly to calculate the QoS attributes (invasive instrumenta-
tion) or use mechanisms and tools which allow a non-invasive instrumentation, e.g., by using

44

Chapter 4: Monitoring and Measuring Web Service QoS Attributes

AOP or operation system specific mechanisms such as Windows performance counters [98].
The advantage of this approach is the monitoring accuracy because all measurements are
based on real-time invocations and high-load during peek times are immediately reflected
by an increase or decrease of the corresponding QoS attribute. The main drawback of this
approach is the lack of monitoring capabilities for all the client-specific attributes that include
network latency (cf. all non-deterministic client-side attributes from Chapter 3). Additionally,
the service consumer has to trust the performance values specified by the provider.

4.2.2 SOAP Intermediaries

SOAP intermediaries are applications that can accept, process, and forward SOAP messages
routed from the origin to its final destination. Such an intermediary party can be used to
measure and handle QoS related data thus act as a "trusted" external QoS monitor between
the client and the server. Advantage of an intermediary is the fact that it is loosely coupled
and, therefore, can be provided by the client or server, or even by a "trusted" third party.
However, this third party is effectively a proxy and all requests need to be routed through
this proxy to facilitate a seamless and continuous monitoring. This can lead to bottlenecks at
intermediary nodes due to a high runtime overhead which also limits scalability. Additionally,
both client and server have to agree on a dedicated intermediary by adding the corresponding
information to each incoming and outgoing SOAP message.

4.2.3 Probing

Probing is a technique where a probing entity between the service consumer and the provider
issues probes to the service provider on a regular basis. Contrary to SOAP intermediaries, this
approach does not intercept the traffic between the consumer and the provider, however, it
sends probing requests to the service provider. The main advantage of this approach is the
flexibility regarding its location. It can either be situated on the client-side, service-side or in
between as an independent third-party monitoring tool. Typically such a probing approach is
used to check the availability of a certain network service and measure its uptime. In order to
be useful for measuring the QoS, a probing toolkit needs to be configurable and extensible to
enable an automated invocation of various Web services with different payloads (to simulate
different message payloads).

4.2.4 Sniffing

An alternative approach for client-side monitoring is the analysis of low-level TCP packet
streams during the invocation of a service to accurately calculate the response time, latency
and other values. Different from all above mentioned approaches is the fact that these values
are consumer-specific, which is often a desired goal when monitoring QoS attributes in real-
world applications. This approach usually has a higher runtime overhead because a set of

45

4.3 Client-Side Monitoring Approach

technologies are needed to facilitate sniffing, aggregation and correlation of low-level data.
However, sniffing, correlation and aggregation of measurement data is typically executed
asynchronously from the real business application, therefore, reducing possible interferences
and providing higher stability.

4.3 Client-Side Monitoring Approach

In this section, we present a novel QoS bootstrapping and evaluation approach called QUATSCH

for monitoring performance and dependability related QoS attributes as described in Chap-
ter 3. The approach implements a client-side monitoring technique for Web services which works
completely service and provider independent. It provides a black-box view on a service just as
a regular Web service client. The approach combines sniffing and probing to enable a client-
side view on QoS attributes and allows to calculate the server-side execution time by using
low-level TCP traffic sniffing.

Several processing steps are necessary to successfully bootstrap and evaluate QoS attributes
for arbitrary Web services, therefore, we have split the evaluation approach into three different
phases.

1. Preprocessing: In this phase a Web service which should be monitored is preprocessed
in the sense that stubs are being generated and an evaluation configuration has to be
defined (e.g., which operation to invoke and how often). Since Web services based on
SOAP come in different flavors, such as RPC-style or document-literal style, we use a
different framework and preprocessing strategy for each style. The stub code together
with the rest of the configuration data is stored in the database.

2. Evaluation: In this phase the actual QoS monitoring is performed. Based on the previ-
ously generated evaluation configuration, the generated stubs are dynamically instan-
tiated to invoke the service in order to calculate a set of QoS attributes. A scheduler
component handles the continuous service monitoring based on the interval specified in
the evaluation configuration. The results of the scheduling are stored in the database.

3. Result Analysis: The result analysis uses the raw QoS evaluation data from the pre-
vious phase to generate QoS statistics. This step is supported by using a Web-based
user interface (UI) where the user can generate performance charts and inspect raw QoS
data. Additionally, the UI supports the aforementioned preprocessing steps by adding,
removing or changing existing services and their evaluation schedules.

4.3.1 QUATSCH Toolkit

The QUATSCH toolkit is implemented as a three tier approach by using Hibernate [58] to im-
plement a data access layer for achieving an Object Relational Mapping (ORM) as the core
abstraction from the relational database storage. The middle tier is divided into the three

46

Chapter 4: Monitoring and Measuring Web Service QoS Attributes

phases as described above. The top tier implements a Web-based user interface and provides
a Web service API to allow external systems to send preprocessing requests to QUATSCH. The
overall system architecture is depicted in Figure 4.1. In the following, we discuss the middle
tier according to the three main phases and its components in detail.

Evaluation Result AnalysisPreprocessing

WSDL Inspector

Template
Generator

WebService
Preprocessor

WebService
Invoker

WebService
Evaluator

Sniffer
Scheduler

ORM Layer

Database

Da
ta

 A
cc

es
s

La
ye

r

Second Level Caching

Result Analyzer

UI & Integration Layer

Web UI Web Service

Reflector

Figure 4.1: System Architecture

4.3.1.1 Preprocessing Phase

The preprocessing of Web services can be triggered either by using the Web-based UI or the
Web service as well as the command-line tool. The preprocessing phase is encapsulated in the
WebServicePreprocessor component. It reads the WSDL file and extracts all necessary
information required for this step (by using the WSDL Inspector component). It parses the
WSDL file to determine the SOAP binding name (we only support SOAP bindings). From the
binding name, we can retrieve the corresponding portType element, thus, getting all opera-
tions which we have to evaluate. Furthermore, all XSD data types defined within the types
element are parsed to retrieve all available types needed for invoking the service operations.

Evaluation Configurations. The user can configure the evaluation process by defining one
or more evaluation configurations. An evaluation configuration defines the following items:

• a time frame when a service has to be monitored (beginning and end date);

• a monitoring interval as a Unix cron expression, e.g. "0 0/10 * * * ?" for monitor-
ing every ten minutes;

47

4.3 Client-Side Monitoring Approach

• a name of the operation to evaluate or all operations (default);

• a service invocation template to define a set of valid parameters that are used when
invoking a service, otherwise the default values for each data type are used;

• whether to use a standard evaluation or a throughput evaluation strategy (discussed
below).

One service can have multiple evaluation configurations because different operations may
require different evaluation schedules and individual invocation templates.

Generating Service Stubs. The most important step in the preprocessing phase is the gener-
ation of the Web service stubs to be able to invoke the services and monitor their performance.
Most existing Web services mainly implement an RPC-style communication usually referred
to as RPC-encoded style in SOAP. Unfortunately, this style is not in line with the document-
centric idea of Web services, therefore, the document-literal style is now the de-facto standard
style for provisioning SOAP-based Web services. The QUATSCH system has to handle both
styles properly, however, existing Web service frameworks in the Java environment do not
properly support both. Therefore, we use Apache Axis [7] for handling all RPC-style Web ser-
vices and Apache CXF [6] for dealing with all document-style Web services. Using these two
frameworks requires specific QoS measurement approaches. In the case of Axis, we leverage
aspect-oriented programming (AOP) as a means to decouple the QoS measurement code from
the Web service stub as produced by Axis WSDL2Java tool. The code weaving is done during
the preprocessing. In case of CXF, we use a set of interceptors that can be plugged into the
CXF framework to handle the QoS measurement. Irrespective of the framework in use, the
stubs are dynamically compiled and bundled with all other related artifacts to build a JAR file
that is stored in the database as BLOB (Binary Large Object). These concrete service evalua-
tion mechanisms are explained in Section 4.3.2 and 4.3.3, respectively. All these steps are fully
automated by the WebServicePreprocessor component.

Template Generation. Besides generating and compiling the service stubs, an invocation
template can be generated to define template values to be used during the invocation. A
template, in form of a sample SOAP request, is generated based on the XSD type definition in
the WSDL file. For example, consider the following listing defining a simple XSD type for a
conversion from Celsius to Fahrenheit.� �

1 <xs:complexType name="CelsiusToFahrenheit">
2 <xs:sequence>
3 <xs:element name="celsius" type="xs:double"/>
4 </xs:sequence>
5 </xs:complexType>� �

A template for a service operation that has the above CelsiusToFahrenheit type as an
input would look like this:

48

Chapter 4: Monitoring and Measuring Web Service QoS Attributes

� �
1 <CelsiusToFahrenheit>
2 <!--type: double-->
3 <celsius>36.3</celsius>
4 </CelsiusToFahrenheit>� �

At evaluation time, the Reflector component will use this template to set the correspond-
ing values in the request message that is sent to the service. This template mechanism is useful
especially for services that require certain data elements to be set with specific values. For ex-
ample think of an application ID that is issued by the service provider and which has to be
included in every message. There is simply no way to automatically detect the value of a
certain field, therefore, user input is required to provide that specific information. Without
templates, the Reflector can only use default or dummy data for each data element which
may result is meaningless requests. This may lead to exceptions at the service provider and
as a consequence it may falsify the measured QoS data (e.g., the response time might be much
shorter than for a "real" request).

4.3.1.2 Evaluation Phase

In this phase, the basic task is to evaluate a Web service by invoking it and use the sniffer to
capture the TCP trace that is generated by the invocation. The WebServiceEvaluator com-
ponent encapsulates the evaluation logic and implements two evaluation strategies. Figure 4.2
shows the dependencies between the invoker and evaluation strategies in the QUATSCH ar-
chitecture.

• Default Evaluation Strategy: It is used to evaluate a service based to its evaluation
configuration by sending one evaluation request. Depending on the style (document-
literal or RPC) supported by the provider, the WebServiceEvaluator creates the cor-
responding WebServiceInvoker to invoke the service. The Sniffing component,
based on the Java packet capture library called Jpcap [53], is automatically triggered due
to the fact that the corresponding code was previously added to the Web service stubs in
the preprocessing phase. This way the response time, latency and other QoS attributes
can be measured. Details on the sniffing approach are provided in Section 4.3.4.

• Throughput Evaluation Strategy: Basically, it has the same functionality as the default
strategy with the major difference that it is used to perform a throughput evaluation
based on the number of requests configured in the evaluation configuration. It uses a
thread pool to send all requests in parallel and uses a synchronization barrier to wait for
all responses.

In order to dynamically invoke a Web service, the WebServiceInvoker component uses
reflection to instantiate the corresponding Web service stub. The operation to invoke a Web
service depends on the evaluation configuration. Due to the fact that we use two differ-
ent frameworks to invoke a service, we also need two different invocation strategies be-
cause the Web service stubs are totally different. Thanks to the flexible architecture, it is

49

4.3 Client-Side Monitoring Approach

+evaluate()

WebService
EvaluatorWebService

EvalConfig
*
1

+evaluate()

IEvaluation
Strategy

DefaultEvaluation
Strategy

ThroughputEvaluation
Strategy

+invoke()

IService
Invoker

AxisInvoker CXFInvoker

+initializeParameter()

IInstantiation
Strategy

DefaultInstantiation
Strategy

TemplateInstantiation
Strategy

Figure 4.2: QUATSCH Class Diagram

very easy to plug in a concrete invoker. In QUATSCH, two different invokers are available,
the AxisServiceInvoker and the CXFServiceInvoker both implementing the common
IServiceInvoker interface (we commonly refer to this set of classes as WebService-

Invoker).

Each WebServiceInvoker implements two different strategies that define how the pa-
rameter of a service operation are created. Firstly, the DefaultInstantiationStrategy
uses the Reflector to instantiate each parameter of a service operation. These parameters
are either simple types such as string or integer or complex types represented by classes
that were generated by WSDL2Java tools of the corresponding Web service framework (Axis
and CXF) as part of the preprocessing phase. Since these complex classes adhere to the Java-
Bean standard they can be instantiated and assigned default values using the setter methods
(such as 0 for int). Secondly, the TemplateInstantiationStrategy is used to instan-
tiate the parameter of an operation by using the values defined in the previously generated
invocation template. These values are extracted at runtime by using XPath. The algorithm for
dynamically invoking a Web service operation with the AxisInvoker is shown in Listing 4.1.

The algorithm uses the Web service stubs and the template which have been generated
during the preprocessing phase and tries to find a matching value for each parameter in the
template file. If no parameters can be found in the template or the template is not available,
the Reflector tries to instantiate the required parameter type with a default value. The in-
vocation algorithm first has to check whether the service implements a given operation name
(lines 3–6). Then, the algorithm iterates over all WSDL message parts (lines 14–25) and finds
a corresponding type (either a simple or complex type) that is initialized by using one of
the available IInstantiationStrategy implementations (line 24). At the end, the service
method is invoked and the response is returned to the caller. Exception handling is omitted to
enhance readability.

50

Chapter 4: Monitoring and Measuring Web Service QoS Attributes

� �
1 public Object invoke(EvaluationConfig ec, ClassLoader cl) throws

ServiceInvocationException {
2 // find the given operation in the service
3 Operation operation = _service.getOperation(ec.getOperationName());
4 if (operation == null) {
5 throw new ServiceInvocationException(String.format("Operation ’%s’ does not

exist!", ec.getOperationName()));
6 }
7 initClasses(cl); // initialize all stub classes and helpers
8 Message inputMsg = operation.getInput().getMessage();
9 Map parts = inputMsg.getParts();

10

11 Class[] parameters = new Class[parts.size()];
12 Object[] paramInstances = new Object[parts.size()];
13

14 List<Part> orderedParts = inputMsg.getOrderedParts(null);
15 for (int i = 0; i < orderedParts.size(); i++) {
16 Part p = orderedParts.get(i);
17 QName type = p.getTypeName();
18 Class<?> param = WSDLInspector.convertXSDTypeToJavaType(type.getLocalPart());
19 if (param == null) { // it is not a simple type
20 String javaName = WSDLUtils.convertQNameToPackageName(type);
21 param = Class.forName(javaName, false, cl);
22 }
23 parameters[i] = param;
24 paramInstances[i] = _strategy.initalizeParameter(ec, p.getName(), param);
25 }
26 Method serviceMethod = _stubClass.getMethod(Utils.xmlNameToJava(ec.

getOperationName()), parameters);
27 return serviceMethod.invoke(_stub, paramInstances);
28 }� �

Listing 4.1: Dynamic Invocation Code

Service Scheduling. Finally, the remaining part is the periodic execution of the service eval-
uation to ensure continuous monitoring. The Scheduler component implements a cron
scheduler which invokes a service according to its settings specified as part of the evaluation
configurations that are associated with a service. It periodically examines all service entries in
the database to detect new services added by the client. If a new service is added, the eval-
uation configuration is inspected, a service trigger is constructed and a job is added to the
scheduler. The scheduler then autonomously reacts to firing triggers by executing the associ-
ated job. We use the popular Quartz framework [31] to implement our scheduling component.
Additionally, there is a command-line tool to evaluate a service just once which is intended to
be used for testing.

4.3.1.3 Result Analysis Phase

The final phase is the result analysis which is totally decoupled from the evaluation itself. The
results generated from the WebServiceEvaluator are stored in the relational database by
using the ORM layer. The ResultAnalyzer component is implemented as a scheduling job

51

4.3 Client-Side Monitoring Approach

and it iterates over the collected results and generates the necessary statistics for each QoS
attribute (e.g., calculating the average response time per hour, day, etc.).

4.3.2 AOP-based Evaluation

In order to decouple QoS measurement logic from the concrete Web service stub code, an AOP
approach is used for RPC-style services based on the Axis framework. AOP represents an
ideal technique for modeling cross-cutting concerns. QoS measurement is such a cross-cutting
concern as it has to be applied to each RPC-style service which has to be invoked during the
evaluation. In order to weave the measurement code into the service stubs generated by the
Axis WSDL2Java, we have to identify the corresponding join points in the stub code. The
basic synopsis of our approach is described in Figure 4.3. During the preprocessing phase, we
generate the stubs for the service which should be evaluated by using the WSDL2Java tool.
For the Google Web service, as one example, the main stub class that is generated is called
GoogleSearchBindingStub. Each stub method looks similar, first is the wrapping phase,
where the input parameters are encoded in XML. Secondly, the actual invocation is carried
out by using the invoke(..) method of the Call class from the Axis library. At last, the
response from the service is unwrapped and encoded as Java arguments and returned to the
caller.

public GoogleSearchResult doGoogleSearch(..) {
 // wrap parameters

 call.invoke(params);

 // unwrap parameters
}

GoogleSearchBindingStub.java

public aspect EvaluationAspect {

 pointcut wsInvoke(): /** pointcut logic **/

 before(): wsInvoke() {
 startJpcap();
 timestamp();
 }

 after() returning: wsInvoke() {
 timespamp();
 stopJpcap();
 storeResults();
 }

 after() throwing(RemoteEx): wsInvoke() {
 timespamp();
 stopJpcap();
 storeResults(ex);
 }
}

pointcut selects join
point to advice

Legend:

advice executed when
join point matches

Figure 4.3: Aspect for Service Invocations (simplified)

The join point for measuring the response time qrt is the invoke(..) method of the Axis
Call class. Therefore, we define the following pointcut in the EvaluationAspect as de-
picted in Listing 4.2 that has to match that join point at runtime.

Whenever a service operation is invoked by using the WebServiceEvaluator compo-
nent, the wsInvoke() pointcut defined for this join point is matched. Before the actual ser-
vice invocation, the before advise is executed. This is where the actual evaluation has to be
carried out. It mainly consists of a timestamp and the generation of an EvaluationResult,

52

Chapter 4: Monitoring and Measuring Web Service QoS Attributes

� �
1 pointcut wsInvoke(): target(org.apache.axis.client.Call) &&
2 (call(Object invoke(..)) || call(void invokeOneWay(..)));� �

Listing 4.2: Response Time Pointcut for Axis

as well as starting the packet sniffer using our Sniffing library to trace the TCP traffic caused
by this request.

After the wsInvoke() pointcut the execution of the corresponding after advise is trig-
gered. In case of a successful execution of the service invocation, the after() returning

advise is selected otherwise the after() throwing advise is invoked. At this point, the
packet sniffing is stopped and the TCP trace data is collected. The timestamps taken before
and after the invocation can directly be used to calculate the response time. For the calculation
of the latency and execution time, the TCP trace needs to be analyzed which is described in
detail in Section 4.3.4.

4.3.3 Interceptor-based Evaluation

Apache CXF provides a framework for provisioning and consuming document-centric Web
services as well as REST services. When invoking a Web service, a number of interceptors are
used to perform specific tasks such as writing the XML request to the binary stream or read-
ing the binary response from the stream. The CXF framework uses the well-known interceptor
pattern to provide these functionalities. These interceptors are managed by different intercep-
tor chains, such as an incoming or outgoing chain. These chains are divided into a number
of phases such as RECEIVE to handle the transport-level processing on the incoming inter-
ceptor chain. Our approach leverages these incoming and outgoing interceptor chains to add
custom interceptors, for example to set the corresponding timestamps and run the TCP sniff-
ing process. In the outgoing chain, the following interceptors are added to the corresponding
phases:

• SETUP phase: In this first phase we add a QoSInitInterceptor to set up all the data
structures required for the monitoring and set timestamps for the round trip time.

• PREPARE_SEND phase: This phase opens the connection to the endpoint of the service
thus we add a QoSSendInterceptor to initialize and start the Sniffing.

• PRE_STREAM phase: This phase is used for preparing the stream level processing thus
we add a RequestMessageInterceptor to retrieve the raw XML message that is sent
to the server for storing it with the evaluation data.

After these phases are processed and the request is finally sent to the service provider, the
Sniffing component is listening and capturing all packets between the sending and receiv-
ing host. When the response is received, an incoming chain is created by the Apache CXF

53

4.3 Client-Side Monitoring Approach

framework where we have to add some additional interceptors to set the corresponding times-
tamps, stop the sniffing component and store the results. In the incoming phase, we add the
following interceptors:

• RECEIVE phase: This phase is executed as the first one right after the response was re-
ceived thus we add a QoSReceiveInterceptor to record a timestamp for calculating
the response time and retrieve the data from the session data.

• POST_STREAM phase: This phase is used for post stream-level processing thus we add a
ResponseMessageInterceptor to retrieve the raw XML message that was received
from the server for storing it with the evaluation data.

• PRE_INVOKE phase: Before the local service method is invoked with the response, the
QoSResultInterceptor is invoked to stop the Sniffing component and store the
results in the database.

4.3.4 TCP Sniffing and Reassembly

The core element of this approach is the combination of automated and client-side QoS moni-
toring with low-level TCP sniffing and traffic analysis. This enables the approximation of the
server-side response time and the calculation of the network latency as two important QoS
attributes. A typical Web service invocation on the API-level is a simple invocation of the cor-
responding stub method, however, on a TCP level we can distinguish three different phases.
The first phase is the connection establishment following the three-way handshake to set up
a TCP connection [140]. The second phase handles the data transmission itself (i.e., the pay-
load from the client to the server and the response). The final phase is the TCP connection
termination.

The three-way handshake is a simple way of establishing a connection between two hosts.
In this case, the client sends a SYN packet to the server which responds with a SYN and
an ACK package to acknowledge reception. Finally, the client sends an ACK to the server
to acknowledge the SYN and the connection is established. The connection termination is
very similar but actually not three-way, instead it is a pair of two-way handshakes. The end
of the connection is triggered by one of the hosts by sending a FIN and the recipient sends
back an ACK. The other party also sends a FIN that is ACKed by the other side. Each of those
handshake packets does not have a payload thus they are a very good indicator of the network
latency. They only need the time to reach its destination plus some negligible timespan the
operation system requires to create an ACK packet and send it back. Therefore, we can extract
at least two meaningful network latency values. A full TCP trace of a Web service invocation
in the local network is shown in Figure 4.4. The trace was generated by the packet capturing
tool Wireshark [169]. The dashed boxes indicate those parts that are used to calculate the
latency values.

Unfortunately, calculating the execution time from a TCP trace is not as easy as it appears
from the trace in Figure 4.4. Consider a simple Web service request where a SOAP message

54

Chapter 4: Monitoring and Measuring Web Service QoS Attributes

Figure 4.4: TCP Message Flow

is sent over HTTP to the service provider. In the simplest case, there is one message on the
TCP level where the message is transmitted to the server. However, in practice multiple cases
exist that have to be considered when calculating the latency and approximating the execution
time of a service operation on the server. Firstly, the request or the response may have a large
message size thus exceeding the maximum TCP frame length. This will result in a multi-
frame transmission or an update in the fragment size. Due to the fact that multiple messages
are transferred over the wire, it is hard to determine when the service started the execution of
a service operation that is need to determine the execution time. Secondly, TCP packets can
get lost or the connection gets interrupted. In these cases, TCP automatically retransmits lost
packets. The obsolete packets must not be used to calculate network latency.

In order to address these issues, we have designed a simple TCP Trace Analysis algorithm
as depicted in Algorithm 1. This algorithm separates the packets in the TCP trace T into two
separate maps. The src and dest maps store the client and server packets indexed by the se-
quence number of the package (client) and acknowledgment number (server), respectively.
By using map data structures with indizes to associate sequence and acknowledgment num-
bers to TCP packets, multi-frame transmissions, retransmissions and window size updates are
transparently handled because they are mapped to the same index in the corresponding map.
A loop processes all the packets and stores them either in the src or dest map (lines 4–14).

After splitting the TCP trace in two different maps, they can be analyzed as shown in
lines 16–23. For each source packet in the src map, it tries to find a packet in the destina-
tion map that matches the acknowledgment number (by using the sequence number of the
source packet + 1). For each match, we can calculate a timespan value between two messages
exchanged between the client and server. This value is added to the timestamps list. As an
example consider the first and the second message in Figure 4.4. The timestamp on the client
says 0,010 seconds, thus it is a pretty good measure for the latency (in fact it is twice the la-

55

4.3 Client-Side Monitoring Approach

tency because a packet was sent from the client to the server and back). The timespan after
sending the payload to the service and receiving the response payload is assumed to be the
execution time qex on the server. The function calcExecutionT ime is used to calculate the exe-
cution time by using the maximum value in the list (variable maxExecT ime) and subtracting
the arithmetic mean of all latencies to approximate the execution time of a service (line 25).

Algorithm 1 TCP Trace Analysis

1: function ANALYSETRACE(TCP trace T)
2: src← ∅ .src and dest are map structures

3: dest← ∅
4: for all pi ∈ T do
5: if pi is outgoing then
6: seqNr← pi.seqNr

7: if seqNr 6∈ src OR src[seqNr] has no payload OR pi has no payload then
8: src[seqNr] := pi

9: end if
10: else[pi is incoming]
11: ackNr ← pi.ackNr

12: dest[ackNr] := pi

13: end if
14: end for
15: timestamps← ∅ .a list of timespans for the TCP packet transmissions

16: for all spi ∈ src do
17: seqNr ← spi.key

18: key ← seqNr + spi.payloadLength

19: if dest[key] != null AND spi.payloadLength > 0 then
20: execT ime← (dest[key].timestamp− spi.timestamp)/2

21: timestamps← timestamps ∪ execT ime
22: end if
23: end for
24: maxExecT ime← max(timestamps) .get max element from list

25: return calcExecutionTime(maxExecT ime, timestamps)
26: end function

TCP Packet Correlation. When using the aforementioned TCP trace analysis approach, we
have to ensure that all captured TCP packets belong to the same trace (i.e., the source and
destination host have to be the same). Jpcap, the base library for our Sniffing component,
supports filters to restrict the packet capturing device to a certain host and port. However,
these filters are not enough since there can be multiple service invocations to the same host at
the same time, e.g., during throughput testing. In order to distinguish multiple parallel invo-
cations, we use the local port assigned by the operating system (OS) as a means to distinguish
between multiple traces to the same destination host and port. The locally assigned port is an

56

Chapter 4: Monitoring and Measuring Web Service QoS Attributes

ideal correlation identifier as it cannot be influenced and the OS ensures that it is unique on
the client machine.

Besides distinguishing multiple packets routed to the same service, we need to ensure that
we have a unique correlation of a TCP trace on the packet capturing level with the corre-
sponding service invocation on the application level (the WebServiceInvoker component).
Whenever a service is evaluated, a dynamic filter (specifying host and port) needs to be added
to the Sniffing component, however, the locally assigned port that is used as a correla-
tion identifier is not known at that time (since no TCP packets have been transferred so far).
Therefore, we use one semaphore for each unique host/port combination to lock the critical
section until the first packet was captured and the correlation identifier can be extracted. This
semaphore ensures that only one service evaluation call can add a filter for the same host/port
at the same time thus ensuring proper correlation.

4.3.5 Implementation Aspects

The QUATSCH approach has been implemented on top of the Java 1.6 platform using As-
pectJ to implement the evaluation aspects for Axis-based stubs. The data access layer has
been implemented using the Hibernate framework, a popular ORM framework for the Java
platform. The sniffing part leverages Jpcap, which provides a Java wrapper for libpcap, a
packet capturing library available on most platforms (Linux, OS X and also as a Windows
port called Winpcap [168]). The UI has been implemented using Grails 1.1 [127], a lightweight
Web framework based on the Groovy programming language. The reason for choosing Grails
was its seamless integration with the Java platform, thus enabling an easy access and reuse
of the QUATSCH core components. Grails also acts as the base library for implementing
the QUATSCH Web service to allow a remote management and integration with other tools.
QUATSCH is the core QoS monitor for the VRESCO SOA runtime described in Chapter 6.

4.4 Evaluation

In order to evaluate our approach, especially the approximation of the Web service-specific ex-
ecution time, we have developed two distinct Web services. The QoSTimingServiceRPC im-
plements an RPC-encoded service using the Axis toolkit, whereas the QoSTimingService-
CXF implements a document-literal style service using Apache CXF. Each Web service has
several timing-specific operations, such as waitHundredMsec which waits exactly 100 msec
before sending a response. By using such special-purpose Web services, we get a better idea
of the accuracy of our server-side execution time estimation. All Web services used during the
experiments were hosted on a dedicated server machine (Dell Blade 1955 with a Dual Core
Xeon CPU 3.2 GHz and 10 GB RAM). All Web services have been deployed on the respective
Web service container running on a Tomcat 6 [146] without any special configuration or tun-
ing. The QUATSCH toolkit is installed in a VMware Virtual Machine with an Ubuntu Linux
operating system with 1 GB RAM also hosted on a Dell Blade with the same configuration as

57

4.4 Evaluation

the one mentioned above. For measuring the QoS of the QoSTimingServiceCXF and the
QoSTimingServiceRPC service, we have chosen two operations, waitHundredMsec and
waitOneSecond and created an evaluation configuration for each operation to continuously
measure it every 5 minutes. Over a longer period of time, we collected approximately 10000
test runs for each operation.

In Figure 4.5, the server-side execution times of the QoSTimingServiceCXF service are de-
picted. In all plots, we have chosen a sample of 1500 requests on the x-axis and the execution
time on the y-axis (in µs). Figure 4.5a shows the execution time for waitHundredMsec op-
eration. The red line marks the average execution time of 101715µs over all measured values,
whereas the blue points show each measured execution time value. The standard deviation is
2338µs. Figure 4.5b shows the same data for the waitOneSecond operation. In this case the
average execution time is 1002182µs and the standard deviation is 4498µs. These measured
values are very close to the known execution times of 100000µs and 1000000µs, respectively.
In fact, the exact execution time of our testing services are slightly over the proposed value,
since we use a Thread.sleep() to simulate the execution time which has some additional
minor overhead. Overall, we have an approximation error which is less than three percent in
both cases, therefore, our approach is accurate in measuring the execution time from a black-
box view.

 60000

 80000

 100000

 120000

 140000

 0 200 400 600 800 1000 1200 1400

M
ic

ro
se

co
nd

s

Request Number

Execution Times of QoSTimingServiceCXF operation waitHundredMsec

Precise Execution time
Average Execution Time

(a) Operation waitHundredMsec

 900000

 950000

 1e+06

 1.05e+06

 1.1e+06

 0 200 400 600 800 1000 1200 1400

M
ic

ro
se

co
nd

s

Request Number

Execution Times of QoSTimingServiceCXF operation waitOneSecond

Precise Execution time
Average Execution Time

(b) Operation waitOneSecond

Figure 4.5: Execution Time Approximation for the QoSTimingServiceCXF Service

Besides the document-literal based service as shown above, we have executed the same set
of tests for an RPC-encoded Web service. It is important to run the same tests for both types be-
cause we use different service frameworks (Axis and CXF) and thus also different techniques
(AOP vs. interceptors) to evaluate the services. In Figure 4.6, the results for both operations are
depicted. The results are very similar as for the document-literal services. Figure 4.6a shows
the values for the waitHundredMsec operation with an average execution time of 102171µs
and a standard deviation of 2261µs. Figure 4.6b shows the values for the waitOneSecond
operation with an average execution time of 1002530µs and a standard deviation of 6501µs.

According to our definition of response time in Chapter 3, it includes the network-specific

58

Chapter 4: Monitoring and Measuring Web Service QoS Attributes

 60000

 80000

 100000

 120000

 140000

 0 200 400 600 800 1000 1200 1400

M
ic

ro
se

co
nd

s

Request Number

Execution Times of QoSTimingServiceRPC operation waitHundredMsec

Precise Execution time
Average Execution Time

(a) Operation waitHundredMsec

 900000

 950000

 1e+06

 1.05e+06

 1.1e+06

 0 200 400 600 800 1000 1200 1400

M
ic

ro
se

co
nd

s

Request Number

Execution Times of QoSTimingServiceRPC operation waitOneSecond

Precise Execution time
Average Execution Time

(b) Operation waitOneSecond

Figure 4.6: Execution Time Approximation for the QoSTimingServiceRPC Service

time. As shown before, the approximation of the service-side execution time is very accurate,
however, we now use a real-world service to measure the execution- and response time where
the execution time is not predictable. To do so, we have monitored an ISBNCheck Web ser-
vice1 to show the differences between execution and response time. The invocation leverages
an invocation template with real ISBN values. The data is shown in Figure 4.7, displaying the
monitoring dates (grouped per day) on the x-axis and the measured time in µs on the y-axis
(average per day). We can see that the execution times of both operations (IsValidISBN10
and IsValidISBN13) are pretty stable. The difference between the execution and response
time is basically the network latency and the wrapping time (which we ignore as we cannot ex-
plicitly measure it on the server-side). Based on the observation that the response time varies
during the observation period, we can argue that this due to the changing network latency.
However, it can also be observed that the execution time is pretty stable. Based on the above
mentioned results for the accuracy of our execution time estimation, we can assume that the
real execution time does not differ much from our calculations.

Throughput Measurements. Measuring the throughput from the client-side perspective can
only provide a snapshot of the possible throughput that a Web service may have. A main
drawback is that it cannot simply be measured constantly, since this could overload the tar-
get Web service and influence normal operations for other customers. However, an approx-
imation of the throughput value can help to make decisions about the operations that can
be processed by a service and its scalability. In Figure 4.8, the number of throughput values
for the operations waitHundredMsec and waitFiftyMsec of the QoSTimingServiceRPC
service are depicted. All experiments were executed on the same hardware as the other tests
above.

In particular, the x-axis depicts the number of requests ranging from 250 to 2000 (in steps
of 250), whereas the y-axis depicts the operations per second (OPS) for each service. The

1http://webservices.daehosting.com/services/isbnservice.wso?WSDL

59

4.4 Evaluation

 150000

 200000

 250000

 300000

 350000

 400000

30/12 31/12 01/01 02/01 03/01 04/01 05/01 06/01 07/01 08/01 09/01 10/01

Ti
m

e
(m

ic
ro

se
co

nd
s)

Date

ISBN Check Service

Execution Time (IsValidISBN10)
Response Time (IsValidISBN10)
Execution Time (IsValidISBN13)
Response Time (IsValidISBN13)

Figure 4.7: Execution vs. Response Time of the ISBNCheck Service

 0

 20

 40

 60

 80

 100

 250 500 750 1000 1250 1500 1750 2000

O
pe

ra
tio

ns
 P

er
 S

ec
on

d

Number of Requests

Throughput Measurement

Operation waitFiftyMsec
Operation waitHundretMsec

Figure 4.8: Throughput Evaluation of QoSTimingServiceRPC

graphs depict the two different operations. When analyzing the results, one can see that the
waitHundredMsec scales up to 2000 parallel requests. In contrast, the waitFiftyMsec

starts at a higher throughput up to 500 parallel requests but then it has a drop-off to almost the
same throughput as the waitHundredMsec. The most obvious reason is the internal queuing
and processing capacities of the Tomcat server. Up to 750 parallel requests they are processed
in parallel resulting in higher throughput values for the waitFiftyMsec operation because
it executes in half of the time as the other operation. From 2000 parallel request and up, we
observed that the throughput was going down and the success rate dropped (not shown in
Figure 4.8).

60

Chapter 4: Monitoring and Measuring Web Service QoS Attributes

Tool Support. In order to enable a simpler use of the QUATSCH system, we have build a
Web-based UI to facilitate common tasks such as adding a service, removing a service, manag-
ing evaluation configurations, etc. An important feature is a dynamic chart generator which
allows users to dynamically build a chart containing various QoS attributes of a given Web
service. Two screenshots illustrating the UI are shown in Appendix A.

4.5 Discussion and Limitations

Although the results of the proposed monitoring approach are satisfying, there are a number
of issues and limitations that need to be considered when using and implementing a client-
side evaluation strategy. First and foremost are scalability issues. Whenever a service needs
to be monitored, a decision has to be made how often a service needs to be monitored and
whether throughput testing needs to be performed. The number of monitoring requests can
cause a serious network overhead when monitoring numerous services at a constant and short
interval (e.g., every minute). Additionally, the monitoring results can be deformed when the
monitoring interval is very low because these continuous monitoring requests can cause a
higher load on the service. Whenever such a high-number of service monitoring requests is
required, it might be better to propose an integrated monitoring approach without the need
to continuously send monitoring data over the network.

Another important aspect in the Web service area are pricing issues. Whenever a public ser-
vice should be monitored, it is important to ensure that the number of monitoring requests is
not very high or an agreement can be made that monitoring requests are not billed like regu-
lar requests. However, general approaches to distinguish ordinary requests from a monitoring
requests are currently not available, though it would be possible to leverage SOAP headers to
contain the relevant information. Another approach would be to combine a client-side and
server-side monitoring to reduce the number of monitoring requests. The server-side mon-
itoring component can provide monitoring data that can then be combined with data from
the client-side approach (e.g., for measuring the latency). This way it would also be possi-
ble to verify monitoring data advertised by the service-provider. Finally, a major issue and
limitation is the use of throughput measurement. Especially for public services, throughput
measurement as carried out by QUATSCH cannot be used because this would be identified as
denial-of-service attack by the provider when sending 1000 parallel requests at the same time.
As a consequence, a client might be permanently blocked thus being unable to consume the
service any longer.

61

Chapter 5

Transformation of SLA-Aware
Choreographies into Orchestrations

This chapter introduces an approach to engineer service-oriented systems, in particular busi-
ness processes, in a top-down manner by defining a choreography and automatically generate
the orchestrations for each partner. Additionally, SLAs can be associated with choreographies
to facilitate a transformation to enforceable QoS policies on the orchestration layer.

Contents
5.1 Motivation . 63

5.2 Illustrative Example . 64

5.3 Background and Basic Concepts . 65

5.3.1 An Overview of WS-CDL . 66

5.3.2 An Overview of WS-BPEL . 68

5.4 Transformation and QoS Integration Approach 68

5.4.1 Overview . 68

5.4.2 Mapping WS-CDL to BPEL . 70

5.4.3 Generating WSDL Descriptions . 73

5.4.4 SLA/QoS Integration . 73

5.5 Architecture and Execution Environment . 80

5.5.1 Modeling Phase . 80

5.5.2 Execution Phase . 81

5.6 Discussion . 85

5.1 Motivation

The integration of QoS concerns and service level guarantees among various partners are an
important aspect in early stages during the development of adaptive service-oriented systems.
It enables a top-down modeling by associating higher-level SLA requirements and guarantees
with choreographies and provide a semi-automated transformation to orchestrations stubs

63

5.2 Illustrative Example

and WSDL artifacts for each partner. These SLA requirements in the choreography are then
automatically transformed and mapped to enforceable QoS policies on the orchestration layer
(macroflow) and attached to the BPEL process of the corresponding partner. A policy-aware
middleware can then enforce these policies and react appropriately if the actual QoS does
not comply with the specified policy. A main reason for mapping SLAs to enforceable QoS
policies is based on the fact that SLAs are not directly monitorable at the process execution
level. Moreover, a monitoring component for SLA achievement would have to be provided
separately for each SLA dialect and BPEL engine. A transformation to enforceable QoS polices
in a standardized language (such as WS-Policy) reduces the burden of implementing a custom
component for each BPEL engine. Most existing engine provide support for WS-Policy, thus
requiring only a custom policy enforcement module.

The proposed approach leverages the Web Service Choreography Description Language
(WS-CDL) [161] as one of the first publicly available choreography languages targeted to Web
services. It provides a XML-based language to describe the cross-organizational message ex-
changes from a global viewpoint. It promotes a top-down design approach for efficient de-
velopment of cross-organizational business processes similar to the idea of model-driven soft-
ware development (MDSD) [156]. WS-BPEL [107] is used as the orchestration language since
it is widely accepted as the de-facto standard language for describing Web service based or-
chestrations (macroflows). Both languages are briefly introduced in Section 5.3. Furthermore,
different policy-aware BPEL runtimes are available such as ActiveBPEL [1].

5.2 Illustrative Example

In order to illustrate the top-down modeling concepts and the proposed QoS integration, we
use a simplified Build-to-Order (BTO) scenario from the supply chain domain as illustrated
in the sequence diagram in Figure 5.1. The use case consists of a customer, a manufacturer,
and suppliers for CPUs, main boards and hard disks. The manufacturer offers assembled IT
hardware equipment to its customers. For this purpose, the manufacturer has implemented a
BTO business model. It holds a certain number of individual hardware components in stock
and orders missing components if necessary. In the implemented BTO scenario, the customer
sends a quote request with details about the required hardware equipment to the manufac-
turer. The latter sends a quote response back to the customer. As long as the customer and
the manufacturer do not agree on the quote, this process will be repeated. If a mutual agree-
ment was achieved the customer sends a purchase order to the manufacturer. Depending on
its hardware stock, the manufacturer has to order the required hardware components from its
suppliers. If the manufacturer needs to obtain hardware components to fulfill the purchase
order, an appropriate hardware order is sent to the respective supplier. In turn the supplier
sends a hardware order response to the manufacturer. Finally, the manufacturer sends a pur-
chase order response back to the customer.

Most parts of the choreography from Figure 5.1 can be fully specified by using WS-CDL,

64

Chapter 5: Transformation of SLA-Aware Choreographies into Orchestrations

Customer Manufacturer CPU Supplier HDD Supplier Mainboard Supplier

requestForQuote
QuoteRequest

QuoteResponse

updateQuote
QuoteUpdate

QuoteResponse

loop

sendPO
PORequest orderCPU

CPUOrder

orderHarddisk
HarddiskOrder

CPUOrderResponse

HarddiskOrderResponse

orderMB
MainboardOrder

MainboardOrderResponse
POResponse

Figure 5.1: BTO Case Study

however, some non-observable behavior that is internal to a specific partner cannot be mod-
eled. Therefore, these parts are declared as silent actions in WS-CDL to express that some
internal logic has to be implemented in the orchestration layer (the BPEL code). For example,
the internal quote processing at the manufacturer has to be specified as silent action because
it does not represent globally observable behavior, however, it needs a refinement in the BPEL
process to specify whether a quote is accepted or rejected.

The definition of SLAs and QoS plays a crucial role in cross-organizational business pro-
cesses. Each participant offers services to other partners over the Internet which the latter
need to run their businesses. Therefore, a certain degree of reliability concerning response
time, throughput, uptime, etc. is desired and has to be specified and explicitly expressed from
the beginning of the modeling phase. In our scenario, we distinguish four different relation-
ships between the choreography participants. The customer interacts with the manufacturer,
the manufacturer interacts with different suppliers. For each relationship, an SLA is defined
between the partners to regulate the non-functional and contractual issues for their interac-
tions.

5.3 Background and Basic Concepts

In this section, we briefly introduce the two basic technologies that we use in our approach
including some illustrating examples.

65

5.3 Background and Basic Concepts

5.3.1 An Overview of WS-CDL

WS-CDL represents a non-executable XML-based specification language allowing each in-
volved party to describe its part in the message exchange by specifying details on collabo-
rations, information handling and activities. In the following paragraphs, we introduce the
basic concepts by using the case study from Figure 5.1 to illustrate some WS-CDL examples.

5.3.1.1 Collaborations

The collaborations of a choreography are specified by defining participant types, role types,
relationship types and channel types. These four types are used to define the collaborating
participants and their coupling. A participant type (element participantType) declares an
entity playing a particular set of roles in the choreography. Thus a participant type definition
contains one or more role type definitions. A role type (element roleType) defines a role that
enumerates the observable behavior a participant can exhibit in order to interact throughout
a message exchange. A role type definition declares a behavior interface which identifies a
WSDL interface type. The relations between roles are defined through relationship type defi-
nitions (element relationshipType). A relationship type always contains exactly two role
types, restricting the relationship type definition to 1:1 relations. A channel type definition
(element channelType) specifies where and how information between participants is ex-
changed by defining a reference to a role type which is the target of an information exchange
(either the receiver of a message request or the sender of a message reply). This role type ref-
erence indicates the behavior interface which is used throughout the information exchange.

5.3.1.2 Information Handling

The definition and handling of information within a choreography is performed by declaring
information types and variables. On the one hand, information used within a choreography
is specified by defining an informationTypes element which does not directly reference
data types but rather reference type definitions. Such a reference type definition can be either
a WSDL 1.1 Message type, an XML Schema type, a WSDL 2.0 Schema element or an XML
Schema element. On the other hand, variables capture information about objects in a chore-
ography such as the information exchanged or the observable information of the role types
involved and are either bound to information type or channel type definitions.

5.3.1.3 Activities

A choreography comprises three different types of activities, namely ordering structures, work-
units, and basic activities.

Ordering structures are block structured, enclosing a number of activities or ordering struc-
tures which can be used recursively. Such activities include sequence for handling activities
in sequential order, parallel for a parallel execution of activities, and choice for handling
data or event-driven conditions.

66

Chapter 5: Transformation of SLA-Aware Choreographies into Orchestrations

Workunits prescribe the conditional execution of an activity. This conditional execution can
either be repetitive (attribute repeat is set to true), competitive (multiple workunit activities
are defined inside a choice activity) or blocking (attribute block is set to true). The conditional
statement is defined by the attribute guard which specifies a boolean conditional expression
according to the XPath 1.0 lexical rules. In Listing 5.1, an example with competitive guard
conditions from our case study is depicted. If there are no CPUs in stock, they are ordered
from the supplier, otherwise available CPUs are selected.� �

1 <choice>
2 <workunit name="Choice_CPUNotInStock" guard="cdl:getVariable(’CPUInStock’,’’,’’)&

gt;0">
3 <!-- select available CPUs -->
4 </workunit>
5 <workunit name="Choice_CPUInStock" guard="cdl:getVariable(’CPUInStock’,’’,’’)=0">
6 <!-- order CPUs from supplier -->
7 </workunit>
8 </choice>� �

Listing 5.1: Workunit Example

Basic activities define interactions, actions or variable assignments of the choreography flow.
An interaction activity defines the information to be exchanged and by what means this infor-
mation exchange will be performed. The attribute channelVariable binds the interaction
to a channelType and, therefore, to a specific WSDL interface. The attribute operation

corresponds to a SOAP operation which is defined throughout this WSDL interface descrip-
tion. The element participate defines the requesting and receiving part of the interaction.
Finally the element exchange defines whether the interaction is a request or response and
which variables will be used throughout the message exchange. Listing 5.2 illustrates an in-
teraction activity defining a message request from our case study. Throughout the message
request, the operation requestForQuote will be invoked at the corresponding WSDL in-
terface of the ManRoleType to request a quote from the manufacturer. The message request
is stored in the variable QuoteRequest. The response from the ManRoleType has to be
modeled as another interaction (not shown in Listing 5.2).� �

1 <interaction channelVariable="tns:QuoteChannelInstance"
2 name="RequestForQuote" operation="requestForQuote">
3 <participate fromRoleTypeRef="tns:CustRoleType"
4 relationshipType="tns:CustMan" toRoleTypeRef="tns:ManRoleType"/>
5 <exchange action="request" name="request"
6 informationType="tns:QuoteRequest" >
7 <send variable="cdl:getVariable(’QuoteRequest’,’’,’’)"/>
8 <receive variable="cdl:getVariable(’QuoteRequest’,’’,’’)"/>
9 </exchange>

10 </interaction>� �
Listing 5.2: Interaction Activity

67

5.4 Transformation and QoS Integration Approach

The other basic activities include assign, silentAction and noAction. The assign

activity enables the creation and manipulation of variables within the choreography. The
silentAction defines a non-observable behavior which is either performed by one or all
participants in the choreography. A silentAction has to be further defined in the orches-
tration layer e.g., in the BPEL process of the corresponding participant.

A WS-CDL tool suite from Pi4soa [122] is available to facilitate choreography modeling
without the need to write the XML representation directly. We also used it to model our case
study.

5.3.2 An Overview of WS-BPEL

WS-BPEL (or BPEL for short) defines a model and grammar for describing the behavior of a
business process based on interactions between the process and its partners. A BPEL process
defines how multiple service interactions with partners are coordinated from the perspective
of one partner [107]. It is important to understand that there is no global view on the messages
exchanged between the partners.

Each partner interacting with a BPEL process is defined using a partnerLink. Two dif-
ferent roles (myRole and partnerRole) exist for a partner link to define the sending and
receiving side of the process. The basic element in a BPEL process is an activity which comes
in two flavors, basic and structured activities. Basic activities mainly define communication
primitives for interacting with partners. For example, invoke to invoke a partner service,
receive to receive a Web service invocation in a synchronized scenario. The reply activity
is used to send a response message to a previously received Web service invocation message.
Other basic activities include onMessage, assign and empty.

Additionally, structured activities are similar to control-flow constructs in imperative pro-
gramming languages. In BPEL, a sequence activity is used to execute a given set of activities
within a sequence. Parallelism can be achieved by using the flow activity. The while and
switch activities are used to represent loops and conditional branches respectively.

The execution of a BPEL process is achieved using an orchestration engine, such as Ac-
tiveBPEL [1] and the Microsoft Windows Workflow Foundation [96].

5.4 Transformation and QoS Integration Approach

Based on the discussion of the preliminary techniques, we present a detailed description of
the transformation and SLA/QoS integration approach for choreographies to orchestration
stubs for each partner. Additionally, we focus on the generation of WSDL artifacts from the
choreography.

68

Chapter 5: Transformation of SLA-Aware Choreographies into Orchestrations

5.4.1 Overview

The language constructs of WS-CDL can be mapped to BPEL allowing a choreography de-
scription to be automatically transformed into separate BPEL processes, one for each partner
in the choreography, including the corresponding WSDL artifacts. It is important to under-
stand that these generated artifacts are stubs that act as a starting point for the individual
implementation of each partner and can then be executed directly after finalizing the imple-
mentation.

CHOREOGRAPHY LAYER ORCHESTRATION LAYER

WS-CDL

PolicyAssertion
PolicyAssertion

WSDLWSDLWSDL

PolicyAssertion
PolicyAssertion

SLA Parameter Policy Assertion

WS-CDL to WSDL Mapping

WS-CDL to BPEL Mapping

SLA to Policy Mapping

SLA (QoS)SLA (QoS)SLA (QoS)

WS-BPELWS-BPELWS-BPEL

WS-PolicyWS-PolicyWS-Policy

invokes

Figure 5.2: Modeling and Transformation Approach

Figure 5.2 shows a general overview of our mapping and transformation approach by de-
picting the basic models and artifacts. The choreography layer (on the left-hand side) shows
the WS-CDL choreography description and the associated SLAs for each partner. Each SLA
can define a number of SLA parameters specifying guarantees and obligations. The orches-
tration layer (on the right-hand side) shows the WS-BPEL orchestrations and the referenced
WSDL artifacts that can be generated from the WS-CDL for each participant on the orches-
tration layer. Additionally, the WS-Policy documents and their assertions represent the QoS
policies that are attached to the BPEL process to be able to enforce the QoS specified as part of
the SLA.

The gap between these two layers is bridged by transforming the corresponding models
from the choreography layer to executable models in the orchestration layer as indicated using
the dashed lines in Figure 5.2. As outlined earlier in this thesis, the importance of QoS in
cross-organizational business processes makes it necessary to consider these aspects from the
beginning of the development process. Similarly, SLAs are transformed to WS-QoSPolicy
statements – our domain-specific extension to WS-Policy – that are directly attached to the
corresponding partner links in BPEL allowing an enforcement by a BPEL engine.

69

5.4 Transformation and QoS Integration Approach

In the following paragraphs, we present each of these transformation steps and the SLA and
QoS integration in detail.

5.4.2 Mapping WS-CDL to BPEL

The main goal of transforming WS-CDL to BPEL is to allow the participants a rapid modeling
and development process and generate relevant BPEL and WSDL artifacts which can then
be used as a basis to implement the private (non-visible) business logic. The projection of
such a global description to endpoint processes whose interactions precisely realize the global
description is called endpoint projection [28].� �

1 <package>
2 <choreography>
3 <sequence>
4 <!-- ... -->
5 <sequence>
6 <!-- ... -->
7 <sequence>
8 <interaction operation="sendPO" ...>
9 <participate fromRoleTypeRef="Customer" toRoleTypeRef="Manufacturer"

.../>
10 <exchange action="request" ...>
11 <!-- ... -->
12 </exchange>
13 </interaction>
14 <interaction operation="sendPO" ...>
15 <participate fromRoleTypeRef="Customer" toRoleTypeRef="Manufacturer"

.../>
16 <exchange action="response" ...>
17 <!-- ... -->
18 </exchange>
19 </interaction>
20 </sequence>
21 </sequence>
22 </sequence>
23 </choreography>
24 </package>� �

Listing 5.3: Choreography Example

Mendling and Hafner [89] define the basic mapping rules from WS-CDL to BPEL. They
use an recursive XSLT-based approach to generate the BPEL processes by iterating through
each role type to check the relevance of the node. The authors consider a node as relevant if
it contains activities with the attribute cdl:toRoleTypeRef and cdl:fromRoleTypeRef.
However, this approach does not correspond with the endpoint projection definition given
above, because more structured BPEL elements are generated than necessary. This is due to
the fact that all parent nodes are considered during the mapping process even if they are not
directly relevant (it can be considered as a simple 1:1 mapping). Listing 5.3 depicts an example
of this problem by using three nested sequence elements.

70

Chapter 5: Transformation of SLA-Aware Choreographies into Orchestrations

WS-CDL BPEL Semantics
Collaborations

relationshipType partnerLinkType Definition of the bilateral interaction
role (ref. by a roleType) Referenced BPEL roleType generated from a CDL roleType.
portType (ref. by a roleType) Referenced BPEL roleType generated from a CDL roleType.

participantType roleType
roleType roleType Role in an interaction
channelType correlationSet Message correlation pattern

Information Handling
variableDefinitions variable Message variables
token property Message and process instance correlation
tokenLocator propertyAlias Message and process instance correlation

Activities
workunit (nested in choice) case repeat and block attributes always false in this case
workunit (block = true) (receive) Concept of blocking condition not defined in BPEL [15]
workunit (all other cases) while repeat = true and block = false
sequence sequence Sequential execution of activity units
parallel flow Parallel execution of activities
choice switch If inspected roleType is referenced in the guard condition of

the inner workunit
onMessage (nested in) pick If inspected roleType is not referenced in the guard condition

of the inner workunit but referenced in an interaction ac-
tivity

interaction
action = request invoke fromRoleType attribute corresponds to inspected role type
action = request receive toRoleType attribute corresponds to inspected role type. If

cdl:interaction inside cdl:workunit which is defined
inside a cdl:choice generate a BPEL onMessage

action = response reply toRoleType attribute corresponds to inspected role type
action = response receive receive only in the asynchronous case. For synchronous in-

teraction append outputVariable to corresponding BPEL
invoke which is defined in case 1

timeout pick, onAlarm (or) onMessage
perform no mapping Separately defined choreography is performed
assign assign (for party in roleType) Variable assignment
silentAction sequence with nested empty To be refined in the BPEL process
noAction empty (for party in roleType) Do nothing
finalize compensationHandler Finalizing activities after completion

Table 5.1: WS-CDL to BPEL Mapping

Therefore, we have used and adapted the rules from [89] and propose an extended end-
point projection mechanism based on a so-called relevance mapping. The basic idea is to map
only those WS-CDL elements which are relevant in the BPEL process. To map the different or-
dering structures, we need to distinguish between child and descendant relevance. The former
describes that a relevant basic activity occurs as an immediate child of the respective ordering
structure in the XML tree whereas the latter describes that a relevant basic activity is nested
at an arbitrary level. The relevance of a WS-CDL basic activity is determined by the occur-
rence of a cdl:interaction, cdl:assign or cdl:silentAction where the roleType
attribute is matching the roleType of the corresponding BPEL process.

If a node represents a relevant activity as described above, it is mapped to a BPEL activ-
ity according to Table 5.1, otherwise no mapping is generated. The basic algorithm for the

71

5.4 Transformation and QoS Integration Approach

relevance mapping is depicted in Algorithm 2.

Algorithm 2 Relevance Mapping Algorithm

1: procedure TRANSFORM(WS-CDL document cdl)
2: for all role ∈ cdl.roleTypes do
3: for all activity ∈ cdl.activities do
4: if activity is an ordering structure OR activity is a workunit then
5: RELEVANCEMAPPING(activity, role)
6: end if
7: end for
8: end for
9: end procedure

10: procedure RELEVANCEMAPPING(Node n, RoleType role)
11: if n is descendant relevant then
12: if relevant child count of n > 1 then
13: CREATEBPELMAPPING(n)
14: end if
15: for all child ∈ n.childNodes do
16: if child is child relevant then
17: CREATEBPELMAPPING(child)
18: else
19: RELEVANCEMAPPING(child,role)
20: end if
21: end for
22: end if
23: end procedure

From lines 2–8, we generate a BPEL process for each role type. The algorithm inspects the
cdl:choreography tag of the WS-CDL document by iterating each activity. If the activity
type is an ordering structure or a workunit, a relevance mapping has to be performed. If the
currently inspected activity is descendant relevant, i.e., it contains relevant descendant basic
activities or workunits that need to be mapped, we have to consider all child nodes of this
activity (line 11). If an activity is child relevant (line 16), i.e., the immediate child contains a
relevant basic activity that has to be mapped, we have to generate the corresponding BPEL
mapping according to Table 5.1 (line 17). Otherwise, we recursively visit all child nodes (line
19). For our BPEL mapping we implemented an additional optimization concerning the or-
dering structures. If a cdl:parallel or cdl:sequence ordering structure contains only
one basic child activity, this ordering structure is ignored in the BPEL mapping (lines 12–14).
For instance considering the example from Listing 5.3, only one BPEL sequence activity will
be generated.

In Table 5.1 we have depicted a detailed overview of the WS-CDL to BPEL mapping rules.
These rules are based on the mappings proposed by Mendling and Hafner [89] and adapted

72

Chapter 5: Transformation of SLA-Aware Choreographies into Orchestrations

where necessary. These adaptations mainly include cdl:interaction and cdl:choice.
For the cdl:interaction activity and cdl:choice ordering structure, we also have to
consider the role types to determine the sending and receiving party. Additionally, we ad-
dress both the synchronous and asynchronous message exchange patterns properly in the
cdl:interaction activity.

5.4.3 Generating WSDL Descriptions

The WSDL descriptions define a static structure which can be extracted from the choreography
without analyzing the choreography flow in detail. The necessary element mapping from WS-
CDL to WSDL is shown in Table 5.2. On the left side the structure of a WSDL file is used to
show the corresponding elements of WS-CDL on the right side. The knowledge from this
mapping is then used to implement the WSDL generation algorithm as shown in Algorithm 3.

WSDL WS-CDL
Element Attribute Element Attribute

definitions xmlns:tns package xmlns:tns
targetNS targetNS
name behavior name

message name exchange informationType
portType name behavior interface
operation name interaction operation
[input ‖ output] name exchange action

message informationType
binding name behavior name + “Binding”

type “tns:”+interface+“Binding”
operation name interaction operation
soap:operation soapAction behavior interface namespace
input interaction operation
soap:body namespace behavior interface namespace

output
soap:body namespace behavior interfaces namespace

service name behavior interface+“Service”
port name behavior interface+“Port”

binding “tns:”+name+“Binding”

Table 5.2: WS-CDL to WSDL Mapping

The WSDL generation works as follows: From lines 2–6, we generate a new WSDL docu-
ment for each roleType of the choreography if the service interface is invoked somewhere
in the choreography flow (line 3). The main idea is to check if the roleType is referenced
within a channelType and a variable for this channelType exists that is used in an
interaction with another partner. If this is the case, the roleType is in use and a WSDL
needs to be generated. The WSDL document itself is created in the CreateWSDL() method
(lines 8–28). The methods CreateNode() and AppendNode() are used to build the WSDL
document. For readability we omitted the generation of the XML attributes (which can be
seen in Table 5.2).

73

5.4 Transformation and QoS Integration Approach

Algorithm 3 WSDL Generation Algorithm

1: procedure GENERATEWSDLFILES(WS-CDL document cdl)
2: for all role ∈ cdl.roleTypes do
3: if role is referenced in cdl then
4: CREATEWSDL(cdl, role)
5: end if
6: end for
7: end procedure

8: procedure CREATEWSDL(WS-CDL cdl, RoleType role)
9: CREATEFILE(role.behaviorInterface + ".wsdl")) .create a wsdl file

10: CREATENODE("wsdl:definitions") .creates a "definitions" element in the WSDL file

11: for all i ∈ cdl.interactions do
12: if role == i.getAttribute("toRoleTypeDef") then
13: CREATENODE("wsdl:message")
14: end if
15: end for
16: for all b ∈ role.behavior do
17: ptNode← CREATENODE("wsdl:portType")
18: bdNode← CREATENODE("wsdl:binding")
19: for all i ∈ cdl.interactions do .for each interaction check if role is referenced

20: if role == i.getAttribute("toRoleTypeDef") then
21: APPENDNODE(ptNode,"wsdl:operation")
22: APPENDNODE(bdNode,"wsdl:operation")
23: end if
24: end for
25: sNode← CREATENODE("wsdl:service") .create the "service" element

26: APPENDNODE(sNode, "wsdl:port")
27: end for
28: end procedure

5.4.4 SLA/QoS Integration

The integration of QoS attributes in Web service based business process development raises
the need for appropriate techniques to consider QoS at the choreography and orchestration
layer. At the choreography layer this integration can be achieved by using SLAs which focus
(among others) on performance and dependability aspects of the underlying QoS model. In
contrast, the integration of QoS at the orchestration layer can be attained by using QoS policies.
This section describes how to leverage and extend WS-CDL and BPEL to support SLA-aware
choreographies and provide an automated transformation to BPEL that includes enforceable
QoS policies that conform to these SLAs.

74

Chapter 5: Transformation of SLA-Aware Choreographies into Orchestrations

5.4.4.1 SLA Specification and Integration

As described in Chapter 3, our approach leverages SLAs (by using WSLA) to integrate QoS
guarantees and obligations at the choreography layer. For the actual integration, we extended
WS-CDL with a construct to reference SLAs. WS-CDL provides a simple extension mecha-
nism by deriving all elements from the cdl:tExtensibleElements type. This type adds
an optional description element of type cdl:tDescriptionType (Listing 5.4) to every
element derived from the aforementioned type.� �

1 <simpleType name="tDescriptionType">
2 <restriction base="string">
3 <enumeration value="documentation" />
4 <enumeration value="reference" />
5 <enumeration value="semantics" />
6 </restriction>
7 </simpleType>� �

Listing 5.4: WS-CDL Description Type

The documentation attribute value specifies any kind of documentation about an element
in any non-encoded text form. The reference value may contain a URI to a document that
further describes the element. The semantics value is originally used to contain any machine
processable definitions in languages such as RDF [160] or OWL-S [159].

Although the purpose of the description element is to provide further details and docu-
mentation about an element, we leverage it in our approach because it provides a language-
integrated mechanism to extend an element. In that sense, an SLA further describes a specific
role type behavior by specifying additional description about the negotiated quality guaran-
tees and obligations. In particular, we leverage the semantics attribute value in WS-CDL’s
optional description element as shown in Listing 5.5.� �

1 <roleType name="ManRoleType">
2 <behavior interface="b2o:manInterface" name="ManBehavior"/>
3 <description type="semantics">
4 <qosp:slaReference name="SLA1" uri="ManufacturerCustomerSLA.xml"

serviceconsumer="CustRoleType"
5 </qosp:slaReference>
6 </description>
7 </behavior>
8 </roleType>� �

Listing 5.5: SLA Integration in WS-CDL

From lines 3–6, the newly added description element is shown. The attribute type in-
dicates that it is of type semantics. The reference to the SLA is straightforward. We use an
slaReference element to reference the target WSLA file using an uri attribute. Addition-
ally, the role type of the service consumer, i.e., the target party of the SLA, has to be specified.

75

5.4 Transformation and QoS Integration Approach

The other party in the SLA is given by the role type the semantic annotation is applied to, the
manufacturer role type ManRoleType in this case.

5.4.4.2 SLA to QoS Policy Mapping

In order to define an automated mapping between SLOs and QoS policies, we require at least
a set of commonly agreed QoS attributes that are used to define the SLOs. In this approach,
we use a subset of service layer QoS attributes introduced in Chapter 3. This subset consists of
all QoS attributes that do not depend on network-specific attributes such as latency, because
a service provider who is negotiating an SLA typically cannot guarantee any QoS that cannot
be enforced internally (e.g., by scaling up to multiple servers).

By imposing this restriction to have a common set of QoS attributes (defined in form of SLA
parameters), each SLA can be directly mapped to WS-QoSPolicy assertions. This is achieved
by implementing the following steps: Firstly, each SLA is mapped to a WS-QoSPolicy and
secondly, each SLA parameter is mapped to a policy assertion. As mentioned earlier, each
SLA may consist of one or more SLOs, and each SLO can use a set of SLA parameters and a
set of logical expression to define an objective. We have identified three different patterns how
SLA parameters are used in the definition of SLOs.

Pattern 1: One SLO is defined for each SLA parameter.

Pattern 2: One SLO consists of multiple SLA parameters.

Pattern 3: SLA parameters are defined in multiple SLOs.

Each of these patterns can be mapped to an equivalent policy which is discussed in detail
in the following paragraphs. However, we do not provide the concrete mapping algorithms
because they are a straightforward implementation of the concepts below. The main idea can
be grasped from the examples provided for the patterns.

Pattern 1. In this pattern, a single SLO in the SLA references exactly one SLA parameter. An
example SLA is given in Listing 5.6. We only show the relevant obligations element of the
whole SLA to enhance readability.

The mapping of this pattern is fairly straightforward. It uses the All operator that con-
tains all policy assertions. For each SLO, exactly one policy assertion will be generated. The
resulting WS-QoSPolicy statement is depicted in Listing 5.7.

Pattern 2. In the second pattern, SLA parameters are grouped in an SLO by using the logical
operators And, Or, Not, Implies. These operator need to be mapped to corresponding WS-
Policy operators as shown in Table 5.3.

In Listing 5.8, an example SLO representing this pattern is shown that defines an SLO, called
SLOServicePerformance, by combining Throughput and ExecutionTime. The result-
ing mapping is shown in Listing 5.9. The SLO maps to an All operator in WS-Policy that is
followed by an ExactlyOne element to model the logical OR from the WSLA document.

76

Chapter 5: Transformation of SLA-Aware Choreographies into Orchestrations

� �
1 <Objectives>
2 <ServiceLevelObjective name="SLOExecutionTime">
3 <!-- ... -->
4 <Expression>
5 <Predicate xsi:type="wsla:Less">
6 <SLAParameter>ExecutionTime</SLAParameter>
7 <Value>1500</Value>
8 </Predicate>
9 </Expression>

10 <!-- ... -->
11 </ServiceLevelObjective>
12 <ServiceLevelObjective name="SLOThroughput">
13 <!-- ... -->
14 <Expression>
15 <Predicate xsi:type="wsla:GreaterEqual">
16 <SLAParameter>Throughput</SLAParameter>
17 <Value>130</Value>
18 </Predicate>
19 </Expression>
20 <!-- ... -->
21 </ServiceLevelObjective>
22 </Objectives>� �

Listing 5.6: WSLA Example for Pattern 1

� �
1 <wsp:Policy>
2 <wsp:All>
3 <qosp:ExecutionTimeAssertion unit="msec" predicate="Less" value="1500"/>
4 <qosp:ThroughputAssertion unit="ops" predicate="GreaterEqual" value="130"/>
5 </wsp:All>
6 </wsp:Policy>� �

Listing 5.7: Mapping Result for Pattern 1

WSLA operator WS-QoSPolicy operator
And → All

Or → ExactlyOne

Not → Reverse predicate
Implies → ExactlyOne and reverse predicate

Table 5.3: SLA Operator Mapping

Pattern 3. In the third case, a time period has to be specified for each SLO. Therefore, it is
possible to define multiple SLOs for different time periods. For instance, during peak hours
the execution time of a service has to be less than in non-peak hours. Unfortunately, such a
time period based enforcement is currently not supported in WS-Policy and is not considered
further in this work. A naive approach to support this case would be the integration of time
periods in WS-QoSPolicy. The custom policy handler can then use these time period attributes
to enable and disable policy enforcement during the respective periods.

77

5.4 Transformation and QoS Integration Approach

� �
1 <Objectives>
2 <ServiceLevelObjective name="SLOExecutionTime">
3 <!-- ... -->
4 <Expression>
5 <Or>
6 <Expression>
7 <And>
8 <Expression>
9 <Predicate xsi:type="wsla:Less">

10 <SLAParameter>ExecutionTime</SLAParameter>
11 <Value>1500</Value>
12 </Predicate>
13 </Expression>
14 <Expression>
15 <Predicate xsi:type="wsla:GreaterEqual">
16 <SLAParameter>Throughput</SLAParameter>
17 <Value>130</Value>
18 </Predicate>
19 </Expression>
20 </And>
21 </Expression>
22 <Expression>
23 <!-- an alternative logical AND combination of the above SLA parameters

-->
24 </Expression>
25 </Or>
26 </Expression>
27 <!-- ... -->
28 </ServiceLevelObjective>
29 </Objectives>� �

Listing 5.8: WSLA Example for Pattern 2

� �
1 <wsp:Policy>
2 <wsp:All>
3 <wsp:ExactlyOne>
4 <wsp:All>
5 <qosp:ExecutionTimeAssertion unit="msec" predicate="Less" value="1500"/>
6 <qosp:ThroughputAssertion unit="ops" predicate="GreaterEqual" value="130"/>
7 </wsp:All>
8 <wsp:All>
9 <-- other alternative -->

10 <qosp:ExecutionTimeAssertion unit="msec" predicate="Less" value="..."/>
11 <qosp:ThroughputAssertion unit="ops" predicate="GreaterEqual" value="..."/>
12 </wsp:All>
13 </wsp:ExactlyOne>
14 </wsp:All>
15 </wsp:Policy>� �

Listing 5.9: Mapping Result for Pattern 2

5.4.4.3 WS-QoS Policy Integration

Yet, the question remains how to integrate the generated QoS policies in the orchestration
layer. Regarding the top-down modeling approach of Web services, two integration approaches

78

Chapter 5: Transformation of SLA-Aware Choreographies into Orchestrations

can be differentiated: Policies can either be attached to service descriptions (WSDL) or be in-
tegrated in BPEL processes.

Attaching policies to WSDL descriptions following the WS-PolicyAttachment [164] speci-
fication has two main drawbacks. Firstly, service invocations are always subject to a policy,
even if the service consumer has no corresponding SLA. Secondly, the service provider cannot
differentiate between multiple policies for the same service since policies do not contain infor-
mation about participating parties. Therefore, we follow the second approach by integrating
policies in BPEL processes.

Extensibility in BPEL is achieved by allowing elements from other namespaces to be spec-
ified. The BPEL partnerLink element is the right location to integrate the policy. For this
integration, both synchronous (request-reply) and asynchronous (callback) message exchange
patterns have to be considered. In contrast to the asynchronous case, the service provider
has no additional information about the service consumer in the synchronous case, because
the partnerLink has no service consumer specific details. Therefore, the policy has to be
integrated at the service consumer side as illustrated in Listing 5.10.

� �
1 <process>
2 <partnerLinks>
3 <partnerLink name="POService" partnerLinkType="ns1:POServiceLT" partnerRole="

POServiceRole">
4 <wsp:Policy xmlns:qosp="..." xmlns:wsu="..." wsu:Id="xs:QName" qosp:operation

="...">
5 <!-- the generated policy goes here -->
6 </wsp:Policy>
7 </partnerLink>
8 <!-- ... -->
9 <partnerLinks>

10 <!-- ... -->
11 </process>� �

Listing 5.10: Policy Integration in BPEL

The namespace prefix xmlns:qosp refers to the WS-QoSPolicy schema. The attribute
wsu:Id refers to the id attribute of the WS-SecurityUtility schema. In our mapping it is used
to refer to the name of the SLA from which the policy was derived. The qosp:operation
attribute specifies the name of the service operation from the SLA. These attributes are used to
identify the origins (from which SLA it was derived) and are used to correlate policy violation
information with violation actions as specified in the SLA. Besides integrating QoS policies
directly, it is also possible to leverage WS-PolicyAttachment [164] to achieve the integration.
However, we do not present it here because it is straightforward to adapt the current approach
to WS-PolicyAttachment.

79

5.5 Architecture and Execution Environment

5.5 Architecture and Execution Environment

The concepts and algorithms described in this chapter have been implemented in Java using
a simple Swing-based graphical user interface. The architecture of this system consists of
four parts which are depicted in Figure 5.3. We distinguish between modeling and execution
phase. The modeling phase consists of editing choreographies and SLAs, transforming WS-
CDL into BPEL and SLAs into policy assertions, and finally generating the WSDL artifacts.
After implementing the private business logic in the BPEL artifacts and the corresponding
services, they can be deployed in the VieDAME runtime as part of the execution phase. Please
note that we do not describe the whole VieDAME system, however, we give a comprehensive
overview of the whole system below and show how it can be used to achieve the BPEL process
execution and the QoS enforcement by leveraging a dynamic service adaptation approach. For
a detailed overview and evaluation of VieDAME, we refer the reader to [99] and [100].

VieDAME

EXECUTIONMODELING

EDITING TRANSFORMATION GENERATION

Choreography
Editor CDL2BPEL

Transformer

BPEL
Engine

SLA2Policy
Mapper

WS-CDL SLA SLA2-
Policy.xslt

BPEL

WSDL

WSDL-
Gen.xslt

WSDL
Generator

VieDAME
4BPEL

Registry
Database

VieDAME
UI

Figure 5.3: System Architecture

5.5.1 Modeling Phase

Editing choreographies in our approach is done in two steps: Firstly, the choreography is mod-
eled using the Pi4soa Eclipse plugin [122]. This plugin provides a graphical tool for creating
complex choreographies. Secondly, our simple Swing-based SLA annotation tool is used to
add SLA references to specific role types. Furthermore, the editor initiates the generation of
WSDL and BPEL artifacts as described above.

The Transformation component implements the algorithms for transforming WS-CDL to
BPEL, and SLA to policies. The WS-CDL to BPEL transformation is implemented using the
DOM4J API whereas the SLA transformation is implemented using XSLT. During the transfor-

80

Chapter 5: Transformation of SLA-Aware Choreographies into Orchestrations

mation step one BPEL document is generated for each partner including the policy references
which conform to the SLAs in the choreography layer.

The Generation component is responsible for generating the WSDL files from a choreog-
raphy according to the algorithm described earlier in this chapter. This component is also
implemented using XSLT stylesheets.

5.5.2 Execution Phase

In order to execute the BPEL processes, the artifacts generated during the modeling phase
need to be implemented and then deployed for enactment. Therefore, an adaptive BPEL en-
gine with WS-Policy support is required to enable the policy enforcement whenever the spec-
ified QoS attribute values are below the guarantees specified by the provider. In this case
service adaptation is required to select a service that meets to negotiated QoS guarantees.

5.5.2.1 VieDAME Approach

The VieDAME environment is an ideal approach for executing the generated BPEL processes
and enforcing their QoS policies. It provides a non-intrusive monitoring and service adapta-
tion approach based on AOP. The main idea is to achieve non-intrusive behavior with regard
to dynamic service adaptation, which enables the runtime exchange of partner links within a
BPEL process, without any changes to the BPEL process or the involved partner services. This
dynamic service adaptation is a key feature to realize and enforce the QoS policies that have
been generated and transformed from the SLA as described above.

�

�

�

�

�

���� ���

 ��� ��� ��

�� ��

� ���

�� ��

� ������

�� � � � ��

� � � � � �

� � ��

���� ����
���� �

���	 �
� �

��� �

� ��� ��� ���� �� �� ���

�
��� �� ��� �

����� �� � � �� ��
 ��� !"" � �#�� "� �� ��� "�

�� �� ��� $ ����� ����
��� � �� �� �� ���

��
��

��� ��

��� �����% ��

�������� ### & ���� �

& ' ��� �(�
) �� �� ����

� �*
+ �� �� �� ���

� ������ �

� �*
� �$�

� �*
, �� �� ����

-.�� . ����

Figure 5.4: VieDAME enhanced BPEL environment

In Figure 5.4, we have depicted the VieDAME approach that we use for the dynamic service
adaptation. The core part is the BPEL process which has a certain control flow and invokes a

81

5.5 Architecture and Execution Environment

number of partner services. The partner services are generally hosted on different machines
distributed over the Web. In VieDAME each service in a BPEL process can be marked as
replaceable to indicate that alternative services can be configured and invoked instead of the
original service that is defined in the process. An alternative service can either be syntactically
or semantically equivalent. The former indicates that the interfaces of the original and the
alternative services match. This is, for example, the case, when multiple instances of the same
service are hosted on different machines to provide increased reliability. The latter indicates
that the services only have the same functionality but expose it using different interfaces,
resulting in different representations of the same message payload. This mainly occurs when
services need to be exchanged that come from completely different providers on the Web.
In our WS-CDL to BPEL transformation approach, this does typically not happen, since the
service provider is responsible for providing a number of alternative services that have the
same interface, but different QoS (in order to meet it’s QoS guarantees).

Each service and all of its alternative services’ endpoints are stored in the VieDAME service
repository. If a service should be dynamically replaced with an alternative service during
process execution, the original partner service captured by the VieDAME’s adaptation layer
has to be marked replaceable in the VieDAME UI (right side of Figure 5.4). Alternative services
that can replace the original service defined by the BPEL process may be added at any time by
providing their interface description in the VieDAME UI. Once they are linked to the original
service, a replacement policy can be selected to control which of the available alternatives
will be used. Additionally, the VieDAME UI can be used to define mediation rules that allow
alternative services to be used where the interfaces do not match the original interface of the
partner service.

5.5.2.2 Architecture

The VieDAME system is split into the VieDAME core and the VieDAME engine adapters. The
VieDAME core ties together the monitoring, service selection and message transformation fa-
cilities as well as provides services such as data store access, scheduling and configuration
data, whereas the engine adapters represent the connector to the BPEL engine. Thus, to sup-
port new BPEL engines, it is (only) necessary to implement an engine adapter specifically
to the desired engine implementation. The VieDAME environment currently supports Ac-
tiveBPEL 3.0 [1].

Figure 5.5 depicts the architectural approach taken as well as the system dependencies.
Firstly, the flow of events in a standard BPEL environment is described, without any interac-
tion with the VieDAME system. Secondly, the additional steps performed in a full-featured
VieDAME environment are explained. It includes service monitoring, alternative service se-
lection and message transformation.

System Overview. After deployment of a process definition (1), the BPEL processor (2) is
ready to create new process instances. A new BPEL process instance (2a) is created when one

82

Chapter 5: Transformation of SLA-Aware Choreographies into Orchestrations

������ � ��	
���
� �� �� �
� �
 �� ��
�

� ��
 ��� ���
 �
 �� ��
�

� ���� �� �	
 � � � �
�

� �� ��� ���� � � ��

� �� ���� �� ���� � � ��

��� � ���
��

� ���
�� �
 ��� �����

� ���
�� � �
� ���� !
� ����
	
� �

" �
���� ���

�
 �
� �� ��� ���� �� �	
 ��

�� ��$
� �%
�� �
 �

� �� ��� ��

�
 �� ��
 �

�
 �� ��
 �

� ��
 �� � � ��

�
 �� ��
 �

&&&&&&&&&&&&'���
 � � ��� ��(

� � � � (
 � � � �
 � ��� ��
� � �
 � �

� � �
 � � � � � � � �� �	
 � �� �
 �

� � �
 � � � � �
 � � � � ��
 �
 � � ��
 � 	 � � � �� � � � � # � � � � ��

) �*
 ��� �

+��

,���� �+�

��� ��
 ���� �
 � - '����� ���� � �� �
. � � ��
�� �(
 �

'� �
 ��
� ���� ���
���� �� ���� �(
 �

���� ��� �
	 �
������ ��

�����
���
���� ��

���� ��� ��
���
���� ��

� �	���
���
���� ��

� � � ��
 � �� � �

� � � �
 � �
�
 � �� (
 � �

� � �
 � � * � � � � � �

� � �
 �
 � � � � �

� � �
 � � � � � �
 �
 � � � �
� � � � � � � � 	 � � � � � �

���� � ������� �

� � � � �
 �
 �
�� � �

�
��

�
��

��
�
�
�
�
��
�
�

�
�
�
�

.
�

� � � � � � � � � � � � � �
 . �

�
��

�

��

�
�
�
�
��
�
�

�

�
��

� �	��� � � � �����
����� �

 ��� ��� ����� �

� �� �� �
� ��� ���

� �� �
 � �
�� � �� � � �� � �� �

� �� �
 � �
� � � � � �

�� � �� � � �� � �� �
� � � �� � � (�� � � � � � �� �

�
 � � � �

� � � �
� � �
 � �

� + � �

�� � � �� � �� � �� �
� � � � � �
� � � � � �
 � �
� � %
 � � � � � �

	
�
�
��(

��
�
�
�
�
���

�
�
�
�
�

.
� � ��� ��� ���

���� ���

� + � �

�+��
��� ��

!

"

"�

"#

 � #

!$
%� %#

&#

�

'

(� (# (�

)

!!

Figure 5.5: VieDAME Overall System Architecture

of its start activities is triggered, e.g., by an incoming message. Interaction with a partner link
is initiated by invoke activities (2b) that create SOAP calls (3a). These SOAP calls are executed
by a SOAP engine (10) that returns the result of the invocation of an arbitrary partner service
(11) upon completion of the request. The invoke activity reports the result to the process
instance which in turn proceeds to the next activity.

When the VieDAME system is enabled, an additional level of processing is introduced, man-
ifested in the Interception and Adaptation Layer (5b), hereinafter referred to as the IAL. Basically,
the IAL is created by aspects that are bound to specific join points in the BPEL engine’s code by
the definition of pointcuts. The advice code is then woven into the original method invocations
by the AOP framework (4) at load time. The IAL provides a bidirectional interface for the
engine adapter (5a) to tap the communication between the invoke activity (2b) and the SOAP
engine (10). The engine adapter in turn provides read-write access to the invocation context,
enabling other VieDAME components – such as Monitor (8a) or Selector (8c) – to access
and modify invocation parameters and other runtime data.

The first VieDAME component that is called after interception of a partner link invocation
by the IAL is the Monitor component. It examines the invocation context to find the service
name, endpoint address and operation name in order to load a previously persisted service
reference or to persist a new service reference for future requests. The Monitor leverages
the VieDAME core (6) and the ORM framework (7b) respectively to persist objects to a data
store (10). Furthermore, the Monitor activates a timer to measure the time elapsed during the

83

5.5 Architecture and Execution Environment

actual SOAP call and stores this information together with a reference to the involved service
and success/failed flag. A scheduling framework (7a) is used to bulk-insert invocation events
in order to optimize data store access. Based on the data stored by the Monitor component,
real-time QoS statistics can be calculated that correspond to a subset attributes described in
Chapter 3.

If the service reference loaded by (8a) is marked as replaceable, the next VieDAME compo-
nent takes control. The Selector component (8c) determines an alternative partner service
by applying some selection algorithm to a list of configured alternative services (9). If an al-
ternative service is found, the invocation context is updated with the alternative’s endpoint
parameters. Like the Monitor component, Selectors access the data store by using (6) and
(7b). The same applies to the last VieDAME component that can be called, the Transformer
component. A Transformer (8b) is responsible for compensating the interface mismatch be-
tween the original service and the alternative. The Transformer uses transformation rules
(e.g., XSLT stylesheets) stored in (9) to perform the required transformations.

After all required modifications are applied to the invocation context, the SOAP call is fi-
nally proceeded, probably invoking an alternative partner service instead of the original ser-
vice. The difference between the unaltered invoke (3a) and the advised invoke (3b) is called
the Invocation Context Delta, or ICD. A big ICD indicates many differences between the original
service interface and the alternative service interface, whereas a small ICD indicates a replica
of the original service (i.e., the original partner service and the alternative partner service only
differ in their endpoint address). A zero ICD indicates that neither a service replacement nor
message transformation was applied. The ICD measured value can be used as an indicator for
determining the degree of adaptation the VieDAME system has performed and whether the
environment running VieDAME uses the adaptation facilities at all.

Selectors. Selectors are the key components in VieDAME to realize adaptive behavior that
can be leveraged to enforce QoS policies as used in our approach. A selector in the VieDAME
system context is the implementation of a particular selection algorithm that determines which
of the available alternative services match one or more selection criteria best. VieDAME pro-
vides a variety of selection algorithms, ranging from simple randomized and round-robin
selectors that can be used for load balancing, to more sophisticated selectors that combine
several QoS attributes such as performance and dependability for selection criterion. More-
over, the VieDAME system offers fault-compensating selectors that retry failed service invo-
cations, either with the original service or with an appropriate replacement. To meet further
requirements, the VieDAME system can easily be extended with additional Selector imple-
mentations. This extension is used to implement a custom adaptive selector that leverages the
information specified in a QoS policy to select a service that meets these policy requirements.
An enforcement of the QoS policies would also require the capabilities of dynamically deploy-
ing new service instances if none is currently available that meets the QoS demands, however,
this is currently not supported in this approach.

84

Chapter 5: Transformation of SLA-Aware Choreographies into Orchestrations

5.6 Discussion

During the implementation of our case study we encountered several aspects which have to
be considered when using such a top-down modeling approach. Some of these issues seem
inherent to the domain of model-driven development in general. On the one hand, our ap-
proach is based on choreographies representing a global viewpoint of the business processes
which raises the need for precise modeling of the global behavior. To be more concrete, the
business partners have to precisely agree on the message format used for their interaction. On
the other hand, after the choreography was initially defined, the underlying business model
may evolve and lead to significant changes. Such changes clearly affect the partner processes
which causes the generation of new BPEL processes and corresponding WSDL files. However,
this regeneration is not applicable in most production systems, therefore, leading to deviations
from the choreography.

There have also been some considerable debates as to the relationship between choreog-
raphy and orchestration. Some people argue that there is no need for choreography and all
business interactions can, and in fact, should be modeled in BPEL. Others advocate the use
of modeling by using WS-CDL but then lament the lack of execution abilities. In fact, both
modeling approaches are feasible and have their strengths and weaknesses. However, BPEL
is intended for modeling business processes without knowledge of global viewpoint. In con-
trast to this, we decided to stay close to the vision of cross-organizational choreography de-
scriptions by using WS-CDL.

The prime motivation for the contribution in this chapter is today’s lack of modeling sup-
port for SLA-aware business processes. In particular, the need for SLA-aware processes is
apparent in inter-organizational business processes. The novelty of our approach lies within
the fact that we consider SLAs as first class entities while modeling service choreographies.
Our approach enables an automatic generation of executable BPEL orchestrations and WSDL
files for each partner in the choreography. A novel contribution is the mapping of QoS infor-
mation specified in SLAs to QoS policies (by using WS-QoSPolicy) which are attached to the
BPEL process. As a consequence, a policy-aware middleware can verify and enforce SLAs,
e.g., VieDAME.

85

Part II

QoS-Aware Service Composition
and Execution

87

Chapter 6

VRESCO – A Runtime for Adaptive
Service-Oriented Systems

This chapter describes the Vienna Runtime Environment for Service-Oriented Computing,
called VRESCO, which was first introduced in [93]. It includes a detailed description of the
service metadata model and the service model, as well as a brief description of the core run-
time services. Then we focus on selected aspects of VRESCO, namely querying, dynamic
binding and invocation including mediation as a basis for the composition approach in Chap-
ter 7 and 8.

Contents
6.1 Motivation and Overview . 89

6.2 A Metadata Model for Services . 91

6.2.1 Illustrative Example . 91

6.2.2 Metadata Model . 93

6.2.3 Service Model and Metadata Model Mapping 95

6.3 Core Runtime Services . 97

6.3.1 Overview . 97

6.3.2 VRESCO Query Language . 99

6.3.3 VRESCO Mapping Framework . 103

6.3.4 Dynamic Binding and Invocation with DAIOS 105

6.4 Evaluation and Discussion . 109

6.4.1 Querying Performance . 109

6.4.2 Mediation Performance . 109

6.1 Motivation and Overview

The VRESCO (Vienna Runtime Environment for Service-Oriented Computing) project aims
at addressing some of the current challenges in Service-Oriented Computing research [117]
and practice. This includes topics related to service discovery and metadata, dynamic binding

89

6.1 Motivation and Overview

and invocation, service versioning and QoS-aware service composition. Besides this, another
goal is to facilitate engineering of service-oriented applications by reconciling some of these
topics and abstracting from protocol-related issues. Its main focus is the seamless support
of enterprise-level SOA development by providing a feature-driven programming model for
adaptive service-oriented applications. This programming model reconciles service metadata
and concrete services including their mapping definition and mediation combined with dy-
namic invocation and QoS support to enable adaptive applications. Adaptiveness is achieved
by using dynamic binding and rebinding of services at runtime based on different criteria
such as degrading QoS or intermittent or even permanent service failures. As a consequence,
this leads to a better availability and reliability in terms of application provisioning and pro-
vides more flexibility regarding changes in the architecture because concrete service details
are abstracted by features as part of the metadata model.

VRESCo Client Library

VRESCo Runtime Environment

Event
Database

Registry
Database

Certificate
Database

O
RM

 L
ay

er

Composition
Service

Notification
Engine

Publishing/
Metadata
Service

Management
Service

Querying
Service

Composition
Engine

Ac
ce

ss
 C

on
tro

l

Query
Interface

Management
Interface

Metadata
Interface

Publishing
Interface

Notification
Interface

Composition
Interface

QoS
Monitor

Daios Client
Factory

Service
Client

SOAP

SOAP

Services

measure

invoke

Figure 6.1: VRESCo Overview

The architectural overview of VRESCO is shown in Figure 6.1. The VRESCO core services
are provided as Web services that can be accessed either directly using SOAP or by using the
client library that provides a simple API. Furthermore, the DAIOS framework [80] has been
integrated into the client library, and provides dynamic and asynchronous invocations of Web
services. The access control layer guarantees that only authorized clients can access the core
services. Services and associated metadata are stored in the service registry which is accessed
internally using an Object-Relational Mapping (ORM) layer. Finally, the QoS monitor from
Chapter 4 is integrated for regularly measuring the QoS values of services. The overall run-
time environment is implemented in C# using the Windows Communication Foundation [82].
In order to enable a flexible development, the client library is currently provided for C# and
Java. It provides a standard client implementation for the core services that can be used di-
rectly to work with VRESCO in an object-oriented way.

There are several VRESCO core services. The Publishing/Metadata Service is used to pub-
lish services and metadata into the registry database. Furthermore, the Management Service is

90

Chapter 6: VRESCO – A Runtime for Adaptive Service-Oriented Systems

responsible for managing user information (e.g., name, password, etc.) whereas the Querying
Service is used to query all information stored in the database. The task of the Notification
Engine is to inform users when certain events of interest occur inside the runtime, while the
Composition Service finally provides mechanisms to facilitate QoS-aware service composi-
tion.

Before elaborating on the core services in detail, we provide a comprehensive insight into
the VRESCO metadata model and its mapping to the concrete service model. This model is
the foundation for VRESCO as well as for the composition approach. Following this, the core
services are described in more detail, with a particular focus on querying, dynamic binding
and invocation including mediation.

6.2 A Metadata Model for Services

In this section, we address the problem that current SOA runtimes lack an integrated mecha-
nism allowing to express metadata about services as part of their core runtime functionality.
This is necessary to achieve a high degree of decoupling of service consumers and providers,
with the ultimate goal of binding to a given "feature" (functionality), that is implemented
by concrete services, rather than to concrete service instances themselves. The service run-
time environment has to provide the necessary abstractions and mechanisms for realizing it.
Therefore, we propose a feature-driven metadata model for services, which enables applica-
tion developers to describe the functionality that services offer, the input and output of a ser-
vice operation and the pre- and postconditions of a service (typically defined in the domain
model). A metadata description specifies an abstract service in terms of features that have
to be mapped to concrete service instances (including possible transformations if the inter-
faces do not match). Additionally, the model provides a way to categorize services according
to common business functionality. Please note that our metadata model is not intended to
compete with approaches used in the Semantic Web services community (SWS) [86], such as
OWL-S for describing semantics of services using ontologies. We aim at enterprise develop-
ment where metadata is an important business asset which should not be accessible for every-
one, as opposed to the SWS community where domain ontologies should be public to facilitate
integration among different providers and consumers. It is therefore important to provide a
deep integration of the metadata model with the core services provided by VRESCO.

6.2.1 Illustrative Example

In this case study we tackle the problem of building a composite service for cell phone number
portability. Such a service is currently available to customers when they change the cell phone
operator (CPO) and want to keep their old number, thus the telephone number has to be
ported to the new operator. We assume a simplified process such as the one depicted in Figure
6.2. The process itself runs internally within the CPO where the customer recently signed a
contract. After signing the contract, the new CPO has to port the customer’s old number.

91

6.2 A Metadata Model for Services

Therefore, the CPO has to coordinate with the customer’s old provider in order to support
this feature.

Mail Service

Partner CPO ServicesProcessInternal Services

Check
Portability

Status

Activate
Number

Notify
Customer

Lookup
Customer

Lookup
Partner

Port Number

E-Mail Service

SMS Service

Customer Service

CPO Service

Number Porting
Service

Phone Number
Management

Service

Internal External

Figure 6.2: Number Portability Process

The process starts by looking up the customer using the internal Customer Service. Af-
ter finding the customer, the process has to check which CPO has served this customer in the
past. This is done using the internal CPO Service. When the old provider is known the pro-
cess has to use this provider’s Number Porting Service to check if the porting operation
is currently possible, and, if it is, initiate the porting process on the partner’s side. If porting is
currently not possible the process has to escalate (which is not shown in the example for rea-
sons of brevity). After successfully communicating the port to the partner, the phone number
is locally activated using the internal Phone Number Management Service, and, finally,
the customer is notified. This is done using different messaging mechanisms, according to the
preferences of the customer.

In this process, a number of dynamic service bindings exist: the external Number Porting

Service that has to be used is an outcome of the result of the Lookup CPO activity and can-

92

Chapter 6: VRESCO – A Runtime for Adaptive Service-Oriented Systems

not be determined statically; the same is true for the notification service used to implement
the last activity in the process. The possible alternatives for each of these activities are well-
known, and their number is relatively small: in this example it is not reasonable to assume
that the CPO wants to cooperate with unknown partners, or that a previously unknown noti-
fication service (e.g., a public service from the Internet) should be used. However, the possible
alternatives are not static, new CPOs may enter the market while others leave, and new noti-
fication services may be implemented while others are deactivated. The process itself should
not have to be adapted manually as a result of such changes in the environment. Addition-
ally, we cannot assume that each of the services has the same interface, or relies on the same
implementation-level data types, i.e., the services selected and bound at runtime may vary
significantly in terms of both interfaces and implementation. This complicates the problem
of dynamic binding, since mediation between per se incompatible invocations and interfaces
may become necessary. Therefore, standard programmatic approaches to handle variability
such as the well-known Strategy pattern [54] are not suitable even in this relatively simple
illustrative example.

6.2.2 Metadata Model

In Figure 6.3, we have depicted our basic metadata model for modeling services, their features,
pre- and postconditions using a slightly relaxed UML notation. In this model, we have to
abstract from the technical service implementation to achieve a common understanding what
a service does and what it expects and provides. In a typical SOA environment, there may be
multiple services that facilitate the same business goal, therefore, we also need a way to group
services according to their functionality. In the following, we use an italic font to represent
model elements and typewriter to indicate instances of a model element.

The main building blocks of the VRESCO metadata model are Concepts. A Concept is the
definition of an entity in the domain model. We distinguish between three different types of
Concepts:

• Features represent activities in the domain that perform a concrete action. It can be un-
derstood as a functionality that a service has to implement. Possible features from the
example process in Figure 6.2 are Check_Portability_Status, Port_Number or
Notify_Customer.

• Data Concepts represent concrete entities in the domain (e.g., customers, addresses or
bills) which are specified using pre-defined atomic concepts such as strings or num-
bers and/or other Data Concepts. For example, a concept Customer might consist of
Customer_Id, Customer_Name, and Address.

• Predicates represent domain-specific statements that either return true or false. Each
Predicate can have a number of Arguments that express their input. An example of a state
predicate for a Feature Port_Number could be Port_Status_Ok(Phone_Number),
expressing the portability status of a given phone number.

93

6.2 A Metadata Model for Services

Category

Feature

Concept

Postcondition

Precondition

Predicate

Argument

Data Concept

State
Predicate

Flow
Predicate

isSubCategory

1..*

1

0..1

1

0..1
1 *0..1

1

1

*

0..1

derivedFrom

consistsOf

0..1

*

Figure 6.3: VRESCo Metadata Model

Concepts have a well-defined meaning specific to a certain domain. For example, the Data
Concept Customer in one domain is clearly different from the concept Customer in another.
Concepts may be derived from other concepts; that is specifically interesting for Data Concepts,
e.g., it is possible to define the concept Premium_Customer which is a special variant of the
more general concept Customer.

Each Feature in the metadata model is associated with one Category expressing the purpose
of a service (e.g., Phone_Number_Porting). Each category can have additional subcate-
gories to allow a more fine-grained differentiation. The semantics of subcategories is multiple
inheritance, meaning that each subcategory inherits all Features from all of its parents. Each
Feature can have a Precondition and a Postcondition expressing logical statements that have to
hold before and after the execution of a Feature. Both types of conditions are composed of
multiple Predicates, each having a number of (optional) Arguments that refer to a Concept in the
domain model (indirectly through a Data Concept). There are two different types of Predicates:

• Flow Predicate: This type of predicate can be used in pre- and postconditions to indi-
cate constraints related to the data flow, such as data required or produced by a feature.
This is expressed by using two special variants of flow predicates called requires and
produces. An example from our number porting process would be a Postcondition hav-
ing a predicate requires(Customer), expressing that a concept Customer is needed
as an input for feature Check_Portability_Status. In case of a Postcondition, the
predicate produces(Portability_Status) can be used to express that the afore-

94

Chapter 6: VRESCO – A Runtime for Adaptive Service-Oriented Systems

mentioned feature produces the data concept Portability_Status as output.

• State Predicate: This type of predicate expresses some global behavior that is valid either
before (for a precondition) or after invoking a feature (for a postcondition). For example,
the Notify_Customer feature can be subject to the following conditions. The precon-
dition exists(Customer) expresses that a customer has to exist in the system before it
can be notified. A postcondition notified(Customer) expresses that a customer has
been notified after invoking the Notify_Customer feature. Both conditions express
global state that hold either before or after invoking a feature.

These two types of predicates can be specified by the developer to explicitly define flow
and state behavior, however, they are not required or enforced by the implementation upon
execution time. This kind of metadata only provides knowledge which is required, when
performing (semi-)automated service composition, where such pre- and postconditions are a
required means to guide the composition process for stateful services.

6.2.3 Service Model and Metadata Model Mapping

In the following, we substantiate the VRESCO metadata model as described in the previous
section by explaining the mapping of concrete Web services to features and their concepts in
the metadata model.

6.2.3.1 Service Model

The VRESCO service model constitutes the basic information of concrete services that is man-
aged by VRESCO and can be invoked by using the DAIOS framework. The service model
depicted on the lower half of Figure 6.4 basically follows the Web service based notation as
introduced by WSDL with extensions to enable service versioning [79], represent QoS and
enable eventing on a service runtime level [90].

A concrete service (Service) defines the basic information of a service such as the name, de-
scription, owner and consists of at least one service revision. A service revision (Revision)
contains all technical information that is necessary to invoke it (such as a reference to the
WSDL file) and represents a collection of operations (Operation). Every operation may have a
number of input parameters, and may return one or more output parameters (Parameter). A
revision itself can have parent and child revisions to represent a complete versioning graph
of a concrete service (for details see [79]). Both, revision and operation can have a number of
QoS attributes (QoS) representing all service-level attributes from Chapter 3. The distinction
in revision- and operation-specific QoS is necessary, because attributes such as response time
depend the execution time of an operation, whereas availability is typically given for the re-
vision itself (if a service is not available, all operations are not available too). In addition, a
service, a revision and an operation can have a number of events associated with it (not shown
in Figure 6.4). These events are raised by the runtime whenever an action is performed, e.g.,
invoking a service, publishing a new service or creating a new revision [90].

95

6.2 A Metadata Model for Services

Service Operation

Category Feature

Parameter

*

1

*1

Data Concept

*

1

**

1..*
Mapping Function

*

Service Model

Service Metadata Model

Revision

1

1..*

1

*

QoS

QoS

1

1

*

*

Figure 6.4: Service Model and Metadata Mapping

6.2.3.2 Mapping Metadata to Concrete Services

In order to associate metadata to concrete services in the service model we have to establish a
mapping between the metadata and the services. The mapping is shown in Figure 6.4, where
the dashed line represents the connections between the elements in the metadata model and
the elements in the service model. Services are grouped into categories (Category), where every
service may belong to several categories at the same time. Services within the same category
provide at least one feature of this category.

Service operations are mapped to features (Feature). Currently, we assume a 1:1 mapping be-
tween features and operations; every feature is implemented in exactly one service operation,
and every operation implements exactly one feature of a category. However, theoretically it
is possible to implemented a 1:n mapping because a feature may encompass two or more ser-
vice operations (but currently not supported in VRESCO). The input and output parameters
of the service operations map to data concepts (Data Concept). Every parameter is represented
by one or more concepts in the domain model. This means that all data that a service accepts
as input or passes as output is well-defined using data concepts and optionally annotated with
the flow predicates requires (for input) and produces (for output).

The concrete mapping of service parameters to concepts is described using Mapping Func-
tions. In general, rules for both the mapping from the parameter to the concept and vice versa
have to be specified. If an operation requires a certain state prior to its execution then this
requirement can be modeled as a state predicate (State Predicate) in the domain model. The
same is true for state changes as a result of the execution of an operation.

6.2.3.3 Mapping Example

Figure 6.5 illustrates an example based on the NotifyCustomer activity introduced in Sec-
tion 6.2. In this example, a category PortingServices with a feature Notify_Customer

96

Chapter 6: VRESCO – A Runtime for Adaptive Service-Oriented Systems

is defined. Two different SMS providers offer a SMSService that belongs to the category
PortingServices and their operations "implement" the feature Notify_Customer.

Ab
st
ra
ct

Co
nc
re
te

<<Feature>>
Notify Customer

<<Category>>
PortingService

<<Service>>
SMSService1

<<Operation>>
SendSMS1

<<Service>>
SMSService2

<<Operation>>
SendSMS2

Mapping Mapping

Figure 6.5: VRESCO Metadata Model – Mapping Example

In order to map these service operations to the Notify_Customer feature, VRESCO needs
to provide the necessary means to define these mapping functions to enable a runtime medi-
ation between the abstract metadata and concrete service implementations. The VRESCO

Mapping Framework (VMF) introduced in Section 6.3.3 implements the necessary mecha-
nisms and depicts the source code of this mapping example in Listing 6.2.

6.3 Core Runtime Services

In this section we give an overview of all the VRESCO runtime services that are used by the
client library implementation to ease its use across the two target platforms Java and Microsoft
.NET/C#.

6.3.1 Overview

The architecture of VRESCO follows a service-oriented design by providing the core func-
tionality as dedicated Web services. This enables a platform independent use by leveraging
SOAP as a transport protocol, however, for convenience and ease-of-use, a client library is
provided that implements a standard client for VRESCO’s core services. Whenever, a core
service is invoked, the access control layer checks the authentication and authorization of the
caller by using a claim-based approach on different authorizable resources (e.g., services, cat-
egories, etc). After granting access, the core service logic is executed. Internally, the core
architecture is based on a dedicated data access layer that encapsulates the core entity classes
(such as Service or ServiceRevision) from the database and achieves database indepen-
dence. VRESCO also leverages a powerful eventing support that defines a number of complex
events that are emitted and correlated internally, whenever a certain action occurs such as the
publishing of a new service or the invocation of the service through DAIOS. All events are
persisted into the registry database and can thus be queried and analyzed. Additionally, these

97

6.3 Core Runtime Services

events form the basis for service provenance, an approach to analyze which user performed
which actions in the system. For a detailed description of the eventing infrastructure and
the service provenance including the claim-based security approach, we refer to [90] and [92]
respectively.

In the following, we provide an overview of the core services regarding their main purpose.

Publishing Service: It provides support for the basic service lifecycle operations. In partic-
ular, it allows to manage services and service revisions including support for service
versioning [79] (i.e., branching and merging revisions, tagging revisions). The manage-
ment of services includes functionality to create, update and delete services and revi-
sions, adding operations and parameters as well as the activation and de-activation of
revisions.

Metadata Service: It provides support for all aspects related to metadata management. In
particular, the definition of categories, features, data concepts, pre- and postconditions
and specific QoS properties that allow to define customized QoS models. Additionally,
the metadata service implements the VMF (VRESCO Mapping Framework) allowing
the specification of mediation rules when defining the mapping to facilitate runtime
mediation as described in detail below.

Querying Service: It provides access to the registry database by using a specialized query
language VQL (VRESCO Query Language). VQL provides a type-safe mechanism to
query all information from the service- and metadata model, for example by querying a
feature with name Send_SMS and QoS.ResponseTime < 1000 msec. To this end, VQL
implements different querying strategies allowing to express how a query should be ex-
ecuted. For example, the exact querying strategy tries to match all criteria whereas a
relaxed querying strategy tries to match most of the specified criteria. For priority query-
ing each criterion can be associated with a weight to express the importance.

Management Service: It provides an interface for a number of management operations, in
particular user management and QoS management. The former focuses on typical CRUD
(Create, Read, Update, Delete) operations for users and groups as well as the manage-
ment of user claims to implement the claim-based access control. The latter provides an
interface for external QoS monitors to deliver their monitoring data to VRESCO.

Notification Service: It provides an interface for clients to subscribe to certain events that
occur inside the runtime. A number of events are triggered at runtime that can be of
interest to a client to implement various kinds of applications scenarios. These event
notifications are implemented using the Esper event engine [50] and WS-Eventing [162].
For an in-depth description of the eventing capabilities we refer to [90].

Composition Service: It provides a QoS-aware Composition as a Service (CAAS) approach
by using a domain-specific language called VCL to facilitate the specification of QoS

98

Chapter 6: VRESCO – A Runtime for Adaptive Service-Oriented Systems

constraints that are resolved by the runtime. This approach builds upon the feature-
driven notation of the VRESCO metadata model and leverages VQL and the meditation
approach to realize adaptive compositions. The approach is described in detail in Chap-
ter 7 and 8.

In the following, we focus on the query language VQL, the mapping and mediation ap-
proach VMF and dynamic invocation using the DAIOS framework as they are relevant for the
composition approach that is described in the next chapters. For a detailed overview on the
design and implementation of VQL, VMF and DAIOS, we refer to [75], [60] and [77] respec-
tively.

6.3.2 VRESCO Query Language

The VRESCO Query Language (VQL) provides a means to query all information stored in
the registry database, i.e., information about services and service metadata in Section 6.2. The
main requirements for the query language can be summarized as follows.

6.3.2.1 Requirements

View-based Querying. The internal VRESCO architecture implements the data access via
a data access layer (DAL) using dedicated data access objects (DAO). However, these DAOs
contain database specific attributes such as IDs (that map to the primary key of a relational
database record) or versioning information for optimistic locking. Therefore, these DAOs
are only used internally and referred to as core objects. For transmission over the network
to the client application, these entities are transformed into so-called user objects that contain
basically the same information but without any database specific fields. However, querying
capabilities are used on both sides (internally and externally), therefore, VQL must handle
both representations properly, without any changes how the queries can be specified.

Type-Safety and Security. Each VQL query should be type-safe in the sense that the result
of a query should be parameterizable with specific data types from the service or metadata
model (e.g., a ServiceRevision or a Feature). Additionally, all query attributes should
be subject to runtime existence checks to rule out parameters that do not match a property in
the corresponding core or user object. Additionally, queries should be fail-safe against well-
know security issues such as SQL injection.

Object-oriented Interface and Expression Library. In order to generate VQL queries at run-
time, an object-oriented API for specifying these queries should be available similar to query
languages provided by major ORM frameworks such as the Hibernate Criteria API [58]. VQL
does not provide a declarative language for specifying a query (such as SQL), which makes it
simpler in terms of the implementation because no query parser is necessary. Therefore, a rich

99

6.3 Core Runtime Services

library of expressions that can be used to formulate the queries in an object-oriented manner
is required.

Mandatory and Optional Criteria. When querying specific information about a service or
certain aspects of the metadata model, it is often desired to differentiate between mandatory
and optional expressions in a query. For example, one may issue a query to find all services
implementing the feature Send_SMS which is active and optionally having the QoS attribute
response time set to less than 1500 msec. In order to achieve these requirements, different
querying strategies have to be provided.

6.3.2.2 Architecture

These requirements are addressed by implementing a query language and a querying service
as part of VRESCO. On the client-side the user specifies a query using an object-oriented
interface which is provided by the client library. It includes all the necessary code and a rich
set of expressions to formulate VQL queries. The basic architecture of VQL is depicted in
Figure 6.6.

VRESCo Runtime
Querying ServiceVRESCo

Client VQL
Query

Query Strategies

Exact
Querying

Priority
Querying

Relaxed
Querying

Preprocessor

SQLQuery
Builder

ResultBuilder

Registry
Database

NHibernate
2.

1.

3.

4.

5.

Figure 6.6: VRESCO Query Processing Architecture

After specifying the query (using a VQuery<T> object; T represents the type-safe query
parameter for the resulting query object), it is sent to the QueryingService for execution.
Depending on the client’s querying strategy, VQL selects the corresponding querying strategy
based on the strategy design pattern [54] and generates the query accordingly (step 1). VQL
leverages SQL as its query execution language, therefore, a VQuery instance that was received
from the client – representing an in-memory object graph of a query – is preprocessed using
the Preprocessor component (step 2). This preprocessing inspects the query expressions,
the criteria and whether the client queries the core or the user object. The property mapping
between user and core objects is specified using source code annotations on the core and user
object classes. The transformation of a core object to a user object is done in the constructor of
a user object upon sending it to a client application.

100

Chapter 6: VRESCO – A Runtime for Adaptive Service-Oriented Systems

Additionally, the preprocessing checks if all expressions correspond to attributes in our
service- and metadata model. The result of the preprocessing is a generated SQL query that
corresponds to the initial VQuery (SQLQueryBuilder component). When the query is fully
generated, a NHibernate session is created to execute the query (step 3). After a successful ex-
ecution, the ResultBuilder component takes the result from the NHibernate session (step
4) and transforms it back into the resulting object T that was specified as a template parameter
in the VQuery object (step 5).

Query Specification. In general, VQL queries consist of a set of criteria where each criterion
has a number of expressions. Both criteria and expressions are specified using the querying
API provided by the VQL library. Therefore, in contrast to other query languages such as
SQL, VQL does not provide a declarative querying language which makes it easier to use.
Query criteria can either be Add and Match. These criteria have different mapping semantics
depending on the querying strategy (discussed below). However, the main motivation is to
allow the specification of mandatory and optional query criteria when combined with the
priority or relaxed querying strategy.

Besides that, VQL provides a set of expressions that can be used to express common query
constraints such as comparison (e.g., smaller, greater, equal, etc.) and logical operators (e.g.,
AND, OR, NOT, etc.). These expressions are summarized in Table 6.1.

Expression Description
And Conjunction of two expressions
Or Disjunction of two expressions
Not Negation of an expression
Eq Equal operator
Le Less or equal operator
Lt Less than operator
Gt Greater than operator
Ge Greater or equal operator

Like Similarity operator
IsNull Property is null

IsNotNull Property is not null
In Property is in a given collection

Between Property is between two given values

Table 6.1: VQL Expressions

Listing 6.1 shows an example query to find services that implement the NotifyCustomer
feature. In general, VQL queries are parameterized using an expected return type. In this case
the type ServiceRevision (line 2) expresses that the result of the query is a list of revisions.

In the example, two Add criteria (lines 5–6) are used to state that a service has to be active
and that each service has to implement the NotifyCustomer feature. Additionally, three

101

6.3 Core Runtime Services

Match criteria are added (lines 7–11). The first criterion expresses that a resulting service
should be in a category starting with "Porting". The second and third criterion define the op-
tional QoS attributes (response time and availability). All three Match criteria use the priority
value as third parameter to define the importance of a criterion.� �

1 // create a query object
2 var query = new VQuery(typeof(ServiceRevision));
3

4 // add query expressions
5 query.Add(Expression.Eq("IsActive", true));
6 query.Add(Expression.Eq("Operations.Feature.Name", "NotifyCustomer"));
7 query.Match(Expression.Like("Service.Category.Name", "Porting", LikeMatchMode.

Start), 5);
8 query.Match(Expression.Eq("QoS.Property.Name", "ResponseTime") &
9 Expression.Lt("QoS.DoubleValue", 1500), 3);

10 query.Match(Expression.Eq("QoS.Property.Name", "Availability") &
11 Expression.Gt("QoS.DoubleValue", 0.95), 1);
12

13 // execute the query
14 IVRESCoQuerier querier = VRESCoClientFactory.CreateQuerier("admin", "secret");
15 var results = querier.FindByQuery(query, QueryMode.Priority)
16 as IList<ServiceRevision>;� �

Listing 6.1: VQL Sample Query

The query execution is finally triggered by instantiating an IVRESCoQuerier and invoking
the FindByQuery method using the specific querying strategy, e.g., QueryMode.Priority
in our example (lines 14–16).

6.3.2.3 Querying Strategies

The querying strategy influences how a query is executed, thus, it defines the behavior of the
SQL generation as done in the SQLQueryBuilder. In a nutshell, Add criteria are transformed
to simple predicates within the SQL WHERE clause whereas Match are handled as SQL sub-
selects. The query mapping semantics is summarized in Table 6.2.

Strategy Add Criteria Match Criteria

Exact WHERE predicate IN (sub-select)
Priority WHERE predicate JOIN (sub-select)
Relaxed WHERE predicate JOIN (sub-select)

Table 6.2: VQL Mapping Semantics

Exact Querying. The exact querying strategy forces all criteria to be fulfilled, irrespective
whether this is Add or Match. As a consequence, it is not obvious why two different cri-
teria are used to specify a query when using the exact querying strategy. However, there are

102

Chapter 6: VRESCO – A Runtime for Adaptive Service-Oriented Systems

scenarios where Match has to be used to get the desired results by influencing the SQL genera-
tion behavior to enforce sub-selects instead of WHERE predicates. In particular, when mapping
N:1 and N:M associations (i.e., collection mappings in Hibernate terminology), a query cannot
have the same collection more than once in the WHERE predicate. The use of sub-selects elimi-
nates this effect in VQL, otherwise such a query would result in null because the association
tables would have to be joined more than once. As an example reconsider the query in List-
ing 6.1 and assume that we use an exact querying strategy as opposed to priority. In this case,
the last two Match criteria are required because QoS represents a collection that is used twice
in the query.

Priority and Relaxed Querying. This strategy involves priority values for single criteria in
order to accomplish a weighted matching. Therefore, each Match criterion allows to append
a weight to specify the priority of a criterion. In Listing 6.1, the priority values are "5", "3"
and "1". In contrast, Add criteria do not allow to specify a weight because they are obligatory
anyway. The relaxed querying strategy represents a special variant of the priority querying, in the
sense that each Match criterion is treated with the same priority. Thus, this strategy simply
distinguishes between optional and obligatory criteria in this regard. This strategy allows to
define fuzzy queries by relaxing the query constraints which can be useful when no exact
match can be found for a given query.

6.3.3 VRESCO Mapping Framework

The VRESCO Mapping Framework (VMF) defines the necessary concepts and mechanisms to
handle the mapping from abstract features to concrete service operations from the metadata
model as described in Section 6.2. The general concepts of the mediation approach imple-
mented in VRESCO are shown in Figure 6.7.

Client

Actual
Service

Higher-Level
Concepts

High-Level
Message

High-Level
Message

Lower

Lift

Figure 6.7: VRESCO Mediation Scenario (partly from [78])

A client who wants to invoke a service in VRESCO does not provide the input of the con-
crete service directly but already in the conceptual high-level representation, i.e., the feature
input in VRESCO terminology. The runtime takes care of lowering and lifting of the feature
input and output respectively. Lowering represents the transformation from high-level con-
cepts into a low-level format (i.e., feature input to SOAP input) whereas lifting is the inverse

103

6.3 Core Runtime Services

operation (i.e., SOAP output to feature output). These mappings from features to concrete ser-
vices are necessary to enable a runtime mediation when the abstract interface and the concrete
service do not match. They can range from simple 1:1 mapping to very complex mappings re-
quiring data transformation or custom mapping functions.

Metadata Service

Registry
Database

VRESCo Runtime

VMF
Mapping
Mediator

M
ap

pi
ng

 T
im

e
Ex

ec
ut

io
n

Ti
m

e

VRESCo Client Mapping Library

Mapper

Web
Service

Input

Output

Figure 6.8: VMF Architecture

Figure 6.8 shows an overview of the VMF architecture. Generally, VMF comprises two
main components. Firstly, at Mapping Time, the Mapper component is used to create lifting
and lowering information for each service. These mappings may make use of the VMF Map-
ping Library, which includes a number of helpful predefined data manipulation operations.
These operations implement some often-used data conversion functionality, such as data type
conversion, string manipulation, mathematical functions or logical operators. We have sum-
marized the groups of mapping functions provided in Table 6.3. Additionally, more complex
mappings can be defined in the CSScript language [37]. Lifting and lowering information for
services is stored in the VRESCO registry database using the Metadata Service. Secondly, at
Execution Time, VMF provides a DAIOS mediator which is per default contained in the DAIOS

chain of mediators of all clients using VRESCO. This mediator is responsible for the media-
tion itself. Therefore, it retrieves the stored lifting and lowering information from the Metadata
Service at runtime, and interprets it.

Mapping Example. Listing 6.2 illustrates how a mapping (either lifting or lowering) is de-
fined in VMF, based on the scenario in Figure 6.5. The feature NotifyCustomer requires the
fields Message, SenderNr and ReceiverNr (data type string) as input. The SendSMS1 op-
eration of SMSService1 requires the field Message (string), but sender and receiver number
are splitted into area code and number (integer). Phone numbers contain an area code with
four digits, followed by a number with eight digits. Line 4 shows how the mapper is created
for feature NotifyCustomer and operation SendSMS1. Both objects have to be queried us-

104

Chapter 6: VRESCO – A Runtime for Adaptive Service-Oriented Systems

Functions Description

Constants Define simple data type constants
Conversion Convert simple data types to other simple data types
Array Create arrays and access array items
String String manipulation operations (substring, concat, etc.)
Math Basic mathematical operations (addition, round, etc.)
Logical Basic logical operations (Conjunction, Equal, IfThenElse, etc.)
Assign Link one parameter to another (source and destination must have the same

data type)
CSScript Define custom C# mapping scripts which are executed by the engine

Table 6.3: Mapping Functions

� �
1 // query NotifyCustomer and SendSMS1 instances using VQL
2 // ...
3 //create mapper from feature and operation
4 Mapper mapper = metadataService.CreateMapper(NotifyCustomer, SendSMS1);
5

6 //map feature message to operation message
7 Assign messageAssign = new Assign(
8 mapper.FeatInParams[0].GetChild("Message"),
9 mapper.OpInParams[0]);

10 mapper.AddMappingFunction(messageAssign);
11

12 //get area code, convert it to integer and map it to operation
13 Substring acSenderStr =
14 new Substring(mapper.FeatInParams[0].GetChild("SenderNr"), 0, 4);
15 acSenderStr = mapper.AddMappingFunction(acSenderStr);
16 ConvertToInt acSenderInt = new ConvertToInt(acSenderStr.Result);
17 acSenderInt = mapper.AddMappingFunction(acSenderInt);
18 mapper.AddMappingFunction(new Assign(acSenderInt.Result, mapper.OpInParams[1]));
19

20 //get sender number, convert it to integer and map it to operation
21 Substring senderNrStr =
22 new Substring(mapper.FeatInParams[0].GetChild("SenderNr"), 4, 8);
23 senderNrStr = mapper.AddMappingFunction(senderNrStr);
24 ConvertToInt senderNrInt = new ConvertToInt(senderNrStr.Result);
25 senderNrInt = mapper.AddMappingFunction(senderNrInt);
26 mapper.AddMappingFunction(new Assign(senderNrInt.Result, mapper.OpInParams[2]));
27

28 // the same mapping steps have to be done for RecipientNumber� �
Listing 6.2: VMF Mapping Example

ing VQL before the mapper can be created (not shown in Listing 6.2). The Assign function
used in lines 7–10 acts as connector to link the Message from the feature to the Message

of the operation, whereas mapper.AddMappingFunction() adds the function to the map-
ping. Lines 13–18 get the area code from the feature’s SenderNr as substring and convert it
with the ConvertToInt function to an integer which is finally assigned to operation’s input
field AreaCodeSender. From lines 21–26 the same is done to map the sender number.

105

6.3 Core Runtime Services

6.3.4 Dynamic Binding and Invocation with DAIOS

DAIOS is a Web service invocation frontend for SOAP/WSDL-based and RESTful services. It
supports fully dynamic synchronous and asynchronous invocations without any static com-
ponents such as stubs, service endpoint interfaces or data transfer objects. It has been inte-
grated as a main component in the VRESCO client library to facilitate dynamic invocation and
client-side mediation as described in the previous section. In this section, we briefly discuss
the DAIOS architecture and the available rebinding strategies to enable adaptive applications.

6.3.4.1 DAIOS Architecture

The overall architecture of the DAIOS framework is shown in Figure 6.9. It also illustrates
how it fits into the SOA triangle of publish, find and bind. The framework internally con-
sists of three functional components: the general DAIOS classes which are at the core of the
framework and represent a facade for the other components, the interface parsing component
which is responsible for preprocessing (binding) and the invoker component which conducts
the actual Web service invocations using a REST or SOAP stack. Clients communicate with
the framework frontend using DAIOS messages which are DAIOS’ internal data representa-
tion format. The general structure of the framework is an implementation of the Composite
Pattern for stubless Web service invocation (CPWSI) [25]. CPWSI separates the frameworks’
interface from the actual invocation backend implementation, and allows for flexibility and
adaptability.

DAIOS System
Framework/

Frontend

Service Invoker SOAP Stack

REST Stack

Interface (WSDL)
Parser

XSD Parser

<<uses>> <<uses>>

<<wraps>>

VRESCo
Registry

Service
Consumer

Service
Provider

PublishFind

Bind

Daios
Message

HTTP,
SOAP,

...

Figure 6.9: DAIOS Architecture

106

Chapter 6: VRESCO – A Runtime for Adaptive Service-Oriented Systems

DAIOS is grounded on the notion of message exchange: clients communicate with services
by passing messages to them; services return the invocation result by answering with mes-
sages. DAIOS messages are potent enough to encapsulate XML Schema complex types, but
much simpler to use than working directly on XML level. Messages are unordered lists of
name-value pairs, referred to as message fields. Every field has a unique name, a type and a
value. Valid types are either built-in types (simple field), arrays of built-in types (array field),
complex types (complex field) or arrays of complex types (complex array field). Such complex
types can be constructed by nesting messages, therefore, arbitrary data structures can be built
easily, without the need for a static type system.

Invoking a service in DAIOS is a three step process following the find-bind-execute cycle as
shown on top of Figure 6.9. In the following, we emphasize the relation to VRESCO, how-
ever, it has to be noted that DAIOS is not natively coupled to VRESCO. All coupling code is
achieved using specific interceptors.

1. First, a client has to find the corresponding services that need to be invoked. This step is
not part of DAIOS, however, as shown above, this service selection step is achieved using
VQL. The result of a VQL query is a ServiceRevision instance that can be directly
transformed into a DAIOS proxy.

2. Second, the service has to be bound (preprocessing phase) by collecting and analyzing all
necessary information such as the WSDL that will be compiled to retrieve the endpoint
and type information.

3. The third and final step is the actual service invocation. In VRESCO, we never execute
a service directly, however, we use the input of a feature to invoke the service. When
invoking the service, the user has to provide the respective input according to the fea-
ture definition. Upon invocation, DAIOS invokes the VMF mediator to lower the input
message for the actual target service. The response is lifted and then returned to the user.

� �
1 var query = new VQuery(typeof(ServiceRevision));
2 query.Add(Expression.Eq("Operations.Feature.Name", "SendSMS"));
3 var proxy = querier.CreateRebindingMappingProxy(query, QueryMode.Exact, 0, new

OnDemandRebindingStrategy());
4

5 DaiosMessage smsRequest = new DaiosMessage();
6 smsRequest.SetString("RecipientNumber", "0699-1234567");
7 smsRequest.SetString("SenderNumber", "0650-7654321");
8 smsRequest.SetString("Message", "Hello from VRESCo");
9

10 DaiosMessage smsResult = proxy.RequestResponse(smsRequest);� �
Listing 6.3: DAIOS Service Invocation

Listing 6.3 shows a simple example how to use DAIOS to dynamically invoke a service
implementing a feature called SendSMS from the CPO example. In lines 1–2, a query is used

107

6.3 Core Runtime Services

for defining the feature that should be invoked (SendSMS). In line 3, this query is used to create
a proxy using the OnDemand strategy. In lines 5–8, the input message for the SendSMS feature
is built, and the corresponding service is finally executed in line 10 using the request-response
pattern.

Once a service is successfully bound to a specific revision, clients can of course issue any
number of invocations without having to re-bind again. Service bindings only have to be
renewed if the interface contract of the service changes or the client explicitly decides to re-
lease the binding for some reason. In order to support different binding scenarios, VRESCO

provides dedicated support for different scenarios as discussed in the next section.

6.3.4.2 Dynamic Binding Strategies

In service-oriented systems, dynamic binding is one of the key advantages to realize adaptive
behavior without manual intervention. In practice, however, services are often bound using
pre-generated stubs which lead to hard-wired applications. Therefore, we have introduced
the notion of rebinding strategies implemented by providing several proxy classes using the
well-known strategy pattern [54]. These proxies leverage the DAIOS framework for dynam-
ically invoking a service by using the provided rebinding strategy. Table 6.4 summarizes all
available rebinding strategies in VRESCO.

Strategy Rebinding Semantic

Fixed never
Periodic periodically
OnDemand on client requests
OnInvocation prior to service invocations
OnEvent on event notifications

Table 6.4: Rebinding Strategies

Fixed proxies represent ordinary proxies which are bound to one specific service endpoint.
They are used in scenarios where rebinding is not needed or desired (e.g., because of existing
contractual obligations or the lack of alternative services). Periodic rebinding can be used to
verify the binding of a proxy periodically. This can cause a constant overhead and, clearly, this
is inefficient if invocations happen frequently. The OnDemand rebinding strategy considers re-
binding whenever the client instructs the proxy to do so by using a specific method invocation
on the proxy instance. This results in low overhead but has the drawback that the binding is
not always up-to-date. In contrast to this, OnInvocation rebinding updates the binding prior to
every service request. It guarantees accurate bindings but seriously degrades the service invo-
cation time. Finally, OnEvent rebinding uses the event notification engine [90] to combine the
advantages of all strategies by allowing users to precisely define in which situations rebinding
should be performed.

108

Chapter 6: VRESCO – A Runtime for Adaptive Service-Oriented Systems

6.4 Evaluation and Discussion

In order to demonstrate the effectiveness of VRESCO’s core services, we evaluated their per-
formance by using a series of different tests cases. In this thesis, we only depict the perfor-
mance of two specific core services, namely querying and dynamic invocation with medita-
tion. For more comprehensive performance numbers of the other parts we refer to [91] and
to Chapter 8 for the composition service. All the performance tests were executed on an Intel
Xeon Dual CPU X5450 3.0 GHz with 32 GB of memory.

6.4.1 Querying Performance

This section gives the performance results of the querying engine which have been measured
by querying for service revisions from a specific service owner that belong to a given cate-
gory and have a certain response time. All measurements represent the average values of
10 repetitive runs. Table 6.5a compares the querying strategies provided by VQL depending
on the number of service revisions in the database. It shows that EXACT querying is faster
than RELAXED and PRIORITY which have similar performance characteristics. However, the
difference between EXACT and RELAXED/PRIORITY is almost constant.

Revisions EXACT RELAXED PRIORITY
1000 67,8 81,9 81,2
2000 123,4 131,6 134,3
3000 215,7 238,7 242,1
4000 299,4 328,4 330,2
5000 403,1 419,9 415,4
6000 480,2 503,0 515,3
7000 553,2 606,3 597,7
8000 646,6 706,8 710,3
9000 756,0 793,2 802,4
10000 806,9 824,7 836,7

(a) VQL Querying Strategies (in msec)

Revisions HQL VQL SQL VQL/SQL VQL/HQL
1000 66,8 67,8 61,7 +9,89 % +1,50 %
2000 118,6 123,4 116,6 +5,83 % +4,05 %
3000 215,3 215,7 219,2 -1,60 % +0,19 %
4000 301,2 299,4 294,9 +1,53 % -0,60 %
5000 391,9 403,1 379,3 +6,27 % +2,86 %
6000 464,6 480,2 463,9 +3,51 % +3,36 %
7000 549,0 553,2 559,3 -1,09 % +0,77 %
8000 645,6 646,6 642,0 +0,72 % +0,15 %
9000 750,4 756,0 725,5 +4,20 % +0,75 %

10000 822,6 806,9 771,2 +4,63 % -1,91 %

(b) VQL Query Performance (in msec)

Table 6.5b shows the comparison between VQL, Hibernate Querying Language (HQL) and
native Structured Query Language (SQL) using the EXACT strategy. For this experiment, we
manually translated the query to both HQL and SQL to be able to compare the relative over-
head of VQL compared to other query languages. The table shows that VQL queries are only
slightly slower than native SQL queries, whereas VQL and HQL have similar performance
characteristics. Due to the advantages in terms of flexibility and querying possibilities, this
overhead is acceptable.

6.4.2 Mediation Performance

In the following subsection we have evaluated the overhead introduced by the VRESCO me-
diation facilities. Figure 6.10a depicts the response time of a single Web service invocation
depending on the size of the message sent to the service. We have evaluated four different

109

6.4 Evaluation and Discussion

mediation scenarios: no mediation at all, mediation using only the VMF built-in functions,
mediation using only CSScript and finally mediation using both built-in functions and CS-
Script. Unsurprisingly, unmediated invocations are generally faster than any type of media-
tion. All types of mediation introduce a similar amount of overhead, which is dependent on
the size of the message. For small messages the overhead is in the area of 25 msec, which is
acceptable. However, the overhead slightly increases as the size of the data increases. This is
due to data manipulation operations taking longer for bigger message sizes.

 200

 250

 300

 350

 400

 450

 500

 0 500 1000 1500 2000

R
es

po
ns

e
T

im
e

(in
 m

s)

Payload Size (in KB)

Unmediated
Built-in Functions

CSScript
Mixed

(a) Depending on Message Size

 240

 260

 280

 300

 320

 340

 0 2 4 6 8 10 12 14

R
es

po
ns

e
T

im
e

(in
 m

s)

Mediation Steps Necessary

Unmediated
Mediated

(b) Depending on Mediation Steps Necessary

Figure 6.10: Mediation Performance

In Figure 6.10b, we have evaluated how the overhead introduced by mediation depends
on the amount of mediation necessary. As we can see, the mediation overhead is constant,
and does not depend on the amount of mediation necessary, i.e., it is not relevant for the
mediation overhead if only simple transformations or more complex ones are necessary. This
result differs from what we have reported earlier in [78]. In this work, we have compared
various DAIOS mediators including one based on SAWSDL [163] which is similar to the VMF
approach from a conceptual point of view. Contrary to the constant overhead of the VMF
mediator, the overhead of SAWSDL-based mediation increases (slightly) with the number of
mediation steps.

110

Chapter 7

VCL - A Constraint-Based and QoS-Aware
Composition Language

This chapter introduces the Vienna Composition Language (VCL), a domain-specific lan-
guage designed for the purpose of specifying QoS-aware composite services on top of the
VRESCO platform. We introduce the language and its model as a basis for the Composition as
a Service approach.

Contents
7.1 Motivation . 111

7.2 Vienna Composition Language . 112

7.2.1 Overview and Structure . 113

7.2.2 Grammar and Language Constructs 115

7.3 Implementation . 121

7.4 Evaluation . 122

7.1 Motivation

A number of service composition approaches exist for developing and executing composite
services. Most languages are static in the sense that they only focus on functional aspects and
they do not provide any adaptive behavior. This static nature poses a real problem, for ex-
ample, when services need to be dynamically selected or exchanged from a pool of similar
services based on changing QoS attributes such as response time, throughput or availability
(cf. Chapter 3). Several approaches address adaptivity of compositions on a runtime level
to increase availability or fault-tolerance of a composite application [51, 99], e.g., by provid-
ing custom extensions to BPEL engines. However, none of the existing approaches addresses
the problem of how to specify QoS-aware service compositions on a microflow-level by al-
lowing developers to express the required QoS of a composed service. In existing languages,
requirements mostly focus on functional aspects. In this approach, we also consider non-
functional aspects (QoS) as a major concern when developing composite services by proposing

111

7.2 Vienna Composition Language

a constraint-based approach. It allows a natural way of specifying QoS requirements for com-
posite services. In existing approaches, a major problem when specifying QoS as constraints
is the fact that the runtime resolution will typically fail if a QoS attribute of a service cannot
be satisfied (e.g., if the desired availability is 0.99, but the actual availability of a given service
is 0.98). To deal with this issue, we leverage a combination of hard and soft constraints and
combine these two constraint types in a so-called constraint hierarchy to allow a fine-grained
distinction of the importance of a constraint [23].

These aforementioned issues are addressed by providing a domain-specific language (DSL)
called VCL (Vienna Composition Language). This language is the basis for the "Composition
as a Service" approach presented in Chapter 8 that provides the back-end for VCL. It imple-
ments the QoS-aware optimization and generation of the executable composition based on the
VCL specification in a so-called Composition Service. This approach is implemented on top of
VRESCO (cf. the Composition Service in Chapter 6).

7.2 Vienna Composition Language

The main goal of VCL is to provide an intuitive DSL for the purpose of composition within
the VRESCO environment. It enables to capture what a composition should do and what
QoS is required from a global perspective and also what QoS is required from individual
services in the composition (local perspective). Additionally, constraints on individual ser-
vices can be imposed, for example on inputs and outputs of each service, preconditions or
postconditions that have to be fulfilled. A main concept in VCL is the fact that we group
QoS constraints into constraint hierarchies to address the problem that not all QoS attributes
can always be fully satisfied and not necessarily have to be. Therefore, constraint hierarchies
provide a mechanism to combine hard and soft constraints by using different hierarchy lev-
els that express the relative importance of a constraint over others (where constraints on the
highest level are always required). Consider an example, where a user specifies two global
constraints on a composition expressing that the response time should be ≤ 5000msec and
the availability should be ≥ 0.95. Unfortunately, the composition system cannot fulfill the
availability constraint because its actual value is 0.935, thus, the composition process fails due
to a violating QoS constraint. By using constraint hierarchies one can add a strength value
to QoS attributes to express its importance in a hierarchical way. Traditional constraint-based
approaches usually fail when a constraint is violated and no solution exists that fulfills all
constraints. Such systems of constraints are called over-constrained systems. Constraint hier-
archies [23] have been proposed to solve such systems by associating a strength or preference
value with each constraint. Formally, a constraint hierarchy H is a multi-set of labeled con-
straints. H0 denotes the required constraints in H . The sets H1, H2,. . . ,Hn are defined for the
hierarchy levels 1,2,. . . ,n representing the optional constraints with different strengths. Each
level expresses constraints that are equally important. In VCL the hierarchy levels are labeled
{required, strong,medium,weak} but this can be adapted to represent different hierarchy lev-

112

Chapter 7: VCL - A Constraint-Based and QoS-Aware Composition Language

els if required.
Overall, a constraint-hierarchy based way of specifying QoS for composite services leads

to more flexibility in terms of its specification. Many QoS attributes are "nice to have", there-
fore, hard constraints fail to deliver the expected results. Additionally, constraint hierarchies
provide a sound and easy way for developers to specify the strength of a QoS attribute in a
"symbolic way" relative to other QoS attributes. From an end-user perspective, it provides
an easy way to specify the relative importance of a QoS constraint over another one without
dealing with different numerical weighting values (that are used to directly influence to QoS
optimization).

It is important to note that VCL does not aim at defining yet another composition language
and engine. The focus is put on the QoS-aware specification, therefore, we do not provide
a VCL execution environment. In order to execute a VCL specification, we leverage the ca-
pabilities of the Microsoft Windows Workflow Foundation [96] combined with VRESCO’s
registry capabilities and service runtime capabilities. Therefore, a VCL specification will be
transformed to a Windows Workflow at runtime which is described in the next chapter.

7.2.1 Overview and Structure

The language follows a constraint-based approach in the sense that all required functional
and non-functional aspects of a composition are declared as constraints on features that should
be composed. This notation is based on VRESCO’s service- and metadata model presented in
Section 6.2 which represents an integral part for the overall VCL approach (and also the CAAS
approach presented in the next chapter). VCL has to rely on a strong runtime support that is
able to generate an executable composite service from the VCL description. The core elements
of a VCL specification are visualized in Figure 7.1 and described in detail in the subsequent
sections.

More formally, a VCL specification of a composite service CS can be represented as a tuple
CS =< FD,FC,GC,BPS > with the following elements:

Feature Definitions. FD represents the feature definitions that specify which features will be
composed. Each feature has an associated category and the definition of features and cate-
gories follows the notation we introduced in the VRESCO metadata model. Due to the fact
that categories can have multiple subcategories (as denoted in Figure 6.3), the specification of
categories allows a wildcard character * to refer to a specific category within the category tree
without specifying the whole path.

Feature Constraints. FC represents a set of (optional) feature constraints that can constrain
the input, output, QoS, precondition and postcondition of each feature. The input and output
constraints restrict the data which is required as an input or output of a feature. Preconditions
and postconditions can be used to express assertions that need to be valid before or after
the execution of a feature, respectively. QoS constraints can be associated with a strength to

113

7.2 Vienna Composition Language

composition Sample1

Business Protocol Specification

invoke name1 { /* data assignments here */ }
invoke name2 { ... }
join name1, name2
check (condition) {
 invoke name3 {...}
}
invoke name4 { ... }
return { status = "job done" }

Constraints

Feature Definition

feature name1, *.Category1.featureName;
feature name2, *.Category2.featureName;
feature name3, *.Category3.featureName;
feature name4, *.Category4.featureName;

constraint global {
 input = { /* constraints defined here */ }
 output = { }
 qos = { }
 precond = {}
 postcond = {}
}

Global Constraints

constraint name1 {
 input = { }
 output = { }
 qos = { }
 precond = { }
 postcond = { }
 service = {}
}

Feature Constraints

Figure 7.1: VCL Language Schema

express its preference ("required" strength is the default). Additionally, a service constraint
can be used to influence the service selection by defining explicitly which service should be
selected.

Global Constraints. GC represents the global constraints for the overall composition. Similar
to feature constraints, global constraints can be used to restrict input, output, QoS and specify
pre- and postconditions for the resulting composite service CS. Input and output constraints
are used to define input and output data of theCS, i.e., the composed service interface. Again,
QoS constraints can be associated with a strength value.

Business Protocol Specification. BPS represents the business protocol specification [5] that de-
fines what services should be invoked and it provides a means to specify simple conditional
execution or loops. The business protocol specification does not have an explicit notation for
specifying which parts are executed sequentially and which parts can be executed in parallel
(i.e., we do not have AND-splits, XOR-splits as explicit constructs [150] as many graph-based

114

Chapter 7: VCL - A Constraint-Based and QoS-Aware Composition Language

approaches). Such an "unstructured composition" approach enables a simpler specification
from a user perspective, however, it may lead to errors during the execution (e.g., deadlocks)
if not properly validated. Thus, a transformation to a structured composition – originally re-
ferred to as structured process model [74], where each split has a corresponding join and all
split-join combinations are properly nested – is desirable and performed as part of the com-
posite service generation. For example in Figure 7.1, we have sketched several statements
illustrating various aspects of a control flow definition, e.g., the invocation of the given fea-
ture using invoke (possible data assignments are not shown in the figure). They can either
be executed sequentially or in parallel, depending on the data flow. If, for example, feature
"name2" has no dependencies on "name1" they both can be executed in parallel. VCL is flex-
ible in terms of the concrete BPS formalism. Currently, we use an unstructured approach to
specify the BPS and transform it to a graph-based model at runtime. However, the BPS part
can be exchanged to use a label-transition system or any other formalism if desired.

7.2.2 Grammar and Language Constructs

As illustrated above, each VCL specification consists of three major blocks: feature definition,
(global and feature) constraints and the business protocol. The following grammar (in EBNF
notation) in Listing 7.1 shows the formal specification of the core parts of VCL.� �

1 <Composition> ::= composition <Name>;
2 <Feature> { <Feature> }
3 <GlobalConstraint> { <FeatureConstraint> }
4 <BusinessProtocol>
5 <Feature> ::= feature <Alias>, <CategoryName>.<FeatureName>;
6 <GlobalConstraint> ::= constraint global "{" <ConstraintBody> "}";
7 <FeatureConstraint> ::= constraint <Alias> "{" <ConstraintBody> "}";
8 <ConstraintBody> ::= <InputConstraint> <OutputConstraint>
9 <PrecondConstraint> <PostcondConstraint>

10 <QoSConstraint> <ServiceConstraint>� �
Listing 7.1: VCL Grammar

Each composition (non-terminal symbol <Composition>) composes a set of VRESCO fea-
tures (<Feature>), defines global constraints (<GlobalConstraint>) and optionally a set
of feature constraints (<FeatureConstraint>). A feature is specified by an <Alias>, a
category name followed by the name of the feature that is stored in the VRESCO registry.

Each constraint type (global and local) imposes restrictions on the input and output, pre-
and postconditions and on QoS (cf., <ConstraintBody>). Input and output statements of a
global constraint can be used to define the interface of the composed service, whereas input
and output statements on a feature are used to constrain the feature input and output that
is required in the composition. The final part is the specification of the business protocol
(<BusinessProtocol>) describing how the services should be invoked and which data is
assigned to the services. This is achieved by providing typical control flow constructs such as
conditionals (check statement), loops (while statement) and a statement to invoke a service
(invoke statement).

115

7.2 Vienna Composition Language

In the following, we use small examples from the Number Porting Process introduced in Sec-
tion 6.2 to explain the different language constructs, without using EBNF. For a more complete
version of the grammar we refer to the VCL specification [128].

7.2.2.1 Feature Definition

The first part of each VCL specification is – besides the obligatory definition of the name of a
composition – the specification of features that are composed. Since VCL is targeted for the
use with VRESCO, it is obvious that the features have to be defined in the VRESCO registry. In
Listing 7.2, the definition of features for the Number Porting Process from Figure 6.2 is depicted.� �

1 composition NumberPorting;
2

3 feature customerLookup, *.CRMServices.CustomerLookup;
4 feature partnerLookup, *.NumberPorting.PartnerLookup;
5 feature portcheck, *.NumberPorting.PortabilityCheck;
6 feature port, *.NumberPorting.PortNumber;
7 feature activate, *.PhoneManagementServices.ActivateNumber;
8 feature notify, *.NotificationServices.Notify;� �

Listing 7.2: Feature Definition

For each of the six steps in the number porting process, a feature is defined which has
to be available in VRESCO. If this is not the case, the composition service will fail and re-
turn that a given feature cannot be found. Each feature is referenced by using an alias e.g.,
customerLookup to refer to a given feature. Using aliases is necessary to use one specific
feature more than once in the same VCL specification in different contexts (i.e., it is similar to
variables in programming languages that can reference instances of a specific type). Following
the alias definition, the corresponding category and the name of a feature have to be defined.
We use a dotted notation to allow users to specify hierarchical category identifiers. Addi-
tionally, the * character can be used as a wildcard in the hierarchical category specification.
In case of the customerLookup, we use *.CRMServices to specify that the feature should
be from a category CRMServices irrespective of the hierarchy level (e.g., CRMServices can
have an arbitrary number of parent categories). Furthermore, the user can also simply specify
the wildcard to express that the feature can be in any arbitrary category. At the end of dotted
category specification is the feature name, such as CustomerLookup.

7.2.2.2 Global Constraints

The goal of global constraint specification is twofold. On the one hand it is used to specify
global QoS properties that have to be satisfied by the composition runtime. In our approach,
we allow to use all service level QoS constraints from Chapter 3. On the other hand, it can
be used to define the external interface of the composed service using input and output con-
straints. Additionally, pre- and postconditions for the composed service can be specified that
define what global state has to hold before and after the execution of a composed service, how-

116

Chapter 7: VCL - A Constraint-Based and QoS-Aware Composition Language

ever, we have not fully exploited the ability of using pre- and postconditions on a composition
level.

In Listing 7.3, the global constraint specification for the number porting process is depicted.
From lines 12–18 and 19–23 the input and output constraints are shown. Both implicitly define
a message type (NumberPortingRequest and NumberPortingResponse) that is used as
the input and output of the composed service.� �

9 ### continued from Listing 7.2
10

11 constraint global {
12 input = {
13 NumberPortingRequest[
14 long customerId;
15 string providerName;
16 boolean keepPhoneNumber;
17]
18 }
19 output = {
20 NumberPortingResponse [
21 string status;
22]
23 }
24 qos = {
25 responseTime = 5000, required;
26 availability = 0.95, strong;
27 accuracy = 0.99, weak;
28 }
29 }� �

Listing 7.3: Global Constraints

From lines 24–28, the QoS constraints for the composition are defined. Basically, they state
that the response time of the overall composition should not be higher than five seconds and
the overall availability should be higher than 95% and the accuracy higher than 99%. It is
important to note that VCL only uses the equal sign in the specification of QoS constraints. It
is determined based on the QoS attribute dimension if a lower or a higher value is generally
better (cf. the dimension column in the summary of service layer QoS attributes in Table 3.1).

In this example, the response time constraint is marked as required (which is default any-
way), therefore, the QoS-aware optimization algorithm that is implemented by VRESCO’s
Composition Service has to find a selection of services that satisfy this hard constraint, other-
wise, the composition process fails. The availability constraint is only marked as strong,
thus representing a soft constraint and it will be satisfied if possible, however, it will not lead
to an unsatisfiable specification if it cannot be satisfied. Additionally, a weak constraint for
the accuracy with a value of 0.99 is specified. Because this constraint is specified as weak,
preference will be given to the availability constraint during the optimization process.

7.2.2.3 Feature Constraints

This type defines, as the name implies, constraints on features which have been defined at
the beginning of a VCL specification. The constraint types are basically the same as for the

117

7.2 Vienna Composition Language

global constraints (input, output, precondition, postcondition), however, a service constraint
is added to address the issue of selecting a specific service rather than letting the dynamic
binding mechanism choose one of the available services. In Listing 7.4 an example feature
constraint is depicted. Similar to the global constraint, it defines an input constraint (lines 33–
40) to express the required input of a feature which is needed in the composition. The runtime
has to find the required match or return an error if it cannot be found. In this example, no
output constraint is required because it defines an asynchronous feature. The required QoS
constraint (lines 41–43) specifies that the notify feature has to support an X.509 certificate. The
service constraint (lines 44–46) expresses that we specifically want the service with the name
SMSNotificationService due to the fact that we want SMS delivery instead of e-mail or
any other notification type.� �
30 ### continued from Listing 7.3
31

32 constraint notify {
33 input = {
34 NotificationRequest[
35 long customerId;
36 string senderNumber;
37 string receiverNumber;
38 string message;
39]
40 }
41 qos = {
42 security = X509, required;
43 }
44 service = {
45 name = SMSNotificationService;
46 }
47 }� �

Listing 7.4: Feature Constraints

We are aware that this service constraint to some extend violates the principle of our feature-
driven model, however, in some cases it is necessary to use a service constraint. An alternative
for using a service constraint to specifically select an SMS service is to define different sub-
categories for the NotificationServices category in VRESCO (e.g., for e-mail, fax and
SMS). To this end, the service constraint could be removed and the feature definition has to be
changed to reflect the selection of a Notify feature in the corresponding sub-category.

7.2.2.4 Business Protocol Specification

The final part of each VCL specification is the business protocol specification. For our pur-
poses, this part is kept simple, because on a microflow-level the control-flow logic require-
ments are not very sophisticated. As mentioned earlier, the business protocol specification
does not define any constructs to explicitly specify what parts have to be executed sequen-
tially or in parallel. The execution order and semantics are determined in the Composition
Service by performing a data flow analysis to check which invocations can be executed in par-
allel and which have to be executed sequentially (because they have a data flow dependency).

118

Chapter 7: VCL - A Constraint-Based and QoS-Aware Composition Language

VCL supports different constructs to specify the business protocol as summarized in Table 7.1.

Statement Purpose and Semantics

invoke featureName { data assignment } Invokes a feature
check(expression){ block } else[p]{ ...} Conditional execution
while[c](expression){ block } Loops
return parameter Returns some data at the end of a composite

service
throws errorMsg Used to raise an error
join f1, f2, ... Explicitly waits for an invocation to finish

Table 7.1: Statements for the Business Protocol Specification

One of the most important statements is the invoke statement, which is used to perform
an invocation of a service that implements a given feature. The runtime is responsible for
resolving all services that implement a feature and match all the constraints (see Chapter 8).
An invocation is issued by using the name of the feature and assign the required data as
shown in Listing 7.5. It simply states that the customer feature should be invoked. The spec-
ification of the CustomerLookupRequest has to match the input that is associated with the
feature in the VRESCO registry. It implicitly creates the necessary message type and assigns
the customerId, which was defined in the global input constraint in Listing 7.3, to the Cid
element (lines 53–57). The data type is implicitly determined, similar to existing scripting lan-
guages. The result of this invocation is implicitly available and accessible using the alias name
as shown in line 78 and 80 where we assume that the customerLookup feature returns a type
CustomerDetails that is then used to notify the customer about the outcome of the number
porting operation. Its child elements can be accessed in a similar way as most programming
languages access fields of an object.

Conditional execution can be handled by using the check statement (cf. lines 64–91). It
evaluates a boolean expression and in case it is true it performs the containing block otherwise
an optional else branch can be executed. The else branch can be annotated with an execution
probability [p] (cf. Table 7.1) to influence the QoS aggregation as shown in Chapter 3. The
execution probability of the check-branch is simply computed by 1-p.

Loops can be realized using a while statement and are specified in a similar way as the
conditional statement. Again, the initial loop count can be annotated by using the loop count
[c] (cf. Table 7.1). The flow of control can be terminated by using either the return statement
or the throw statement. The former returns the control to the caller and additionally allows to
associate data with the return whereas the latter statement is used to return an error including
associated data to provide exception details. An example of using a return statement is shown
from lines 86–90, where the outcome of the porting invocation is returned. An exception is
shown from lines 94–97 to signal that the porting could not be performed including some
application specific error code and a explanatory message.

The last statement from Table 7.1 is the join statement. It allows to explicitly specify a

119

7.2 Vienna Composition Language

� �
50 ### continued from Listing 7.4
51

52 # invoke the customer lookup feature as defined above
53 invoke customerLookup {
54 CustomerLookupRequest[
55 Cid = customerId;
56]
57 }
58

59 invoke portcheck {
60 # data assignments omitted
61 }
62

63 # check if porting can be done (i.e., old provider is ready)
64 check (portcheck.PortingResponse.Status = true) {
65 # perform the porting
66 invoke port {
67 # omit data assignment
68 }
69

70 # activate number in new GSM network
71 invoke activate {
72 # omit data assignment
73 }
74

75 # notify the customer that the number has been ported
76 invoke notify {
77 NotificationRequest[
78 customerId = customerLookup.CustomerDetails.Id;
79 senderNumber = "+43-699-HELPDESK";
80 receiverNumber = customerLookup.CustomerDetails.Number;
81 message = "Your number has been ported and is now ready to use.";
82]
83 }
84

85 # return the outcome of the porting
86 return {
87 NumberPortingResponse [
88 status = port.PortingResponse.Status;
89]
90 }
91 }
92

93 # signal an error in case porting is not possible
94 throw NumberPortingFault [
95 errorcode = "1034";
96 message = "Porting is not yet possible";
97]� �

Listing 7.5: Business Protocol Specification Example

synchronization point between different invoke statements. For example, if there are two
consecutive invoke statements for feature a and b and they have no data dependency, they
are executed in parallel. However, in some cases it is necessary to explicitly wait for one or
more invocations (e.g., if a login feature has to be invoked before invoking some other feature).

120

Chapter 7: VCL - A Constraint-Based and QoS-Aware Composition Language

7.3 Implementation

VCL is implemented as a domain-specific language on top of the Microsoft Oslo model-
ing framework [95], and MGrammar in particular. The Oslo framework aims at simplifying
model-driven development and enables developers to visually define and interact with mod-
els. Additionally, it proposes MGrammar as a framework to build textual domain-specific
languages.

In our approach we leverage MGrammar to specify the VCL grammar in the proprietary
Mg format [94]. Based on the MGrammar definition, a dynamic parser component is available
as part of the framework that takes the VCL grammar and provides dynamic parsing and
validation capabilities for VCL input. Mg transforms VCL input into structured data. The
shape and content of that data is determined by the VCL syntax rules.

There are two possibilities to process the Mg output: Firstly, one can implement a cus-
tom GraphBuilder to traverse the output graph (called MGraph) and process it accordingly.
Secondly, one can leverage an automated mapping of the Mg output to an C# object model
by using XAML (eXtensible Application Markup Language), an XML-based language from
Microsoft to represent structured objects and their values. We leverage the second possibility
because it makes it easier generate a C# object model without implementing a custom parser.
To do so, MGrammar executes the following steps:

(i) it parses VCL code using the dynamic parser and generates an MGraph representation
(it is basically a structured and hierarchical textual representation);

(ii) it converts the MGraph representation to a XAML-based representation;

(iii) finally, it converts the XAML representation to strongly typed C# objects.

� �
1 module VRESCo {
2 language VCL {
3 // Initial rule
4 syntax Main = c:Composition
5 f:FeatureDefinition+
6 con:ConstraintDefinition*
7 wf:(id:InvocationDefinition =>id | wd:JoinDefinition => wd |
8 cd:CheckDefinition =>cd | rd:ReturnDefinition =>rd |
9 td:ThrowDefinition =>td | wd:WhileDefinition =>wd)*

10 => Composition {c, Features{f}, ConstraintCollection{con}, BusinessProtocol{
wf}};

11

12 // main rules
13 syntax Composition = CompositionToken name:Identifier ";" => Name{name};
14 // other syntax and token definitions go here\ldots
15 }
16 }� �

Listing 7.6: VCL MGrammar Example

121

7.4 Evaluation

Listing 7.6 shows a small excerpt of VCL’s Mg definition. From lines 4-10 the main syn-
tax rule for VCL is defined. It is easy to see how the grammar reassembles the main EBNF
rule from Listing 7.1. The part after the => defines the shape of the Mg output. For exam-
ple the Composition defines the root of a hierarchical output containing a name (from the
Composition production rule), a set of features, a collection of constraints and a business
protocol. We do not process this output manually, however, we let MGrammar handle it
by executing the three steps as illustrated above. Therefore, we have implemented a C# ob-
ject model where the class names and their fields exactly match these output tokens (such as
Composition, Features, ConstraintCollection, etc). Following that, the parser needs
to know the mapping from the output to the C# types which is done by using a hashtable that
is given to the Mg parser. This information is sufficient to parse and dynamically create this
object model that is used for all further processing within the Composition Service.

7.4 Evaluation

We have evaluated the performance of the VCL parsing and the creation of the object model
that is used for all further processing steps in the Composition Service. It has to be noted that
we cannot directly influence the parsing performance, because the parsing component is im-
plemented by the Oslo framework. The major time is not used for parsing the VCL input,
indeed it is used for binding the MGrammar output to our C# object model using the XAML
data binding.

 0

 100

 200

 300

 400

 500

 600

 700

 10 20 30 40 50 60 70 80 90 100

Ti
m

e
(m

se
c)

Number of features

VCL Parsing and Model Creation Performance

No feature constraints
1 FC/feature
2 FC/feature
3 FC/feature
4 FC/feature

Figure 7.2: VCL Parsing and Model Creation Performance

All the performance tests were executed on an Intel Xeon Dual CPU X5450 3.0 GHz with 32
GB of memory (although memory is not an issue in our tests). We have generated 20 different
VCL files, each containing a increasing number of features (from 5 to 100 in increments of 5
features). Each VCL file contains 4 global constraints a varying number of feature constraints

122

Chapter 7: VCL - A Constraint-Based and QoS-Aware Composition Language

(from 0 to 4), resulting in five different graphs in the plot in Figure 7.2.
The results show that the time needed for parsing and creating the VCL object model grows

linear with the number of features. The number of feature constraints per feature clearly has
a small influence on the parsing performance since more input needs to be parsed and more
objects need to be created. The difference for a VCL specification with 100 features is approx.
100 msec between no feature constraints at all and four feature constraints per feature. Since
we use a first version of the Oslo framework and MGrammar, we assume that there is some
room for improvement with regards to the parsing and model creation performance, however,
for our purposes this performance is sufficient.

123

Chapter 8

Composition as a Service using VCL

This chapter introduces a "Composition as a Service" approach as a means to reduce the com-
plexity of QoS-aware service composition on top of VRESCO. The approach leverages VCL
as a specification language to enable developers to compose services on-the-fly without the
need to provide their own composition infrastructure.

Contents
8.1 Motivation . 125

8.1.1 CaaS Overview . 126

8.1.2 Formal Composition Model . 127

8.2 Feature Resolution and Pre-filtering . 128

8.3 Generating Structured Compositions . 130

8.3.1 Abstract Dependency Graph . 131

8.3.2 Generating the Structured Composition 132

8.4 QoS-Aware Optimization . 133

8.4.1 QoS Aggregation . 134

8.4.2 Constraint Optimization Problem . 134

8.4.3 Integer Programming Approach . 136

8.5 Generation and Deployment of the Composite Service 137

8.6 Implementation and Evaluation . 139

8.6.1 Feature Resolution . 140

8.6.2 Structured Composition Generation . 140

8.6.3 QoS-Aware Optimization . 141

8.6.4 Composite Service Generation and Deployment 142

8.6.5 End-to-End Performance . 143

8.7 Discussion . 144

8.1 Motivation

The Composition as a Service (CAAS) approach is based on the idea of reducing the com-
plexity involved when developing QoS-aware composite applications. Existing composition

125

8.1 Motivation

approaches are either purely static (e.g., BPEL) or they tend to be fully automated, e.g., ap-
proaches such as AI planning [123], situation calculus [85], automaton theory [20, 21], and
hierarchical task networks [142]. From a technical perspective, many approaches are very
complex and pose some strong requirements on the underlying services (e.g., fully annotated
with ontologies) and the infrastructure (e.g., reasoning capabilities). Moreover, existing ap-
proaches do not support an explicit notation or language for specifying QoS-aware composite
applications. In addition to the specification aspect of a composition, we provide composition
as a service to reduce the need and the complexity involved with setting up a composition
environment that combines hard and soft constraints to enact composite services.

The CAAS approach proposes a simpler composition model and runtime on top of VRESCO

to facilitate rapid and low-cost QoS-aware composition on a microflow level. A Composition
Service encapsulates the complexity of the composition approach and the management of the
composition engine. The compositions are specified using VCL and are generated and de-
ployed on-the-fly by using VRESCO’s composition infrastructure. Once a composition is de-
ployed, the developer directly receives the newly deployed endpoint as a response, thus, the
deployed service is immediately available and usable.

8.1.1 CaaS Overview

An overview of the CAAS approach is depicted in Figure 8.1. From an end-user perspective,
the developer (on the client-side) specifies the composition in VCL and uses the client library
to invoke the composition service at the VRESCO runtime. Besides providing a convenient
way to access the VRESCO core services (such as publishing, metadata, querying, etc), the
client library compiles the VCL specification and checks for static errors to avoid invoking the
composition service using invalid input. Once a statically correct VCL specification is sent to
the VRESCO runtime, the five steps (a) to (e) in the gray box on the left side of Figure 8.1 have
to be executed to successfully deploy and provision a composite service.

(a) Feature Resolution: This step comprises the resolution of features that are required for gen-
erating a valid composition. Resolving all features implies a translation of feature require-
ments into a VQL query executed by the VRESCO querying service.

(b) Structured Composition Generation: In this step, the VCL specification is transformed into
a so-called structured composition [49] to enable QoS aggregation and provide the basis
for transforming the VCL input into an executable composition. This involves a data
flow analysis to generate a dependency graph for the features and the transformation to a
structured composition.

(c) QoS Aggregation and Optimization: Once all features and data dependencies have been
resolved, this step transforms the VCL specification into a QoS optimization problem and
uses QoS aggregation to calculate the QoS of the overall composition. If no solution can be
found an error will be raised by sending a notification back to the user to allow changes,
e.g., by relaxing some constraints.

126

Chapter 8: Composition as a Service using VCL

Client
Library

VCL
Specification

Infrastructure Level
Client Side

VRESCo Runtime Environment

Event
Database

Registry
Database

Certificate
Database

O
RM

 L
ay

er

Composition
Service

Notification
Engine

Publishing/
Metadata
Service

Management
Service

Querying
Service

Composition
Engine

Ac
ce

ss
 C

on
tro

l
Query

Interface

Management
Interface

Metadata
Interface

Publishing
Interface

Notification
Interface

Composition
Interface

Feature
Resolution

QoS
Aggregation &
Optimization

 Generation of
Executable

Composition

d

Deployment of
the Composite

Service

e

c

a

Structured
Composition
Generation

b

Figure 8.1: Architectural Overview of Composition as a Service with VCL

(d) Generation of the Executable Composition: Assuming all constraints are satisfied, the Com-
position Service triggers the generation of the executable composite service by using the
structured composition to generate Microsoft Windows Workflow Foundation code.

(e) Deployment of the Composite Service: A successful composite service generation leads to
the final step by deploying the generated composite service and sending the newly de-
ployed service endpoint back to the user. Additionally, the new service is registered in the
VRESCO registry using the publishing service.

The remainder of this chapter focuses on these five steps, their implementation and evalua-
tion on top of the VRESCO runtime environment as introduced in Section 6.

8.1.2 Formal Composition Model

Before going into the details of the QoS-aware optimization approach, we need to formal-
ize our composition model to have a common notation throughout this chapter. A VCL
composition CSvcl consists of a set of n features F = {f1, f2, . . . , fn} to be composed. For
each feature fj , a set of m service candidates Sj = {s1j , s2j , . . . , smj} is available in VRESCO

that implement a given feature. Each composition CSvcl can be subject to global constraints
Cgc = {Igc, Ogc, Pgc, Egc, Qgc}. Each feature fj can also have a set of constraints Cfc =
{Ifc, Ofc, Pfc, Efc, Qfc}. These constraints represent a multi-set containing input constraints

127

8.2 Feature Resolution and Pre-filtering

I , output constraints O, preconditions P , postconditions E (effects), and QoS constraints Q.
Constraints I,O, P,E specify restrictions on data of a feature or the composition itself and are
not further considered in this thesis because they do not play a major role during the QoS
optimization process. The QoS constraints Qgc (global QoS constraints) and Qfc (feature QoS
constraints) are represented as a vector of labeled QoS constraints:

Qgc = Qfc = (〈qpt, s〉, 〈qex, s〉, 〈ql, s〉, 〈qrt, s〉, 〈qrtt, s〉, 〈qtp, s〉, 〈qsc, s〉, 〈qav, s〉,
〈qac, s〉, 〈qro, s〉, 〈qrm, s〉, 〈qsec, s〉, 〈qrep, s〉, 〈qc, s〉, 〈qpl, s〉) (8.1)

The first element of each pair is the QoS attribute value and the second element s ∈ H repre-
sents the constraint strength as defined in the hierarchy H (see Chapter 7). Additionally, each
service candidate sij , implementing a given feature fj , has a vector of QoS values (retrieved
from the VRESCO registry). Based on [176], we merge the service candidates with their QoS
attributes in a matrix Q = (Qij ; 0 ≤ i < n; 0 ≤ j ≤ 14). Each row corresponds to a service can-
didate, whereas each column corresponds to all the QoS values of a service candidate sij . We
assume that the QoS attributes are numbered from 0 to 14 according to their order in Table 3.1.

8.2 Feature Resolution and Pre-filtering

Feature resolution is the process of querying and matching all service candidates and its con-
straints as specified for each feature in VCL. We assume that each feature of an application
is defined in the VRESCO metadata model as part of the requirements engineering process.
Additionally, we apply a pre-filtering technique to filter service candidates that do not fulfill
feature QoS requirements with strength required. This reduces the number of service can-
didates for each features that are later used in the optimization process, thus, speeding up the
optimization process.

The feature resolution is achieved by using the VRESCO Query Language (as introduced in
Chapter 6). In general, VQL can query any element from our metadata model (e.g., features,
services, etc), however, in this specific case, we need to retrieve a list of ServiceRevision
instances because it contains all the required information for further processing (such as QoS)
within the Composition Service.

Algorithm 4 outlines the basic procedure for building a feature resolution expression. In
particular, the function RESOLVEFEATURE is executed concurrently for every feature fj ∈ F to
find its service candidates. Each query itself is constructed by adding various query criteria
stored in the query variable.

The first query criterion in line 4 is Expression.Eq("IsActive", true). It specifies
that a service has to be activated to be invokable (Eq means equals). IsActive refers to a
property in a ServiceRevision as defined in the VRESCO service model.

Line 5 specifies a more complex query criterion. Here Operations refers to a collection
of operations for a ServiceRevision. Each operation has a reference to a Feature that it

128

Chapter 8: Composition as a Service using VCL

implements, therefore, we can simply query its Name and match it against the feature name
fj . We use the helper function name(fj) to retrieve the name of a feature.

Algorithm 4 Feature Resolution

1: function RESOLVEFEATURE(Feature fj , C = {Ic, Oc, Pc, Ec, Qc})
2: result← ∅ .a list of service candidates for fj

3: query← ∅ .contains a set of VQL expressions

4: query← query ∪ Expression.Eq("IsActive", true)
5: query← query ∪ Expression.Eq("Operations.Feature.Name", name(fj))
6: if fj has a category defined then
7: query← query ∪ Expression.Eq("Service.Category.Name", cat(fj))
8: i← 0
9: for all sc ∈ supercat(fj) and sc is not a wildcard do

10: query← query ∪ Expression.Eq(createSuperCatString(i), sc)
11: i← i + 1
12: end for
13: end if
14: for all q ∈ Qc such that strength(q) = required do .process all required QoS attributes

15: if descendingQoS(q) = true then
16: query← query ∪ Expression.And(
17: Expression.Eq("Operations.QoS.Property.Name", name(q)),
18: Expression.Le("Operations.QoS.DoubleValue", value(q))))
19: end if
20: if asecendingQoS(q) = true then
21: query← query ∪ Expression.And(
22: Expression.Eq("Operations.QoS.Property.Name", name(q)),
23: Expression.Ge("Operations.QoS.DoubleValue", value(q))))
24: end if
25: if exactQoS(q) = true then
26: query← query ∪ Expression.And(
27: Expression.Eq("Operations.QoS.Property.Name", name(q)),
28: Expression.Eq("Operations.QoS.Value", value(q))))
29: end if
30: end for
31: query← query ∪ getInputExpression(Ic) ∪ getOutputExpression(Oc) ∪
32: getPrecondExpression(Pc) ∪ getPostcondExpression(Ec)
33: result← result ∪ executeQuery(query)
34: return result .A list of service candidates for fj

35: end function

The categories and super-categories for a feature fj are matched from lines 6–13. If a fea-
ture fj belongs to a certain category, a query criterion is added to the query variable. The
helper function cat(fj) is used to get the name of the category for feature fj . Besides that,
a number of super-categories can be specified in VCL. For example, the category identifier

129

8.3 Generating Structured Compositions

Telco.Messaging.PortingServices defines the category PortingServices and two
super-categories, namely Messaging and the root category Telco. Therefore, the feature res-
olution has to add another criterion for every super-category that is different from the wild-
card character "*".

From lines 14–29, the required QoS attributes are pre-filtered. We distinguish three types
of QoS attribute dimensions: descending (the lower the value the better – e.g., response time),
ascending (the higher the value the better – e.g., availability) and exact (values have to match
exactly), thus we have three different conditional statements to construct the query. The func-
tions name(q) and value(q) are used to retrieve the name of a QoS attribute and its value respec-
tively.

From lines 31–32, we simply invoke a set of helper functions for matching the input, out-
puts, pre- and postconditions. The criteria generated by these helper functions are similar to
the other criteria, however, they try to match the required input and output data in our meta-
data model. However, a detailed discussion of the service matchmaking approach is out of
scope of this thesis.

8.3 Generating Structured Compositions

Existing composition engines (such as WS-BPEL) are capable of enacting structured process
models and they usually cannot deal with unstructured process models1. For generating a
structured composition, we leverage the approach presented by Eshuis et al. [49]. According
to their terminology, we refer to a composition that is based on a structured process model as
structured composition. A structured model is desired and necessary for our approach based on
the following reasons:

(i) it enables enactment of a structured composition on existing composition or workflow
engines, thus, removing the need to implement an execution engine for VCL;

(ii) it allows to detect flaws in the unstructured composition such as deadlocks which may
lead to runtime errors at a later stage;

(iii) it facilitates an efficient QoS aggregation based on well-known workflow and compo-
sition patterns [150]. QoS aggregation is needed during the optimization to determine
an aggregation formula for a composition based on atomic aggregation formulas of the
composition patterns [67].

In order to allow a fully-automated generation of a composite service, we significantly ex-
tend the work presented by Eshuis et al. because their original approach proposes a semi-
automated technique. The user has to manually annotate the resulting structured composi-
tion, i.e., the branching types (conditional or parallel) need to be specified afterwards because
they cannot be determined in advance.

1WS-BPEL has two exceptions: it allows cross links between parallel services and parallel blocks.

130

Chapter 8: Composition as a Service using VCL

In the following, we substantiate the details of their original approach and describe the
changes and additions to use the structured composition algorithm in a fully-automated way.
In general the generation of a structured composition works as follows. Firstly, an abstract
dependency graph (ADG) is generated to analyze the data flow of the business protocol as
specified in VCL. The ADG can be generated simply by examining the input and output data
concepts of each feature. Secondly, the structured composition is generated using the ADG
as an input. Thirdly, the resulting structured composition is annotated with control flow de-
cisions which are not present in the structured composition. These decisions are either AND
(executed in parallel) or XOR (conditional execution).

8.3.1 Abstract Dependency Graph

Each feature in the VRESCO metadata model expects an input and an optional output mes-
sage which is composed of well-defined data concepts. The ADG can be defined based on the
input/output data concepts of each feature. If a feature f2 expects an input that is the output
of a feature f1, then we say f2 depends on f1. All data dependencies are captured in a graph
data structure by using an adjacency list. The functions input(f) and output(f) in the follow-
ing definition are used to get the input and output data concept of a feature. An ADG is given
by the tuple (F,E):

• A set of features F = {f1, f2, . . . , fn}

• E = {(f, f ′) ∈ F × F | output(f) ∩ input(f ′)) 6= ∅}

Additionally, Eshuis et al. impose two constraints on the ADG:

• C1: The dependency graph is acyclic.

• C2: If there is an edge from feature f1 to f2, then there is no path with length greater
than 1 from f1 to f2.

Constraint C1 eliminates the use of loops in the ADG whereas C2 is needed to construct
if-then-else compositions with an empty else branch. Fortunately, C2 is not very restrictive
and an ADG can be simply repaired either by removing the violating dependency or putting
an empty dummy feature between each violating pair of features.

In contrast to [49], we annotate the ADG with special nodes representing control flow in-
formation such as conditionals or loops that are present in VCL. One of the main reasons for
annotating the ADG is to overcome the need to manually annotate the branching types in the
resulting composition. This would not be possible in our case due to the fact that we leverage
an automated approach to generate the composite service.

In Figure 8.2, the ADG for the cell phone number portability example from the preceding
chapter is used. The VCL code for this example can be found in Listing B.1 in Appendix B. The
ADG has a number of special nodes for annotating control flow information. At the beginning
of the ADG, we add a ROOT node representing the composite service interface defined by the

131

8.3 Generating Structured Compositions

ROOT

crm

lp

IF-T-E

THEN pn

Legend:
crm - Crm feature
lp - LookupPartner feature
pc - PortCheck feature
pn - PortNumber feature
ap - ActivatePort feature
nt - Notify feature

pc

THROW

IF-T-E

THEN ap nt

ELSE THROWELSE

ENDIF ENDIF

Figure 8.2: Annotated Abstract Dependency Graph

global input constraints in VCL. In the ADG, this node has no inputs and outputs all data
concepts of the composite service to its descendants. In case of a conditional, the node IF-
THEN-ELSE (abbrev. IF-T-E) with its immediate successors THEN and ELSE represents the
two possible conditional branches. It is followed by an ENDIF node to annotate the end of
a conditional. In case of loops, these special nodes can be used to emulate loops which were
originally ruled out by constraint C1. By adding a "LOOP" start and end node, we do not need
to add the dependency from the loop end to the beginning (thus not violating C1) However,
this special loop node can be used to store the estimated loop count for the QoS aggregation
and the composition generation component can successfully reconstruct the loop. The final
special node is THROW to annotate an exception during the execution of a composite service.

8.3.2 Generating the Structured Composition

The generation of a structured composition is done based on the ADG generated in the previ-
ous step. Our approach builds upon the algorithm presented by Eshuis et al. [49], therefore, we
briefly summarize its main idea. They introduce a simple structured composition language to
illustrate their approach. It provides a hierarchical view, where a leaf node represents a service
(a feature in our terminology) and a non-leaf node represents a block. Basically, the language
considers two kinds of blocks: composite blocks (COMP) and sequential blocks (SEQ). COMP
blocks are later annotated with either AND or XOR to reflect the branching type. The language
uses the set notation in case of COMP and a list notation in case of SEQ to specify children of
blocks. For example COMP{SEQ[A,B],SEQ[C]} specifies that A executes before B and both are
executed in parallel with or exclusive to C.

The main idea of their algorithm is to find a set of initial features that do not depend on
any other feature to construct a block of this initial set of features. A block is constructed by
composing a set of features F into a single service (if F is a singleton), otherwise, a composite
block consisting of a set of sequential blocks is constructed. In case of the ADG in Figure 8.2,
the initial block is the ROOT node and is constructed as SEQ[ROOT].

132

Chapter 8: Composition as a Service using VCL

The main part of the algorithm iteratively processes all features in F . However, the selection
of features is not trivial, since these features cannot be processed one by one. They have to be
processed as groups of maximal influencing subsets of features. For example, two features f1
and f2 influence each other if they directly influence each other (i.e., by depending on the same
feature) or another feature f directly influences f1 or f2. A influencing subset is considered
maximal, if adding another feature would result in a non-influencing set. Having identified
these influencing subsets, they have to be analyzed and appended to the corresponding block
based on various rules (e.g., whether the block is a sequence or composite). For details regard-
ing these rules, see their algorithm [49].

In Figure 8.3, the graphical representation of the resulting structured composition is shown.
The beginning and end of a block have a split and a join node (the node with C as label;
C stands for composite). Additionally, the beginning and end of a composition also have a
composite node because the whole composition is also treated as a block. Besides the graphical
language, a full specification of the cell phone number portability process using the (textual)
structured composition language can be found in Listing B.2 in Appendix B.

ROOT

crm

lp

IF-T-E

THEN pn

pc

THROW

IF-T-E

THEN ap nt

ELSE

THROWELSE

ENDIF

ENDIF

C C C C

CC

C

C

Figure 8.3: Structured Composition Graph

After having generated the structured composition, we annotate each C-block with either
AND or XOR to specify the branching type. Our rule is simple: we annotate each block with
AND except blocks where the parent node is a special IF-THEN-ELSE node. In addition to
that, we associate all service candidates Sj from the feature resolving process with each feature
fj in the structured composition graph. This information provides the input for generating the
QoS-aware optimization problem.

8.4 QoS-Aware Optimization

The goal of the QoS-aware optimization is an optimal selection of one service candidate sij ∈
Sj for each feature fj where all the required global and local constraints are fulfilled and a
number of optional constraints from the constraint hierarchy H are satisfied. It is important
to note that we do not search for the overall best solution in the search space, however, we

133

8.4 QoS-Aware Optimization

search for the best solution within the QoS boundaries given by the user constraints. We
present two different approaches for modeling the QoS-aware optimization problem, a con-
straint optimization problem (COP) and an integer programming problem (IP). The reason
for devising an IP solution as an alternative is based on the fact that most constraint-based
approaches have scalability problems when applied to medium and large-scale practical op-
timization problems [19]. However, the COP solution provides a simpler way of handling
constraint hierarchies in terms of modeling the problem.

8.4.1 QoS Aggregation

QoS aggregation is an important means to calculate the QoS of the overall composition for
each QoS attribute. In Table 3.1 and Table 3.2 in Chapter 3, we summarized all QoS attributes
including their aggregation formulas for the composition constructs supported in our ap-
proach. These aggregation formulas are used during the optimization process to aggregate
the value of a specific QoS attribute for the overall composition (e.g., when checking a global
constraint). Therefore, we use a recursive QoS aggregation algorithm that traverses the struc-
tured composition from the previous step and applies the corresponding aggregation pattern
based on the block in the composition, either a SEQ or a COMP node with AND or XOR. In
case of a conditional (XOR), the value pi in the aggregation formula is the probability that
one specific path is chosen. In case of a loop, the value c represents the expected loop count.
For security and reliable messaging we assume that all services in the composition have to
support the same security protocol and reliable messaging, respectively, to enable it for the
composite service. A more advanced mechanism will be considered in future work.

8.4.2 Constraint Optimization Problem

A COP is a constraint satisfaction problem (CSP) in which constraints are weighted and the
goal is to find a solution maximizing a function of weighted constraints. A CSP is defined as a
tuple 〈X,D,C〉 where X represents a set of variables, Di represents the domain of each vari-
able Xi and C represents a set of constraints over the variables X . A solution is an assignment
of values from the variable’s domain D to each variable Xi ∈ X satisfying all the constraints
C. For modeling our problem as a COP, we have to distinguish between global constraints and
feature constraints. Both constraint types can have required and optional QoS constraints. Each
required constraint has to be fulfilled, otherwise no solution can be found. All optional con-
straints (global and local) will be added to the objective function that has to be maximized.
As aforementioned, all required feature constraints have already been pre-filtered, therefore,
it is ensured that only service candidates have to be considered that fulfill all required feature
constraints. This may reduce the number of constraints in the problem space.

134

Chapter 8: Composition as a Service using VCL

8.4.2.1 Feature Constraints

Modeling feature constraints requires to add all service candidates Sj for each feature fj as
variables to the problem space. As we only want to select one service candidate from all
available services Sj to execute a feature, we have to add the following selection constraint
given that yij denotes the selection of a service candidate sij to execute a feature fj (yij is
modeled as a boolean decision variable2):∑

i∈Sj

yij = 1,∀j ∈ F (8.2)

Each feature fj can be subject to feature constraints, therefore, we need to add the following
constraint for each feature constraint Qfc to determine the selected QoS value qjk of a feature
(local selection). qjk represents the selected QoS value for a given feature fj .

qjk =
∑
i∈Sj

Qik ∗ yij ,∀k ∈ Qfc (8.3)

Depending on the QoS attribute dimension (ascending, descending, exact) we need to add
the corresponding constraints for each QoS attribute to capture whether an optional QoS con-
straint cjk is satisfied (cjk is represented as a boolean decision variable). The value qjk is the
value from constraint (8.3). For descending dimension, cjk = (qjk ≤ Qfck

) is added, for as-
cending dimension cjk = (qjk ≥ Qfck

), and for exact dimension the resulting constraint is
cjk = (qjk = Qfck

).
Additionally, we use the following function (8.4) to map the constraint hierarchy levels to

strength values that is then used in the objective function. Please note that these values are
flexible and can be changed to reflect a different mapping (e.g., give more weight to strong
constraints).

strength(c) =

20 if c ∈ H1

10 if c ∈ H2

5 if c ∈ H3

0 otherwise

(8.4)

All the aforementioned constraints describe the selection of an optional feature QoS value.
These constraints are added for each feature fj and maximized as part of the objective func-
tion:

max
∑
j∈F

∑
k∈Qfc

cjk ∗ strength(Qfck
) (8.5)

8.4.2.2 Global Constraints

In order to add global constraints (required or optional ones) to the problem space, we first
need to create a global aggregation formula depending on the structured composition as

2When using a boolean decision variable, 0 is used for false and 1 for true.

135

8.4 QoS-Aware Optimization

shown previously in Figure 8.3 and the aggregation formulas are shown in Table 3.2. As
describe above, we use a recursive algorithm to traverse the structured composition from the
previous step and generate a global aggregation formula for each feature fj . For example,
when aggregating the response time qrt for the first composite block from Figure 8.3 (contain-
ing the feature crm and lp), the following aggregation constraint applies (k is the index for
the QoS constraint, in this example the index would be 3 for the response time):

ak = max
j∈{crm,lp}

{qjk} (8.6)

In the following, we use ak to represent the aggregation constraint of the k-th QoS attribute
which is added for every global constraint that is specified by the user in the VCL specifica-
tion. In case the global QoS constraint is required, we add another constraint depending on
the QoS attribute dimension. For QoS with descending dimension, ak ≤ Qgck

is added, for
ascending dimension ak ≥ Qgck

, and for exact dimension the resulting constraint is ak = Qgck
,

where k is the QoS attribute index.

In case the global QoS constraint is optional, we have to add a decision constraint to check
whether an optional constraint has been fulfilled. Again depending on the QoS attribute di-
mension, we add the following constraints: For descending dimension, ck = (ak ≤ Qgck

) is
added, for ascending dimension ck = (ak ≥ Qgck

), and for exact dimension the resulting con-
straint is ck = (ak = Qgck

). Finally, we have to add these decision constraints multiplied with
their strength value to the objective function from (8.5) to get the overall objective function:

max

∑
j∈F

∑
k∈Qfc

cjk ∗ strength(Qfck
) +

∑
k∈Qgc

ck ∗ strength(Qgck
)

 (8.7)

The objective function (8.7) is then maximized by the solver to find an optimal solution
within the constraint boundaries set by the user in the VCL description. All the values in our
COP are scaled to integers by multiplying them with 100. Due to the fact that we only allow
two decimal places in VCL we do not have any precision loss.

8.4.3 Integer Programming Approach

Integer programming optimizes a linear objective function that is subject to linear equality
and linear inequality constraints. Compared to the CSP approach, there are a few changes
that are needed when modeling the QoS-aware composition problem as IP. We have to define
a new objective function calculating an overall utility value for each feature fj considering the
user’s QoS constraints and their strength. Additionally, we need to linearize the aggregation
rules for qac and qav because they use the product to aggregate the QoS for a sequence and
parallel execution of features.

136

Chapter 8: Composition as a Service using VCL

8.4.3.1 Feature Constraints

Feature constraints are handled by using a utility function that is calculated for each service
candidate. The selection constraint (8.2) is still valid in the IP formulation. For calculating the
QoS utility function for each service, we first need to scale all the QoS values to a uniform
representation. Contrary to other approaches in this area [176], we do not use simple-additive
weighting to scale the values, however, we scale all values between [0, 100] depending on
the percentage to which a QoS attribute of a service candidate fulfills the optional constraint
imposed by the user. For example if the user specifies an optional availability constraint on
a feature fj with the value 0.95 and the QoS value of the service candidate is 0.99, we set the
value scaled value to 100 because the optional feature constraint is 100 percent satisfied (in
fact is over-satisfied). The overall objective function is shown in (8.8):

max

∑
j∈F

∑
i∈Sj

yij ∗
∑

k∈Qfc

scale(Qik, Qfck
) ∗ strength(Qfck

)

 (8.8)

The function scale scales the k-th QoS value Qik of a service candidate si between [0, 100]
depending on the actual QoS feature constraint value Qfck

specified by the user in VCL and
the QoS dimension (ascending, descending, exact). For modeling the constraint strength, we
still use function (8.4).

8.4.3.2 Global Constraints

For adding the global constraints, we follow a similar approach as in the CSP solution. We
first aggregate the QoS attributes using a similar function as in the CSP approach, with the
exception that we linearize the product aggregation rules using the ln (as shown in [176]).
Whenever a global QoS constraint is required, we add a linear equality or inequality to the
problem space. If a global constraint is optional, we add it to the overall objective function
that has to be maximized.

8.5 Generation and Deployment of the Composite Service

After the optimization phase, one service candidate has been assigned to each feature in the
composition. This information is stored in our internal graph data structure that holds the
structured composition, its service candidates and the selected "best" candidates for each fea-
ture. Based on this internal data structure, the Composition Service transforms this structured
composition into an executable composition. In addition, we also dynamically generate the
composite service configuration files and compile the generated code into a .NET DLL (Dy-
namic Link Library). This DLL then gets deployed on the Microsoft IIS (Internet Information
Service), a Web server on the Microsoft platform that is capable of hosting .NET Web services.

137

8.5 Generation and Deployment of the Composite Service

Code Generation. As mentioned earlier, we leverage the Windows Workflow Foundation
(WWF) [96] as the underlying composition engine, therefore, we have to generate code specif-
ically for this platform. The available workflow constructs of WWF are somehow similar to
BPEL, however, WWF supports the use of code activities to call some piece of .NET code.
In general, there are two options for authoring or generating WWF code: The first one is to
generate pure .NET source code containing the workflow by deriving from a base class called
SequentialWorkflowActivity. The second option it to generate the code in XAML (EX-
tensible Application Markup Language), an XML dialect for declarative specification of .NET
applications. Unfortunately, WWF in its current version (v3.5) does not fully support a declar-
ative generation of workflows in XAML for some technical reasons. Therefore, we had to
combine XAML with source code, so-called code-beside. This source code is used to specify
properties which are used to hold data of a receive activity or the reply. Additionally, the
code-beside contains all code activities that are then referenced from the XAML file.

SC Node WWF Activity Semantics

ROOT ReceiveActivity Entry point in composition

SEQ SequenceActivity

AND ParallelActivity and
SequenceActivity for each
branch

XOR IfElseActivity and IfElse-

BranchActivity for each
branch

The if-then-else conditions are
specified as CodeCondition ref-
erencing a method in the code-
beside file.

LOOP WhileActivity Condition is specified using a
CodeCondition referencing a
method in the code-beside file.

THROW CodeActivity Code activity implements the ex-
ception handling by wrapping it
into a SOAP fault message.

Complex data types No WWF activity, but a C# class for
each type

The input and output of a compo-
sition can contain complex types.

Service invocation CodeActivity The code activity uses DAIOS

to invoke a service by using a
DaiosProxy.

Table 8.1: WWF Generation

In order to transform the structured composition to WWF activities, the algorithm traverses
every node in the graph and depending on the type, it generates the corresponding WWF

138

Chapter 8: Composition as a Service using VCL

activities. We do not present the algorithm because it is relatively straightforward. However,
we show the mapping from the structured composition to WWF and explain further aspects
that need to be addressed in Table 8.1.

The generation of the WWF file results in two files, a XAML and a C# source code file con-
taining all the properties (e.g., variables for handling received data and data to return to the
caller) and all the conditions from the if-then-else and while activities. After the generation,
both files, the C# and the XAML file and the complex data type classes (generated using the Re-
flection.Emit classes from the .NET framework) are compiled by using the WorkflowCompiler
class provided by the WWF framework. This results in a DLL that can then be deployed to
the IIS.

Composite Service Deployment. The final deployment step is simple compared to the other
steps. As a prerequisite, the IIS service needs to be installed and configured to be able to
host .NET applications. In order to deploy the service, the DLL needs to be copied into a
so-called virtual directory which has to be configured once in the IIS to know where to check
for application code. Besides copying the DLL, it also requires a special configuration file
telling the IIS the name of the composite service and the name of the DLL that holds the
code for executing the workflow. Since this configuration file only has two parameters (the
name of the composite service and the location of the DLL), the composite service generation
component has a pre-defined template that is populated with the corresponding values and
also copies it to the target location. Finally, the composite service is ready to serve client
requests. Additionally, the endpoint of the generated service is sent back to the caller of the
Composition Service and is also stored in VRESCO.

8.6 Implementation and Evaluation

The CAAS approach was implemented in the Composition Service as part of the VRESCO run-
time environment implemented by using .NET/C# and the Windows Communication Foun-
dation (WCF) for realizing the Web service communication. For querying the services as part
of the feature resolution we have used the VRESCO Query Language (VQL) to retrieve all
deployed service instances. The optimization algorithms are implemented by using the Mi-
crosoft Solver Foundation [97], a recently released optimization library supporting CSP, LP,
LIMP and Quadratic programming. For executing the generated composition we use the Mi-
crosoft Windows Workflow Foundation [96]. The overall implementation of the Composition
Service consists of approximately 10000 lines of C# code (without the VRESCO code itself).

In order to demonstrate the effectiveness of our approach, we measure the performance
of various crucial components such as the querying engine and the optimization approach.
Therefore, we have written a tool to deploy features, categories, services and QoS values in
VRESCO. Additionally, it generates VCL files with a given number of features and service
candidates per feature. All the performance tests were executed on an Intel Xeon Dual CPU

139

8.6 Implementation and Evaluation

X5450 3.0 GHz with 32 GB of memory (although memory is not an issue in our tests).

8.6.1 Feature Resolution

The first important aspect is the performance of the feature resolution step. A query en-
codes all feature constraints (except optional QoS) to find concrete service candidates in the
VRESCO registry as described earlier this chapter. This step involves one query per feature
in the composition using our VQL query language that are translated to SQL queries at run-
time. We use a parallel query execution to speed up the performance as depicted in Figure 8.4
(the average of 10 repetitive runs). On the x-axis, we represent the number of features in the
composition (from 5–100). The y-axis shows the query time depending on the number of can-
didates (10, 25, 50, 75, 100). For example, in a composition using 100 features, and each feature
is implemented by 10 candidates, the overall query time is less than a second (734 msec) and
grows to more than 4 sec for 100 service candidates. Fortunately, the number of candidates is
usually low (approx. 1–5), therefore, resulting in a very good overall query performance.

 0

 1000

 2000

 3000

 4000

 5000

 10 20 30 40 50 60 70 80 90 100

Ti
m

e
(m

se
c)

Number of features

Feature Resolution Performance

10 candidates
25 candidates
50 candidates
75 candidates

100 candidates

Figure 8.4: Feature Resolution Performance

The main reason for having a higher query performance when the number of features in-
creases is the fact that VQL has to create a large number of C# objects for each query. For
example, a query to retrieve 100 service candidates, returns 100 so-called ServiceRevision

instances where each object has a number of other objects associated with it (e.g., operations,
QoS, feature, etc.).

8.6.2 Structured Composition Generation

The generation of a structured composition from the original VCL input follows the approach
proposed by Eshuis et al. and is adapted where needed. We have used a simple sequence of

140

Chapter 8: Composition as a Service using VCL

features from 5–100 in steps of five on the x-axis. The y-axis shows the time that is needed to
generate the structured composition.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 10 20 30 40 50 60 70 80 90 100

Ti
m

e
(m

se
c)

Number of features

Structured Composition Generation Performance

Figure 8.5: Structured Composition Generation Performance

Please note that the generation of the structured composition is not depending on the num-
ber of service candidates per features. The graph shows that the performance penalty com-
pared to the other parts is low, typically less than a second for various compositions with
different size and structure.

8.6.3 QoS-Aware Optimization

For measuring the performance of the COP-based solver, we have generated small datasets as
we expected a slow performance based on the complexity of the COP in general (NP-hard),
and our problem in particular. In Table 8.2 the performance of the COP approach is depicted.
The first column shows the number of features (from 5–25). Columns 2–4 show the perfor-
mance in msec based on the number of candidates per feature (3, 5, 7). Each VCL file used
for measuring the performance contains two global constraints and one local constraint per
feature.

The results clearly show the bad performance (and negatively exceeded our expectations)
as soon as the number of features is greater than 15 (and 5 candidates per feature). The value
"exceeded" expresses that our timeout value of 120000 msec was exceeded. This makes the
solver impractical for large QoS-aware optimization problems, however, for small scale prob-
lems it is still usable. Moreover, the current solver allows to save the internal solver state so
that it can be re-used and constraints can be added/changed or removed and then resolved.
This will reduce the optimization time when the user specified constraints do not hold and
the user has to relax some constraints.

141

8.6 Implementation and Evaluation

Features 3 cand./feature 5 cand./feature 7 cand./feature

time in msec

5 16 23 28
10 22 77 203
15 782 106952 exceeded
20 58789 exceeded exceeded
25 exceeded exceeded exceeded

Table 8.2: COP Performance

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 10 20 30 40 50 60 70 80 90 100

Ti
m

e
(m

se
c)

Number of features

Optimization Performance (IP)

10 candidates
25 candidates
50 candidates
75 candidates

100 candidates

Figure 8.6: Optimization Performance (IP)

For measuring the performance of the IP solver, we have generated a number of VCL com-
positions (sequential and parallel constructs) with a different number of features (from 5 to
100) and with increasing number of service candidates per feature (5, 25, 50, 75, 100). Each
of the VCL files contains 4 global constraints and each feature has 4 feature constraints. We
do not use any pre-filtering as part of the feature resolution in order to have the exact num-
ber of all the candidates per feature as given above. The performance results are depicted in
Figure 8.6 (average of 10 repetitive runs). The x-axis shows the number of features, the y-axis
shows the time in msec. Each function in the plot displays the runtime in msec based on the
number of candidates per feature on the x-axis. The performance shows good results even for
medium-size compositions (100 features), where a solution for 10 service candidates can be
found in 110 msec and for 100 service candidates in 1145 msec.

8.6.4 Composite Service Generation and Deployment

The generation of the composite service code requires almost constant time. It includes the
generation the core workflow in XAML, the code-beside file and all the complex types for

142

Chapter 8: Composition as a Service using VCL

every feature. Additionally, we need to compile all the complex types and the code-beside
which adds an additional overhead to this task.

 0

 500

 1000

 1500

 2000

 2500

 10 20 30 40 50 60 70 80 90 100

Ti
m

e
(m

se
c)

Number of features

Composite Service Generation Performance

Code Generation Time
Compilation Time
Deployment Time

Figure 8.7: Composite Service Generation Performance

In Figure 8.7, the performance of the composite service code generation is depicted. Again,
we use the number of features on the x-axis and the time on the y-axis. Basically, this process
shows three parts. The first part and least time consuming part is the code generation which
consists of traversing the structured composition and generating a corresponding WWF activ-
ity, generating the code-beside file and all C# classes for all complex types. In this example,
each of the features in the original VCL file has a complex type as input and output, therefore,
requiring 300 classes in case of 100 features (200 classes for the input and output and 100 for
another complex type referenced by the input type). The second part is the compilation of the
previously generated code. It is considered constant with an upper bound of approx. 2000
msec. The time for the deployment of the compiled composite service is not significant and
constantly about 3–5 msec.

8.6.5 End-to-End Performance

After analyzing each component in detail, we finally present the end-to-end performance to
compare all aspects involved to generate a composite service. In Figure 8.8, the performance
of the VRESCO Composition Service is shown for an increasing number of features on the x-axis
and 10 service candidates for each feature.

The performance of the different components is shown in different colors. Clearly, the fea-
ture resolution (in blue) requires most of the time, followed by the code generation and de-
ployment, and the generation of the structured composition. The other aspects are not signifi-
cant in terms of their overall performance. The overall time needed to dynamically create and
deploy a composition is reasonable and making this approach a good candidate for runtime
composition and re-composition.

143

8.7 Discussion

 0

 2000

 4000

 6000

 8000

 10000

 10 20 30 40 50 60 70 80 90 100

Ti
m

e
(m

se
c)

Number of features

End-to-End Composition Performance

VCL Compilation
Feature Resolution

Structured Composition
QoS Optimization (IP)

Code Generation and Deployment

Figure 8.8: End-to-End Performance for 10 Service Candidates

8.7 Discussion

The presented QoS-aware composition approach is based on the idea that compositions are
hosted and can, therefore, be outsourced to realize Composition as a Service (CAAS). The ap-
proach is integrated into the VRESCO runtime environment and combines a number of novel
concepts such as support for hard and soft QoS constraints and the automated generation of
an executable composite service without the need for setting up and maintaining a composi-
tion infrastructure.

Currently, one of the main application areas for the CAAS approach is to specify QoS-aware
composite services on a microflow level. Compared to existing macroflow-based orchestration
languages such as BPEL, these microflow services usually define a simple business protocol
and are mainly used to define short running processes that do not have multi-party interac-
tions. An efficient development and provisioning of QoS-aware microflows is important to
implement larger, more coarse-grained business processes (macroflows). Therefore, the CAAS
approach addresses adaptive behavior in a bottom-up manner by starting at the technical level
of a business process implementation.

In particular, CAAS supports the development of adaptive behavior in two ways: Firstly, it
leverages VRESCO as the implementation platform, therefore, we gain adaptiveness by using
its dynamic binding and re-binding capabilities. In addition, by building upon VRESCO’s
feature-driven programming model, we additionally support adaptiveness by allowing to add
new services or exchange existing ones transparently for higher-level macroflows (including
runtime mediation). Secondly, adaptiveness is actively supported by the presented approach
based on the fact that the QoS optimization can be re-executed for example by sending a
request to the composite service or re-optimizing in an offline-mode. This ensures that the
dynamically generated composite services always use the "best" service candidates that match
all user constraints as initially specified in VCL.

144

Chapter 9

Conclusions and Future Research

Contents
9.1 Summary . 145

9.2 Assessment of the Research Questions . 146

9.3 Outlook and Future Research . 148

9.1 Summary

This thesis has addressed several aspects related to the development of adaptive service-
oriented systems by leveraging QoS as an important means to assess the quality of a service
and to provide a main decision criteria when and what to adapt. It is important to understand
that adaptivity is not simply a means that can be addressed by adding proprietary support
for it to specific applications. However, we showed that adaptivity requires some generic con-
cepts and mechanism that need to be integrated into the design process and in the middleware
layer to provide a generic solution. In this thesis, we followed this approach by providing
general concepts and tools that enable native support for adaptivity (such as the VRESCO en-
vironment) and allow developers to implement more advanced concepts by providing custom
adaptation logic (e.g., by extending VRESCO’s rebinding logic).

The first part of this thesis has dealt with all issues related to the integration of QoS into
various layers of a service-oriented system. In particular, we have described an extensible
multi-layer QoS model to address QoS requirements and guarantees on various layers such as
choreography, orchestration and service layer. This model provides different views on QoS, in
particular related to the development of service-oriented applications. Secondly, a QoS mon-
itoring method has been described to bootstrap and constantly monitor QoS attributes. We
have presented and evaluated a black-box QoS monitoring technique that provides the basis
for monitoring non-deterministic QoS attributes. Thirdly, we have contributed an approach
which addresses QoS issues already at the highest-level during the development of service-
oriented systems, namely on the choreography layer. We leverage QoS in form of SLAs on
the choreography layer and automatically transform the choreography into orchestrations for

145

9.2 Assessment of the Research Questions

each partner including their enforceable QoS policies that reflect the SLA from the choreogra-
phy layer.

The second part of this thesis has focused specifically on the QoS-aware composition and its
execution. To this end, we have presented a novel Web service runtime called VRESCO which
proposes a feature-driven programming model for implementing adaptive service-oriented
applications. VRESCO addresses various research challenges in SOC such as dynamic bind-
ing and invocation, QoS-aware composition, and efficient service selection just to name a few.
Based on the VRESCO environment, we have presented a novel QoS-aware composition ap-
proach by proposing a domain-specific language called VCL (Vienna Composition Language).
This language puts a particular focus on a constraint-based specification of QoS requirements.
As opposed to existing approaches, QoS can be specified globally for a composition or locally
for each feature. Each QoS constraint can either be a hard or a soft constraint using constraint
hierarchies to specify the relative importance of a constraint. This language is the input for the
"Composition as a Service" (CAAS) approach which is proposed as final contribution of this
thesis. It enables composition as a service, thus reducing the need to provide its own compo-
sition infrastructure. It uses VCL as the language and VRESCO as a backend to dynamically
generate and deploy a composition based on the input specified by the user.

9.2 Assessment of the Research Questions

In this section, we assess the proposed methods and systems in this thesis based on our re-
search questions from Chapter 1.

Research Question Q1. In order to support the full services lifecycle in a service-oriented
system, we proposed a multi-layer QoS model to coherently integrate QoS information in
one common model at various levels of abstraction (choreography, orchestration and service
layer). The resulting multi-layer model explicitly supports different lifecycle phases during
the development of service-oriented systems. One example is the development of Web service
based business processes (macroflows) in a top-down manner or an efficient development of
composite services (microflows) that implement parts of the macroflow process activities.

The modeling aspect is specifically addressed on the choreography layer by supporting
the definition of SLAs between the stakeholders in a system or business process. On the or-
chestration layer, QoS policies are specified by using WS-QoSPolicy to enable monitoring and
enforcement of these policies during runtime. The service layer defines the common "vocab-
ulary" by proposing some well-defined and measurable QoS attributes categorized in four
different groups (Performance, Dependability, Security and Trust, Cost and Payment).

In order to facilitate the development of Web service based business processes, the method
proposed in Chapter 5 is an effective solution to include SLA and QoS aspects from the begin-
ning of the modeling phase. This is achieved by defining SLA-aware choreographies and auto-
matically derive orchestrations for each partner. During the transformation process, the QoS

146

Chapter 9: Conclusions and Future Research

policies for the partner orchestrations are automatically generated to describe the required
QoS according to the SLA as specified during the modeling phase. These orchestrations can
be used as a starting point for the implementation of the "internal" business logic that is then
deployed to the VieDAME enhanced BPEL engine. This automatic transformation method
reduces the development complexity of long running business processes and avoids a manual
specification of QoS policies. The VieDAME runtime enables a higher degree of adaptivity
and SLA compliance within a business process because services that do not fulfill the SLA can
be detected and replaced if necessary. It avoids SLA violations and the resulting penalties and
provides a better QoS experience for the end-user of the process or the consumer application
in terms of fault-tolerance and reliability. Additionally, the tradeoff between the degree of
adaptivity gained through the use of VieDAME and their performance penalties is negligible
(in detail reported in [99]).

A foundational and decisive factor for a successful development and adaptation of QoS-
aware compositions is the availability of accurate QoS information. The QUATSCH monitor-
ing approach presented in Chapter 4 provides the necessary mechanisms to bootstrap and
monitor service layer QoS attributes. The approach to combine probing with low-level TCP
sniffing has proven to be effective. The accuracy of the monitored values was demonstrated
in the evaluation of our solution. We have shown that the monitored attributes, such as the
service-side execution time, can be measured accurately from a client-side perceptive (e.g.,
with less than five percent deviation from the "real" execution time of a service). Being able to
measure the QoS attributes allows to build a repository of historical measurements for detect-
ing different patterns in the QoS data. This knowledge can be used to improve the accuracy
of the QoS attribute calculation. We support such an analysis by providing a Web-based tool
preparing the data for the user by providing dynamic chart generation of different QoS at-
tributes over time or between specific periods of time.

Research Question Q2. A QoS-based composition language for developing microflow ac-
tivities (Chapter 7) has proven to be effective for the implementation of QoS-aware composite
services. The language enables developers to specify their functional and QoS requirements
for composite services by using a textual DSL. The decision to use constraint hierarchies to
support hard and soft constraints provides an effective way to address the problem of over-
constrained systems. The composition process benefits from the use of soft constraints because
they allow a more flexible specification of QoS requirements. Typically, QoS constraints are
not always considered mandatory, however, existing approaches such as [9, 176] do not take
this into account. If a QoS value is below a given user threshold, these aforementioned ap-
proaches fail to deliver a result even if it is only partially fulfilled or QoS is only declared as
"nice to have".

By leveraging a feature-driven metadata model, the specification of a composite service
in VCL is more flexible compared to existing approaches. The composer only specifies the
features that are needed in the composition as requirements (in form of the expected input
and output data concepts and optional pre- and postconditions). The task of finding and

147

9.3 Outlook and Future Research

matching these features from all available features and their services is then performed by
the composition runtime. We have shown that this process, the so-called feature resolution, is
efficient even if the number of features in a composition grows (e.g., 100 features). In case a
feature cannot be found or the data concepts are not compatible with the ones provided in the
repository, the system informs the developer to relax or change some constraints.

Providing the composition approach as a service (Chapter 8) is an effective solution to re-
duce the need to build and setup the overall composition infrastructure and supporting run-
time. This principle is aligned with recent approaches in the area of Software as a Service
(SaaS), therefore, providing the possibility to completely outsource this approach into increas-
ingly popular cloud computing infrastructures such as Amazon EC2. This approach and run-
time encapsulate all required steps to deliver an executable composition from the VCL input.
We showed that such a generation involves a number of steps that can be performed efficiently
for medium-sized compositions (e.g., 50 features). The use of IP as a means to implement the
QoS-optimization has proven to be a better approximation in terms of performance compared
to a pure constraint-based approach.

The proposed CAAS approach requires a powerful and seamless support from a Web ser-
vice runtime to enable the well-known operations from the SOA triangle, such as publish,
find and bind. The VRESCO runtime environment provides the necessary foundations in a
coherent framework. The essential components for the CAAS approach are the feature-driven
programming model including the mapping framework VMF, the querying language VQL,
and the dynamic invocation and mediation. The feature-driven programming model allows
a seamless classification of services and abstraction from low-level differences between sim-
ilar services. On the one hand, it greatly improves the flexibility of applications and allows
a transparent adaptation of services in a composition but on the other hand it requires the
specification of a mapping between a concrete feature and a Web service operation. This is
a well-known tradeoff that is required to increase adaptivity. The specification of a mapping
also requires capabilities to mediate such requests at runtime. The proposed dynamic invo-
cation and mediation approach has proven to have little overhead compared to unmediated
requests and is independent of the number of required mediation steps (which also eases the
mapping). Additionally, VQL also shows good performance characteristics. The power of
VQL is its ability to query all aspects of our metadata and service model, thus it justifies the
little tradeoff in performance compared to existing query languages such as SQL or HQL.

9.3 Outlook and Future Research

The research addressed in this thesis is by no means complete and leaves enough room for
further research. In the following, we provide an outlook on several aspects that remain open
as future work. We plan to address some of these issues in our ongoing research work.

148

Chapter 9: Conclusions and Future Research

Combined QoS Monitoring. QoS monitoring, as discussed in the first part of this work,
is a fruitful area which is not sufficiently solved with regards to the accuracy, overhead and
scalability that is required by the monitoring component. In our approach, the overhead is
significant in terms of the number of monitoring requests that need to be sent in order to
"probe" the service to calculate QoS statistics. In scenarios where real-time QoS information is
required, scalability is a major issue. A client-side approach would not be the optimal solution
because it can only provide near real-time QoS information depending on the monitoring
interval. In such cases a combination with a service-side monitoring is inevitable, however,
this is much more intrusive than a pure client-side solution. It will be left to future work to
devise flexible server-side monitoring capabilities which emit trusted QoS information that
can be consumed by a Web service runtime such as VRESCO. A successful monitoring will
always be a tradeoff between ease-of-use and general applicability versus scalability and real-
time QoS information.

Semi-Automated Service Composition. Currently, our QoS-aware composition approach
proposed in Chapter 8 focuses on the microflow level for specifying the compositions. It
requires that the user specifies the input and output of the composed service and the busi-
ness protocol. However, the VCL specification combined with the information stored in
the VRESCO registry theoretically provides enough information to perform semi- or fully-
automated composition without requiring the user to specify the business protocol but only
the services and the expected QoS. However, this would require a rigorous specification of
pre- and postconditions for each service as part of the publishing process of each service in
the VRESCO registry. Moreover, it would require a considerable effort to extend the current
service composition algorithms to leverage and reason on the information provided as pre-
and postconditions. The semantic aspects to define how pre- and postconditions will be inter-
preted are a crucial aspect for the applicability of such approaches. It is arguable whether it is
easier for the user to rigorously specify pre- and postconditions to enable an automated com-
position approach or simple require the user to specify the business protocol for a microflow
(which is typically manageable in terms of complexity).

Dynamic Re-composition. Currently, our proposed dynamic QoS-aware composition ap-
proach has a sufficient performance for typical composition scenarios to be executed just be-
fore a composition is executed (which results in a minor but acceptable overhead). However,
in large-scale scenarios such an approach is not feasible to re-query all the service candidates
and run the optimization algorithms. Therefore, we plan to leverage VRESCO’s eventing in-
frastructure to subscribe to service changes. This will result in an event whenever the QoS of a
service in a composition changes or other services are published which provide a better QoS.
These events will then trigger a re-composition by re-running only the QoS optimization. This
will allow all further instances to bind to new services that provide a better QoS.

149

9.3 Outlook and Future Research

Service Matchmaking. In VRESCO, we currently use data concepts as part of our metadata
model as a means to define entities and data. These concepts are then mapped to concrete
input and output data of a service. Currently, we only use a naive matching of data concepts
when querying for services (e.g., during the feature resolution as part of the QoS-aware com-
position) by performing a simple name and type comparison. However, it would be possible
to do a complex service matchmaking to leverage the power of the data concepts provided
in VRESCO. We plan to add extended service matchmaking capabilities as part of our future
work.

VCL Feasibility Study. Another important aspect with respect to the second part of this
thesis is the feasibility of VCL. We have designed and implemented VCL as an approach
to specify QoS-aware compositions. However, it remains an open question whether VCL is
capable of solving this problem in an efficient and effective way from an end-user perspective.
Therefore, we envision to setup a small group of individual experts with different skill levels to
perform several experiments in form of small exercises to asses their experience and problems
they had during these exercises. Definitely, these results will provide some valuable feedback
for improving VCL.

150

Bibliography

[1] Active Endpoints. ActiveBPEL Engine [online]. 2007. Available from: http://www.
active-endpoints.com/ [cited March 15, 2009].

[2] E. Al-Masri and Q. H. Mahmoud. QoS-based Discovery and Ranking of Web Services.
In Proceedings of 16th International Conference on Computer Communications and Networks
(ICCCN’07), Honolulu, Hawaii, USA, pages 529–534, Aug. 2007. doi:10.1109/ICCCN.
2007.4317873.

[3] E. Al-Masri and Q. H. Mahmoud. Investigating Web Services on the World Wide Web.
In Proceeding of the 17th International Conference on World Wide Web (WWW’08), Beijing,
China, pages 795–804. ACM Press, 2008. doi:10.1145/1367497.1367605.

[4] M. Alrifai and T. Risse. Combining Global Optimization with Local Selection for Ef-
ficient QoS-aware Service Composition. In Proceedings of the 18th International World
Wide Web Conference (WWW’09), Madrid, Spain, pages 881–890. ACM Press, Apr. 2009.
doi:10.1145/1526709.1526828.

[5] G. Alsonso, F. Casati, H. Kuno, and V. Machiraju. Web Services – Concepts, Architectures
and Applications. Springer, 2004.

[6] Apache Software Foundation. Apache CXF: An Open Source Service Framework [on-
line]. Available from: http://cxf.apache.org/ [cited March 15, 2009].

[7] Apache Software Foundation. Axis [online]. Available from: http://ws.apache.
org/axis/ [cited March 20, 2009].

[8] D. Ardagna and B. Pernici. Dynamic Web Service Composition with QoS Constraints.
International Journal of Business Process Integration and Management (IJBPIM), 1(4):233–243,
2006. doi:10.1504/IJBPIM.

[9] D. Ardagna and B. Pernici. Adaptive Service Composition in Flexible Processes. IEEE
Transactions on Software Engineering, 33(5):369–384, 2007. doi:10.1109/TSE.2007.

1011.

[10] A. Avizienis, J.-C. Laprie, B. Randell, and C. E. Landwehr. Basic Concepts and Taxonomy
of Dependable and Secure Computing. IEEE Transactions Dependable Secure Computing,
1(1):11–33, 2004. doi:10.1109/TDSC.2004.2.

151

http://www.active-endpoints.com/
http://www.active-endpoints.com/
http://dx.doi.org/10.1109/ICCCN.2007.4317873
http://dx.doi.org/10.1109/ICCCN.2007.4317873
http://dx.doi.org/10.1145/1367497.1367605
http://dx.doi.org/10.1145/1526709.1526828
http://cxf.apache.org/
http://ws.apache.org/axis/
http://ws.apache.org/axis/
http://dx.doi.org/10.1504/IJBPIM
http://dx.doi.org/10.1109/TSE.2007.1011
http://dx.doi.org/10.1109/TSE.2007.1011
http://dx.doi.org/10.1109/TDSC.2004.2

Bibliography

[11] F. Barbon, P. Traverso, M. Pistore, and M. Trainotti. Run-Time Monitoring of Instances
and Classes of Web Service Compositions. In Proceedings of the IEEE International Confer-
ence on Web Services (ICWS’06), Chicago, USA, pages 63–71. IEEE Computer Society, 2006.
doi:10.1109/ICWS.2006.113.

[12] L. Baresi and S. Guinea. Dynamo: Dynamic Monitoring of WS-BPEL Processes. In
Proceedings of the International Conference on Service-Oriented Computing (ICSOC’05), Am-
sterdam, The Netherlands, pages 478–483. Springer, 2005.

[13] L. Baresi, S. Guinea, and M. Plebani. Business Process Monitoring for Dependability. In
Proceedings of the Workshops on Software Architectures for Dependable Systems (WADS’06),
Lecture Notes in Computer Science 4615, pages 337–361. Springer, 2006. doi:10.1007/
978-3-540-74035-3_15.

[14] L. Baresi, S. Guinea, and P. Plebani. Policies and Aspects for the Supervision of
BPEL Processes. In Proceedings of the 19th International Conference on Advanced Informa-
tion Systems Engineering (CAiSE’07), Trondheim, Norway, pages 340–354. Springer, 2007.
doi:10.1007/978-3-540-72988-4_24.

[15] A. Barros, M. Dumas, and P. Oaks. A Critical Overview of the Web Services Choreogra-
phy Description Language (WS-CDL). BPTrends Newsletter, 3(3), Mar. 2005.

[16] A. P. Barros, M. Dumas, and P. Oaks. Standards for web service choreography and
orchestration: Status and perspectives. In Proceedings of the Business Process Management
Workshops (Revised Selected Papers), Nancy, France, pages 61–74, 2005. doi:10.1007/

11678564_7.

[17] R. Barták. Online guide to constraint programming, 1998. Available from: http://
kti.ms.mff.cuni.cz/~bartak/constraints/ [cited April 6, 2009].

[18] L. Bass and R. K. Paul Clements. Software Architecture in Practice. Addison-Wesley Pro-
fessional, 1 edition, 1997.

[19] K. M. Bayer, M. Michalowski, B. Y. Choueiry, and C. A. Knoblock. Reformulating Con-
straint Satisfaction Problems to Improve Scalability. In Proceedings of the 7th Sympo-
sium on Abstraction, Reformulation and Approximation, Whistler, BC, Canada, pages 64–79.
Springer, 2007. doi:10.1007/978-3-540-73580-9.

[20] D. Berardi, D. Calvanese, G. D. Giacomo, R. Hull, and M. Marcella. Automatic Com-
position of Transition-based Semantic Web Services with Messaging. In Proceedings of
the Very Large Database Conference (VLDB’05), Trondheim, Norway, pages 613–624. VLDB
Endowment, 2005.

[21] D. Berardi, G. De Giacomo, M. Mecella, and D. Calvanese. Composing Web Services
with Nondeterministic Behavior. In Proceedings of the International Conference on Web

152

http://dx.doi.org/10.1109/ICWS.2006.113
http://dx.doi.org/10.1007/978-3-540-74035-3_15
http://dx.doi.org/10.1007/978-3-540-74035-3_15
http://dx.doi.org/10.1007/978-3-540-72988-4_24
http://dx.doi.org/10.1007/11678564_7
http://dx.doi.org/10.1007/11678564_7
http://kti.ms.mff.cuni.cz/~bartak/constraints/
http://kti.ms.mff.cuni.cz/~bartak/constraints/
http://dx.doi.org/10.1007/978-3-540-73580-9

Bibliography

Services (ICWS’06), Chicago, IL, USA, pages 909–912. IEEE Computer Society, 2006. doi:
10.1109/ICWS.2006.45.

[22] M. B. Blake and D. J. Cummings. Workflow Composition of Service Level Agreements.
In Proceedings of the IEEE International Conference on Services Computing, Salt Lake City,
Utah, USA, pages 138–145. IEEE Computer Society, July 2007. doi:10.1109/SCC.

2007.136.

[23] A. Borning, B. Freeman-Benson, and M. Wilson. Constraint hierarchies. Lisp and Symbolic
Computation, 5(3):223–270, 1992. doi:10.1007/BF01807506.

[24] I. Brandic, S. Pllana, and S. Benkner. Specification, Planning, and Execution of QoS-
aware Grid Workflows within the Amadeus Environment. Concurrency and Computation:
Practice and Experience, 20(4):331–345, Mar. 2008. doi:10.1002/cpe.v20:4.

[25] P. A. Buhler, C. Starr, W. H. Schroder, and J. M. Vidal. Preparing for Service-Oriented
Computing: A Composite Design Pattern for Stubless Web Service Invocation. In Pro-
ceedings of 4th International Conference on Web Engineering (ICWE’04), Munich, Germany,
pages 603–604. Springer, July 2004. doi:10.1007/b99180.

[26] G. Canfora, M. D. Penta, R. Esposito, and M. L. Villani. An Approach for QoS-aware Ser-
vice Composition based on Genetic Algorithms. In Proceedings of the Genetic and Compu-
tation Conference (GECCO’05), Washington DC, USA, pages 1069–1075. ACM Press, 2005.
doi:10.1145/1068009.1068189.

[27] G. Canfora, M. D. Penta, R. Esposito, and M. L. Villani. QoS-Aware Replanning of
Composite Web Services. In Proceedings of the IEEE International Conference on Web
Services (ICWS’05), Orlando, FL, USA, pages 121–129. IEEE Computer Society, 2005.
doi:10.1109/ICWS.2005.96.

[28] M. Carbone, K. Honda, N. Yoshida, and R. Milner. Structured Communication-Centred
Programming for Web Services. In Proceedings of the 16th European Symposium on Pro-
gramming (ESOP’07), Barga, Portugal, pages 2–17. Springer, 2007. doi:10.1007/

978-3-540-71316-6_2.

[29] J. Cardoso, A. Sheth, J. Miller, J. Arnold, and K. Kochut. Quality of Service for Workflows
and Web Service Processes. Journal of Web Semantics, 1(3):281–308, 2004. doi:10.1016/
j.websem.2004.03.001.

[30] F. Casati, S. Ilnicki, L. jie Jin, V. Krishnamoorthy, and M.-C. Shan. Adaptive and Dy-
namic Service Composition in eFlow. In Proceedings of the 12th International Conference
on Advanced Information Systems Engineering (CAISE’00), Stockholm, Sweden, pages 13–31.
Springer, 2000. doi:10.1007/3-540-45140-4.

[31] C. Cavaness. Quartz Job Scheduling Framework: Building Open Source Enterprise Applica-
tions. Prentice Hall, 1st edition, June 2006.

153

http://dx.doi.org/10.1109/ICWS.2006.45
http://dx.doi.org/10.1109/ICWS.2006.45
http://dx.doi.org/10.1109/SCC.2007.136
http://dx.doi.org/10.1109/SCC.2007.136
http://dx.doi.org/10.1007/BF01807506
http://dx.doi.org/10.1002/cpe.v20:4
http://dx.doi.org/10.1007/b99180
http://dx.doi.org/10.1145/1068009.1068189
http://dx.doi.org/10.1109/ICWS.2005.96
http://dx.doi.org/10.1007/978-3-540-71316-6_2
http://dx.doi.org/10.1007/978-3-540-71316-6_2
http://dx.doi.org/10.1016/j.websem.2004.03.001
http://dx.doi.org/10.1016/j.websem.2004.03.001
http://dx.doi.org/10.1007/3-540-45140-4

Bibliography

[32] A. Charfi. Aspect-Oriented Workflow Languages: AO4BPEL and Applications. PhD thesis,
Technische Universität Darmstadt, 2007.

[33] A. Charfi and M. Mezini. AO4BPEL: An Aspect-Oriented Extension to BPEL. World
Wide Web Journal: Recent Advances on Web Services (special issue), 10(3), 2007. doi:10.

1007/s11280-006-0016-3.

[34] B. H. Cheng, R. de Lemos, H. Giese, P. Inverardi, and J. Magee. Software Engi-
neering for Self-Adaptive Systems: A Research Road Map. In Dagstuhl Seminar Pro-
ceedings, 2008. Available from: http://drops.dagstuhl.de/opus/volltexte/
2008/1500/pdf/08031.SWM.Paper.1500.pdf.

[35] R. Cole, D. Shur, and C. Villamizar. RFC1932 – IP over ATM: A Framework Document.
Network Working Group, Apr. 1996. Informational. Available from: http://www.
rfc-archive.org/getrfc.php?rfc=1932.

[36] E. Crawley, R. Nair, B. Rajagopalan, and H. Sandick. RFC2386 – A Framework for QoS-
based Routing in the Internet. Network Working Group, Aug. 1998. Informational. Avail-
able from: http://www.rfc-archive.org/getrfc.php?rfc=2368.

[37] CS-Script – The C# Script Engine. Available from: http://www.csscript.net/

[cited April 9, 2009].

[38] F. Curbera and N. Mukhi. Metadata-Driven Middleware for Web Services. In 4th Inter-
national Conference on Web Information Systems Engineering (WISE’03), Rome, Italy, pages
278–286. IEEE Computer Society, 2003. doi:10.1109/WISE.2003.1254493.

[39] A. Dan, D. Davis, R. Kearney, A. Keller, R. King, D. Kuebler, H. Ludwig, M. Polan,
M. Spreitzer, and A. Youssef. Web Services on Demand: WSLA-driven automated man-
agement. IBM Systems Journal, 43(1):136–158, 2004.

[40] G. Decker, O. Kopp, F. Leymann, K. Pfitzner, and M. Weske. Modeling Service Chore-
ographies using BPMN and BPEL4Chor. In Proceedings of the 20th International Con-
ference on Advanced Information Systems Engineering (CAiSE’08), Montpellier, France, vol-
ume 5074 of Lecture Notes in Computer Science, pages 79–93. Springer, June 2008. doi:
10.1007/978-3-540-69534-9_6.

[41] G. Decker, O. Kopp, F. Leymann, and M. Weske. BPEL4Chor: Extending BPEL for Mod-
eling Choreographies. In Proceedings of the IEEE International Conference on Web Services
(ICWS’07), Salt Lake City, Utah, USA, pages 296–303. IEEE Computer Society, July 2007.
doi:10.1109/ICWS.2007.59.

[42] G. Denaro, M. Pezze, and D. Tosi. Designing Self-Adaptive Service-Oriented Appli-
cations. In Proceedings of the Fourth International Conference on Autonomic Computing
(ICAC’07), Jacksonville, FL, USA, pages 16–17. IEEE Computer Society, 2007. doi:

10.1109/ICAC.2007.13.

154

http://dx.doi.org/10.1007/s11280-006-0016-3
http://dx.doi.org/10.1007/s11280-006-0016-3
http://drops.dagstuhl.de/opus/volltexte/2008/1500/pdf/08031.SWM.Paper.1500.pdf
http://drops.dagstuhl.de/opus/volltexte/2008/1500/pdf/08031.SWM.Paper.1500.pdf
http://www.rfc-archive.org/getrfc.php?rfc=1932
http://www.rfc-archive.org/getrfc.php?rfc=1932
http://www.rfc-archive.org/getrfc.php?rfc=2368
http://www.csscript.net/
http://dx.doi.org/10.1109/WISE.2003.1254493
http://dx.doi.org/10.1007/978-3-540-69534-9_6
http://dx.doi.org/10.1007/978-3-540-69534-9_6
http://dx.doi.org/10.1109/ICWS.2007.59
http://dx.doi.org/10.1109/ICAC.2007.13
http://dx.doi.org/10.1109/ICAC.2007.13

Bibliography

[43] L. Duboc, D. S. Rosenblum, and T. Wicks. A framework for modelling and analysis of
software systems scalability. In Proceedings of the 28th International Conference on Soft-
ware Engineering (ICSE’06), Shanghai, China, pages 949–952. ACM Press, 2006. Doctoral
Symposium. doi:10.1145/1134285.1134460.

[44] S. Dustdar and M. P. Papazoglou. Services and Service Composition – An Introduction.
it – Information Technology, 50(2/2008), Feb. 2008. doi:10.1524/itit.2008.0468.

[45] S. Dustdar and W. Schreiner. A Survey on Web services Composition. International
Journal of Web and Grid Services, 1(1):1–30, 2005. doi:10.1504/IJWGS.2005.007545.

[46] G. Dyaz, M. E. Cambronero, J. J. Pardo, V. Valero, and F. Cuartero. Automatic genera-
tion of Correct Web Services Choreographies and Orchestrations with Model Checking
Techniques. In Proceedings of the International Conference on Internet and Web Applications
and Services (ICIW’06), Guadeloupe, French Caribbean. IEEE Computer Society, Feb. 2006.
doi:10.1109/AICT-ICIW.2006.53.

[47] J. Epstein, S. Matsumoto, and G. McGraw. Software Security and SOA: Danger, Will
Robinson! IEEE Security and Privacy, 4(1):80–83, 2006. doi:10.1109/MSP.2006.23.

[48] T. Erl. Service-Oriented Architecture: Concepts, Technology & Design. Prentice Hall/Pear-
sonPTR, 2005.

[49] R. Eshuis, P. W. P. J. Grefen, and S. Till. Structured service composition. In Proceedings of
the 4th International Conference on Business Process Management (BPM’06), Vienna, Austria,
pages 97–112. Springer, 2006. doi:10.1007/11841760_8.

[50] Esper – Event Stream and Complex Event Processing Platform. Available from: http:
//esper.codehaus.org/ [cited April 11, 2009].

[51] O. Ezenwoye and S. M. Sadjadi. RobustBPEL2: Transparent Autonomization in Business
Processes through Dynamic Proxies. In Proceedings of the 8th International Symposium on
Autonomous Decentralized Systems (ISADS’07), Sedona, Arizona, pages 17–24. IEEE Com-
puter Society, Mar. 2007. doi:10.1109/ISADS.2007.65.

[52] L. Fei, Y. Fangchun, S. Kai, and S. Sen. A Policy-Driven Distributed Framework for Mon-
itoring Quality of Web Services. In Proceedings of the 2008 IEEE International Conference
on Web Services (ICWS’08), Beijing, China, pages 708–715. IEEE Computer Society, 2008.
doi:10.1109/ICWS.2008.123.

[53] K. Fujii. Jpcap – a Java library for capturing and sending network packets [on-
line]. Available from: http://netresearch.ics.uci.edu/kfujii/jpcap/doc/
[cited March 20, 2009].

[54] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

155

http://dx.doi.org/10.1145/1134285.1134460
http://dx.doi.org/10.1524/itit.2008.0468
http://dx.doi.org/10.1504/IJWGS.2005.007545
http://dx.doi.org/10.1109/AICT-ICIW.2006.53
http://dx.doi.org/10.1109/MSP.2006.23
http://dx.doi.org/10.1007/11841760_8
http://esper.codehaus.org/
http://esper.codehaus.org/
http://dx.doi.org/10.1109/ISADS.2007.65
http://dx.doi.org/10.1109/ICWS.2008.123
http://netresearch.ics.uci.edu/kfujii/jpcap/doc/

Bibliography

[55] Grid Resource Allocation Agreement Protocol (GRAAP) WG. Web Services Agreement
Specification (WS-Agreement), Mar. 2007. Available from: http://www.ogf.org/

documents/GFD.107.pdf [cited March 15, 2009].

[56] D. Groenewegen and E. Visser. Declarative Access Control for WebDSL: Combining
Language Integration and Separation of Concerns. In Proceedings of the International
Conference on Web Engineering (ICWE’08), Yorktown Heights, New York, pages 175–188.
IEEE Computer Society, July 2008. doi:10.1109/ICWE.2008.15.

[57] Y. Guan, A. K. Ghose, and Z. Lu. Using constraint hierarchies to support QoS-guided
service composition. In Proceedings of the IEEE International Conference on Web Services
(ICWS’06), Chicago, IL, USA, pages 743–752. IEEE Computer Society, 2006. doi:10.

1109/ICWS.2006.143.

[58] Hibernate – Relational Persistence for Java and .NET. Available from: http://www.
hibernate.org/ [cited April 6, 2009].

[59] J. S. Hiroshi Wada, Paskorn Champrasert and K. Oba. Multiobjective Optimization of
SLA-aware Service Composition. In Proceedings of the Workshop on Methodologies for Non-
functional Properties in Services Computing, co-located with the IEEE Congress on Services
(SERVICES’08), Honolulu, HI, USA. IEEE Computer Society, July 2008. doi:10.1109/
SERVICES-1.2008.77.

[60] A. Huber. A Transformation Engine for Resolving Web Service Heterogeneities within
the VRESCO Runtime. Master’s thesis, Technical University Vienna, 2009. (to appear).

[61] IBM. Web Service Level Agreement (WSLA) Language Specification, Jan. 2003. Avail-
able from: http://www.research.ibm.com/wsla/ [cited March 15, 2009].

[62] International Telecommunication Union (ITU) [online]. Available from: http://www.
itu.int/ [cited March 15, 2009].

[63] S. Jackowski. RFC1946 – Native ATM Support for ST2+. Network Working Group, May
1996. Informational. Available from: http://www.rfc-archive.org/getrfc.

php?rfc=1946.

[64] M. C. Jaeger. Optimising Quality-of-Service for the Composition of Electronic Services. PhD
thesis, Technische Universität Berlin, Dec. 2006.

[65] M. C. Jaeger, G. Mühl, and S. Golze. QoS-aware Composition of Web Services: A Look
at Selection Algorithms. In Proceedings of the IEEE International Conference on Web Services
(ICWS’05), Orlando, FL, USA, pages 807–808. IEEE Computer Society, July 2005. doi:
10.1109/ICWS.2005.95.

[66] M. C. Jaeger, G. Mühl, and S. Golze. QoS-aware Composition of Web Services: An
Evaluation of Selection Algorithms. In R. Meersman and Z. Tari, editors, Proceedings of

156

http://www.ogf.org/documents/GFD.107.pdf
http://www.ogf.org/documents/GFD.107.pdf
http://dx.doi.org/10.1109/ICWE.2008.15
http://dx.doi.org/10.1109/ICWS.2006.143
http://dx.doi.org/10.1109/ICWS.2006.143
http://www.hibernate.org/
http://www.hibernate.org/
http://dx.doi.org/10.1109/SERVICES-1.2008.77
http://dx.doi.org/10.1109/SERVICES-1.2008.77
http://www.research.ibm.com/wsla/
http://www.itu.int/
http://www.itu.int/
http://www.rfc-archive.org/getrfc.php?rfc=1946
http://www.rfc-archive.org/getrfc.php?rfc=1946
http://dx.doi.org/10.1109/ICWS.2005.95
http://dx.doi.org/10.1109/ICWS.2005.95

Bibliography

the Confederated International Conferences CoopIS, DOA, and ODBASE 2005 (OTM’05), Agia
Napa, Cyprus, volume 3760 of Lecture Notes in Computer Science (LNCS), pages 646–661.
Springer, Nov. 2005. doi:10.1007/11575771.

[67] M. C. Jaeger, G. Rojec-Goldmann, and G. Mühl. QoS Aggregation for Service Composi-
tion using Workflow Patterns. In Proceedings of the 8th International Enterprise Distributed
Object Computing Conference (EDOC’04), pages 149–159. IEEE Computer Society, Sept.
2004. doi:10.1109/EDOC.2004.10027.

[68] M. C. Jaeger, G. Rojec-Goldmann, and G. Mühl. QoS Aggregation in Web Service Com-
positions. In Proceedings of the IEEE International Conference on e-Technology, e-Commerce
and e-Service (EEE’05), Hong Kong, China, pages 181–185. IEEE Computer Society, March
2005. doi:10.1109/EEE.2005.110.

[69] R. Jurca and B. Faltings. Reputation-based Service Level Agreements for Web Services.
In Proceedings of the International Conference on Service-Oriented Computing (ICSOC’05),
Amsterdam, The Netherlands, volume 3826 of Lecture Notes in Computer Science, pages 396–
409. Springer, 2005. doi:10.1007/11596141.

[70] R. Jurca, B. Faltings, and W. Binder. Reliable QoS Monitoring Based on Client Feedback.
In Proceedings of the 16th International World Wide Web Conference (WWW’07), Banff, Al-
berta, Canada, pages 1003–1012. ACM Press, 2007. doi:10.1145/1242572.1242708.

[71] A. Keller and H. Ludwig. The WSLA Framework: Specifying and Monitoring Ser-
vice Level Agreements for Web Services. Journal of Network and Systems Management,
11(1):57–81, Mar. 2003. doi:10.1023/A:1022445108617.

[72] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. An
Overview of AspectJ. In Proceedings of the 15th European Conference on Object-Oriented
Programming (ECOOP’01), Budapest, Hungary, volume 2072 of Lecture Notes in Computer
Science, pages 327–353. Springer, June 2001.

[73] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier, and
J. Irwin. Aspect-Oriented Programming. In Proceedings of the 11th European Conference on
Object-Oriented Programming (ECOOP’97), Jyväskylä, Finnland, pages 220–242. Springer,
June 1997.

[74] B. Kiepuszewski, A. H. M. ter Hofstede, and C. Bussler. On Structured Workflow Mod-
elling. In Proceedings of the 12th International Conference on Advanced Information Sys-
tems Engineering (CAISE’00), Stockholm, Sweden, pages 431–445. Springer, 2000. doi:

10.1007/3-540-45140-4_29.

[75] T. Laner. A Semantically Enriched Querying Language for the VRESCO Metamodel.
Master’s thesis, Technical University Vienna, 2009. (to appear).

157

http://dx.doi.org/10.1007/11575771
http://dx.doi.org/10.1109/EDOC.2004.10027
http://dx.doi.org/10.1109/EEE.2005.110
http://dx.doi.org/10.1007/11596141
http://dx.doi.org/10.1145/1242572.1242708
http://dx.doi.org/10.1023/A:1022445108617
http://dx.doi.org/10.1007/3-540-45140-4_29
http://dx.doi.org/10.1007/3-540-45140-4_29

Bibliography

[76] A. Lazovik, M. Aiello, and M. Papazoglou. Planning and monitoring the execution of
web service requests. Journal on Digital Libraries, 6(3):235–246, June 2006. doi:10.

1007/s00799-006-0002-5.

[77] P. Leitner. The DAIOS Framework - Dynamic, Asynchronous and Message-oriented
Invocation of Web Services. Master’s thesis, Technical University Vienna, 2007.

[78] P. Leitner, A. Michlmayr, and S. Dustdar. Towards Flexible Interface Mediation for Dy-
namic Service Invocations. In Proceedings of the 3rd Workshop on Emerging Web Services
Technology (WEWST’08), co-located with the 6th IEEE European Conference on Web Services
(ECOWS’08), Dublin, Ireland, pages 45–59. Springer, Nov. 2008.

[79] P. Leitner, A. Michlmayr, F. Rosenberg, and S. Dustdar. End-to-End Versioning Sup-
port for Web Services. In Proceedings of the International Conference on Services Comput-
ing (SCC’08), Honolulu, Hawaii, USA, pages 59–66. IEEE Computer Society, July 2008.
doi:10.1109/SCC.2008.21.

[80] P. Leitner, F. Rosenberg, and S. Dustdar. DAIOS– Efficient Dynamic Web Service Invoca-
tion. IEEE Internet Computing, 13(3):72–80, May/June 2009. doi:10.1109/MIC.2009.
57.

[81] Y. Liu, A. H. Ngu, and L. Zeng. QoS Computation and Policing in Dynamic Web Service
Selection. In Proceedings of the 13th International Conference on World Wide Web (WWW’04),
New York, NY, USA, pages 66–73. ACM Press, May 2004. doi:10.1145/1013367.

1013379.

[82] J. Löwy. Programming WCF Services. O’Reilly, 2007.

[83] A. Mani and A. Nagarajan. Understanding Quality of Service for Web Services,
Jan. 2002. Available from: http://www.ibm.com/developerworks/library/

ws-quality.html [cited March 15, 2009].

[84] A. Marconi, M. Pistore, and P. Traverso. Implicit vs. Explicit Data-Flow Requirements in
Web Service Composition Goals. In Proceedings of the 4th International Conference Service-
Oriented Computing (ICSOC’06), Chicago, IL, USA, volume 4294 of Lecture Notes in Com-
puter Science, pages 459–464. Springer, Dec. 2006. doi:10.1007/11948148_40.

[85] S. McIlraith and T. Son. Adapting Golog for Composition of Semantic Web Services. In
Proceedings of the 8th International Conference on Principles of Knowledge Representation and
Reasoning (KR’02), Toulouse, France. Morgan Kaufmann, 2002.

[86] S. A. McIlraith, T. C. Son, and H. Zeng. Semantic Web Services. IEEE Intelligent Systems,
16(2):46–53, 2001. doi:10.1109/5254.920599.

[87] D. A. Menasce. QoS issues in Web services. IEEE Internet Computing, 6(6):72–75, Novem-
ber/December 2002. doi:10.1109/MIC.2002.1067740.

158

http://dx.doi.org/10.1007/s00799-006-0002-5
http://dx.doi.org/10.1007/s00799-006-0002-5
http://dx.doi.org/10.1109/SCC.2008.21
http://dx.doi.org/10.1109/MIC.2009.57
http://dx.doi.org/10.1109/MIC.2009.57
http://dx.doi.org/10.1145/1013367.1013379
http://dx.doi.org/10.1145/1013367.1013379
http://www.ibm.com/developerworks/library/ws-quality.html
http://www.ibm.com/developerworks/library/ws-quality.html
http://dx.doi.org/10.1007/11948148_40
http://dx.doi.org/10.1109/5254.920599
http://dx.doi.org/10.1109/MIC.2002.1067740

Bibliography

[88] D. A. Menasce. Composing Web Services: A QoS View. IEEE Internet Computing, 8(6):88–
90, November/December 2004. doi:10.1109/MIC.2004.57.

[89] J. Mendling and M. Hafner. From WS-CDL Choreography to BPEL Process Orchestra-
tion. Journal of Enterprise Information Management (JEIM), 21(5):525–542, 2008. Special
Issue on MIOS 2005 Best Papers. doi:10.1108/17410390810904274.

[90] A. Michlmayr, F. Rosenberg, P. Leitner, and S. Dustdar. Advanced Event Processing
and Notifications in Service Runtime Environments. In Proceedings of the 2nd Interna-
tional Conference on Distributed Event-Based Systems (DEBS’08), Rome, Italy, pages 115–
125. ACM Press, July 2008. doi:10.1145/1385989.1386004.

[91] A. Michlmayr, F. Rosenberg, P. Leitner, and S. Dustdar. End-to-End Support
for QoS-Aware Service Selection, Invocation and Mediation in VRESCO. Tech-
nical Report TUV-184-2009-03, Technical University Vienna, June 2009. Avail-
able from: http://www.infosys.tuwien.ac.at/Staff/rosenberg/papers/

TUV-1841-2009-03.pdf.

[92] A. Michlmayr, F. Rosenberg, P. Leitner, and S. Dustdar. Service Provenance in QoS-
Aware Web Service Runtimes. In Proceedings of the International Conference on Web Services
(ICWS’09), Los Angeles, USA. IEEE Computer Society, July 2009.

[93] A. Michlmayr, F. Rosenberg, C. Platzer, M. Treiber, and S. Dustdar. Towards Recov-
ering the Broken SOA Triangle – A Software Engineering Perspective. In Proceedings
of the 2nd International Workshop on Service Oriented Software Engineering (IW-SOSWE’07),
Dubrovnik, Croatia, pages 22–28. ACM Press, 2007. doi:10.1145/1294928.1294934.

[94] Microsoft. MGrammar Language Specification. Available from: http://msdn.

microsoft.com/en-us/library/dd129869.aspx [cited April 15, 2009].

[95] Microsoft. Oslo Modeling Platform. Available from: http://www.microsoft.com/
soa/products/oslo.aspx [cited April 15, 2009].

[96] Microsoft Cooperation Inc. Windows Workflow Foundation [online]. 2006. Available
from: http://msdn2.microsoft.com/en-us/library/ms734631.aspx [cited
March 15, 2009].

[97] Microsoft Cooperation Inc. Solver Foundation [online]. 2008. Available from: http:
//www.solverfoundation.com [cited May 10, 2009].

[98] Microsoft Cooperation Inc. Performance Counters [online]. 2009. Avail-
able from: http://msdn.microsoft.com/en-us/library/w8f5kw2e(VS.71)

.aspx [cited March 18, 2009].

159

http://dx.doi.org/10.1109/MIC.2004.57
http://dx.doi.org/10.1108/17410390810904274
http://dx.doi.org/10.1145/1385989.1386004
http://www.infosys.tuwien.ac.at/Staff/rosenberg/papers/TUV-1841-2009-03.pdf
http://www.infosys.tuwien.ac.at/Staff/rosenberg/papers/TUV-1841-2009-03.pdf
http://dx.doi.org/10.1145/1294928.1294934
http://msdn.microsoft.com/en-us/library/dd129869.aspx
http://msdn.microsoft.com/en-us/library/dd129869.aspx
http://www.microsoft.com/soa/products/oslo.aspx
http://www.microsoft.com/soa/products/oslo.aspx
http://msdn2.microsoft.com/en-us/library/ms734631.aspx
http://www.solverfoundation.com
http://www.solverfoundation.com
http://msdn.microsoft.com/en-us/library/w8f5kw2e(VS.71).aspx
http://msdn.microsoft.com/en-us/library/w8f5kw2e(VS.71).aspx

Bibliography

[99] O. Moser, F. Rosenberg, and S. Dustdar. Non-Intrusive Monitoring and Adaptation for
WS-BPEL. In Proceedings of the 17th International International World Wide Web Confer-
ence (WWW’08), Beijing, China, pages 815–824. ACM Press, Apr. 2008. doi:10.1145/
1367497.1367607.

[100] O. Moser, F. Rosenberg, and S. Dustdar. VieDAME – Flexible and Robust BPEL Processes
through Monitoring and Adaptation (Informal Demo Paper). In Proceedings of the 30th
International Conference on Software Engineering (ICSE’08), Leipzig, Germany, pages 917–
918. ACM Press, May 2008. doi:10.1145/1370175.1370186.

[101] A. Mukhija, A. Dingwall-Smith, and D. S. Rosenblum. QoS-Aware Service Composi-
tion in Dino. In Proceedings of the Fifth European Conference on Web Services (ECOWS’05),
Halle (Saale), Germany, pages 3–12. IEEE Computer Society, Nov. 2007. doi:10.1109/
ECOWS.2007.24.

[102] C. Nagl, F. Rosenberg, and S. Dustdar. VIDRE – A Distributed Service-Oriented Busi-
ness Rule Engine based on RuleML. In Proceedings of the 10th International Conference on
Enterprise Computing (EDOC’06), Hong Kong, China, pages 35–44. IEEE Computer Soci-
ety, Oct. 2006. doi:10.1109/EDOC.2006.67.

[103] E. Newcomer and G. Lomow. Understanding SOA with Web Services. Addison Wesley,
1st edition, 2005.

[104] E. D. Nitto, C. Ghezzi, A. Metzger, M. P. Papazoglou, and K. Pohl. A journey to highly
dynamic, self-adaptive service-based applications. Automated Software Engineering, 15(3-
4):313–341, 2008. doi:10.1007/s10515-008-0032-x.

[105] OASIS. OASIS Web Services Quality Model TC [online]. 2005. Available
from: http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=

wsqm [cited March 15, 2009].

[106] OASIS. UDDI Version 3 Specification, 2005. Available from: http://www.

oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3 [cited
March 15, 2009].

[107] OASIS. Web Service Business Process Execution Language 2.0, 2006. Available
from: http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=

wsbpel [cited March 15, 2009].

[108] OASIS Web Services Reliable Exchange (WS-RX) TC. Web Services Reliable Messag-
ing Policy Assertion (WS-RM Policy) Version 1.1, June 2007. OASIS Standard. Avail-
able from: http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.

1-spec-os-01.html [cited March 15, 2009].

160

http://dx.doi.org/10.1145/1367497.1367607
http://dx.doi.org/10.1145/1367497.1367607
http://dx.doi.org/10.1145/1370175.1370186
http://dx.doi.org/10.1109/ECOWS.2007.24
http://dx.doi.org/10.1109/ECOWS.2007.24
http://dx.doi.org/10.1109/EDOC.2006.67
http://dx.doi.org/10.1007/s10515-008-0032-x
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsqm
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsqm
http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3
http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html

Bibliography

[109] OASIS Web Services Reliable Messaging TC. WS-Reliability 1.1, Nov. 2004. OA-
SIS Standard. Available from: http://www.oasis-open.org/committees/tc_

home.php?wg_abbrev=wsrm [cited March 15, 2009].

[110] OASIS Web Services Secure Exchange (WS-SX) TC. WS-SecurityPolicy 1.2, July
2007. OASIS Standard. Available from: http://docs.oasis-open.org/ws-sx/
ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html [cited
March 15, 2009].

[111] OASIS Web Services Secure Exchange (WS-SX) TC. WS-Trust 1.3, Mar. 2007. OA-
SIS Standard. Available from: http://www.oasis-open.org/committees/tc_

home.php?wg_abbrev=ws-sx [cited March 15, 2009].

[112] OASIS Web Services Security TC. Web Services Security v1.1, Feb. 2006. OASIS Stan-
dard. Available from: http://www.oasis-open.org/committees/tc_home.

php?wg_abbrev=wss [cited March 15, 2009].

[113] E. Oberortner, U. Zdun, and S. Dustdar. Domain-Specific Languages for Service-
Oriented Architectures: An Explorative Study. In P. Mähönen, K. Pohl, , and T. Priol,
editors, Proceedings of ServiceWave 2008, Madrid, Spain, pages 159–170. Springer, 2008.
doi:10.1007/978-3-540-89897-9.

[114] E. Oberortner, U. Zdun, and S. Dustdar. Tailoring a Model-Driven Quality-of-Service
DSL for Various Stakeholders. In Proceedings of the Workshop on Modeling in Software
Engineering (MiSE’09), co-located with the 31th International Conference on Software Engi-
neering (ICSE’09), Vancouver, Canada. IEEE Computer Society, May 2009.

[115] C. Ouyang, E. Verbeek, W. M. van der Aalst, S. Breutel, M. Dumas, and A. H. ter Hof-
stede. Formal semantics and analysis of control flow in WS-BPEL. Science of Computer
Programming, 67(2-3):162–198, July 2007. doi:10.1016/j.scico.2007.03.002.

[116] I. V. Papaioannou, D. T. Tsesmetzis, I. G. Roussaki, and M. E. Anagnostou. A QoS On-
tology Language for Web-Services. In International Conference on Advanced Information
Networking and Applications (AINA’06), pages 101–106. IEEE Computer Society, 2006.
doi:10.1109/AINA.2006.51.

[117] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann. Service-Oriented Com-
puting: State of the Art and Research Challenges. IEEE Computer, 40(11):38–45, 2007.
doi:10.1109/MC.2007.400.

[118] C. Pautasso. BPEL for REST. In Proceedings of the 6th International Conference on Business
Process Management (BPM’08), Milan, Italy, volume 5240 of Lecture Notes in Computer
Science, pages 278–293. Springer, Sept. 2008. doi:10.1007/978-3-540-85758-7_

21.

161

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrm
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrm
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-sx
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-sx
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://dx.doi.org/10.1007/978-3-540-89897-9
http://dx.doi.org/10.1016/j.scico.2007.03.002
http://dx.doi.org/10.1109/AINA.2006.51
http://dx.doi.org/10.1109/MC.2007.400
http://dx.doi.org/10.1007/978-3-540-85758-7_21
http://dx.doi.org/10.1007/978-3-540-85758-7_21

Bibliography

[119] C. Pautasso and G. Alonso. The JOpera Visual Composition Language. Journal of Vi-
sual Languages and Computing (JVLC), 16:119–152, 2005. Available from: http://www.
jopera.org.

[120] C. Pautasso, O. Zimmermann, and F. Leymann. RESTful Web Services vs. Big Web
Services: Making the Right Architectural Decision. In Proceedings of the 17th International
International World Wide Web Conference (WWW’08), Beijing, China, pages 805–814, Apr.
2008. doi:10.1145/1367497.1367606.

[121] B. Pernici, editor. Mobile Information Systems. Springer, Apr. 2006.

[122] pi4 Technologies Foundation. pi4soa [online]. 2007. Available from: http://

sourceforge.net/projects/pi4soa/ [cited March 15, 2009].

[123] M. Pistore, P. Traverso, P. Bertoli, and A. Marconi. Automated Synthesis of Composite
BPEL4WS Web Services. In Proceedings of the IEEE International Conference on Web Services
(ICWS’05), pages 293–301. IEEE Computer Society, 2005. doi:10.1109/ICWS.2005.
27.

[124] C. Platzer, F. Rosenberg, and S. Dustdar. Enhancing Web Service Discovery and Moni-
toring with Quality of Service Information. In P. Periorellis, editor, Securing Web Services:
Practical Usage of Standards and Specifications. Idea Group Inc. (IGI), Nov. 2007.

[125] S. Ran. A model for web services discovery with QoS. SIGecom Exchanges, 4(1):1–10,
2003. doi:10.1145/844357.844360.

[126] L. Richardson and S. Ruby. RESTful Web Services. O’Reilly Media, Inc., May 2007.

[127] G. Rocher. The Definitive Guide to Grails. Apress, 2006.

[128] F. Rosenberg and P. Celikovic. Vienna Composition Language (VCL) Specification. Technical
University Vienna. Available from: http://www.infosys.tuwien.ac.at/staff/
rosenberg/vresco/ [cited April 15, 2009].

[129] F. Rosenberg, P. Celikovic, A. Michlmayr, P. Leitner, and S. Dustdar. An End-to-End Ap-
proach for QoS-Aware Service Composition. In Proceedings of the 13th IEEE International
Enterprise Distributed Object Computing Conference (EDOC’09), Auckland, New Zealand.
IEEE Computer Society, 2009.

[130] F. Rosenberg, F. Curbera, M. J. Duftler, and R. Khalaf. Composing RESTful Services
and Collaborative Workflows: A Lightweight Approach. Internet Computing, 12:24–31,
September/October 2008. doi:10.1109/MIC.2008.98.

[131] F. Rosenberg, C. Enzi, A. Michlmayr, C. Platzer, and S. Dustdar. Integrating Quality of
Service Aspects in Top-Down Business Process Development using WS-CDL and WS-
BPEL. In Proceedings of the 11th IEEE International Enterprise Distributed Object Computing

162

http://www.jopera.org
http://www.jopera.org
http://dx.doi.org/10.1145/1367497.1367606
http://sourceforge.net/projects/pi4soa/
http://sourceforge.net/projects/pi4soa/
http://dx.doi.org/10.1109/ICWS.2005.27
http://dx.doi.org/10.1109/ICWS.2005.27
http://dx.doi.org/10.1145/844357.844360
http://www.infosys.tuwien.ac.at/staff/rosenberg/vresco/
http://www.infosys.tuwien.ac.at/staff/rosenberg/vresco/
http://dx.doi.org/10.1109/MIC.2008.98

Bibliography

Conference (EDOC’07), Annapolis, Maryland, USA., pages 15–26. IEEE Computer Society,
Oct. 2007. doi:10.1109/EDOC.2007.23.

[132] F. Rosenberg, P. Leitner, A. Michlmayr, P. Celikovic, and S. Dustdar. Towards Compo-
sition as a Service - A Quality of Service Driven Approach. In Proceedings of the First
IEEE Workshop on Information and Software as Services (WISS’09), co-located with the 25th
International Conference on Data Engineering (ICDE’09), Shanghai, China, pages 1733–1740.
IEEE Computer Society, Mar. 2009. doi:10.1109/ICDE.2009.153.

[133] F. Rosenberg, P. Leitner, A. Michlmayr, and S. Dustdar. Integrated Metadata Support
for Web Service Runtimes. In Proceedings of the Middleware for Web Services Workshop
(MWS’08), co-located with the 12th IEEE International Distributed Object Computing Confer-
ence (EDOC’08), Munich, Germany, pages 361–368. IEEE Computer Society, Sept. 2008.
doi:10.1109/EDOCW.2008.38.

[134] F. Rosenberg, A. Michlmayr, and S. Dustdar. Top-Down Business Process Development
and Execution using Quality of Service Aspects. Enterprise Information Systems, pages
459–475, November 2008. doi:10.1080/17517570802395626.

[135] F. Rosenberg, C. Nagl, and S. Dustdar. Applying Distributed Business Rules – The
VIDRE Approach. In Proceedings of the IEEE International Conference on Services Com-
puting (SCC’06), Chicago, USA, pages 471–478. IEEE Computer Society, Sept. 2006.
doi:10.1109/SCC.2006.22.

[136] F. Rosenberg, C. Platzer, and S. Dustdar. Bootstrapping Performance and Dependability
Attributes of Web Services. In Proceedings of the IEEE International Conference on Web
Services (ICWS’06), Chicago, USA, pages 205–212. IEEE Computer Society, Sept. 2006.
doi:10.1109/ICWS.2006.39.

[137] J. Skene, F. Raimondi, and W. Emmerich. Service-Level Agreements for Electronic Ser-
vices. IEEE Transactions on Software Engineering, 2009. (Forthcoming).

[138] C. U. Smith and L. G. Williams. Performance Solutions: A Practical Guide to Creating Re-
sponsive, Scalable Software. Addison-Wesley Professional, 1 edition, Sept. 2001.

[139] H. G. Song and K. Lee. sPAC (Web Services Performance Analysis Center): Performance
Analysis and Estimation Tool of Web Services. In Proceedings of the 3rd International Con-
ference on Business Process Management (BPM’05), Nancy, France, pages 109–119. Springer,
2005.

[140] W. R. Stevens. TCP/IP Illustrated I: The Protocols. Addison-Wesley, 1994.

[141] R. N. Taylor, N. Medvidovic, and E. Dashofy. Software Architecture: Foundations, Theory,
and Practice. Wiley, 2009.

163

http://dx.doi.org/10.1109/EDOC.2007.23
http://dx.doi.org/10.1109/ICDE.2009.153
http://dx.doi.org/10.1109/EDOCW.2008.38
http://dx.doi.org/10.1080/17517570802395626
http://dx.doi.org/10.1109/SCC.2006.22
http://dx.doi.org/10.1109/ICWS.2006.39

Bibliography

[142] S. Thakkar, C. A. Knoblock, J. L. Ambite, and C. Shahabi. Dynamically Composing Web
Services from Online Sources. In Workshop on Intelligent Service Integration co-located with
the 18th National Conference on Artificial Intelligence (AAAI’02), Edmonton, Canada, pages
1–7, 2002.

[143] N. Thio and S. Karunasekera. Automatic measurement of a QoS metric for Web ser-
vice recommendation. In Proceedings of the Australian Software Engineering Conference
(ASWEC’05), Brisbane, Australia, pages 202–211. IEEE Computer Society, 2005. doi:

10.1109/ASWEC.2005.16.

[144] M. Tian, A. Gramm, T. Naumowicz, H. Ritter, and J. Schiller. A Concept for QoS Integra-
tion in Web Services. In Proceedings of the 1st Web Services Quality Workshop (WQW’03),
Rome, Italy, pages 149–155. IEEE Computer Society, 2003.

[145] M. Tian, A. Gramm, H. Ritter, and J. Schiller. Efficient Selection and Monitoring of QoS-
aware Web services with the WS-QoS Framework. In Proceedings of the International Con-
ference on Web Intelligence (WI’04), Beijing, China, pages 152–158. IEEE Computer Society,
Sept. 2004. doi:10.1109/WI.2004.60.

[146] Apache Tomcat. Available from: http://tomcat.apache.org/ [cited April 24,
2009].

[147] V. Tosic, B. Pagurek, K. Patel, B. Esfandiari, and W. Ma. Management applications of
the Web Service Offerings Language (WSOL). Information Systems, 30(7):564–586, 2005.
doi:10.1016/j.is.2004.11.005.

[148] H.-L. Truong, R. Samborski, and T. Fahringer. Towards a Framework for Monitoring
and Analyzing QoS Metrics of Grid Services. In Proceedings of the International Conference
on e-Science and Grid Computing (e-Science’06), Amsterdam, The Netherlands, pages 65–72.
IEEE Computer Society, 2006. doi:10.1109/E-SCIENCE.2006.142.

[149] T. Unger, F. Leymann, S. Mauchart, and T. Scheibler. Aggregation of Service Level
Agreements in the Context of Business Processes. In Proceedings of the 12th International
IEEE Enterprise Distributed Object Computing Conference (EDOC’08), Munich, Germany,
pages 43–52. IEEE Computer Society, 2008. doi:10.1109/EDOC.2008.29.

[150] W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and A. Barros. Workflow Pat-
terns. Distributed and Parallel Databases, 14(3):5–51, July 2003. doi:10.1023/A:

1022883727209.

[151] W. M. van der Aalst, M. Dumas, A. H. ter Hofstede, N. Russell, P. Wohed, and . H. M.
W. Verbeek. Life After BPEL? In Proceedings of the International Workshop on Web Services
and Formal Methods (WS-FM’05), Versailles, France, pages 35–50. Springer, 2005.

[152] W. M. P. van der Aalst and A. H. M. ter Hofstede. YAWL: yet another workflow lan-
guage. Information Systems, 30(4):245–275, 2005. doi:10.1016/j.is.2004.02.002.

164

http://dx.doi.org/10.1109/ASWEC.2005.16
http://dx.doi.org/10.1109/ASWEC.2005.16
http://dx.doi.org/10.1109/WI.2004.60
http://tomcat.apache.org/
http://dx.doi.org/10.1016/j.is.2004.11.005
http://dx.doi.org/10.1109/E-SCIENCE.2006.142
http://dx.doi.org/10.1109/EDOC.2008.29
http://dx.doi.org/10.1023/A:1022883727209
http://dx.doi.org/10.1023/A:1022883727209
http://dx.doi.org/10.1016/j.is.2004.02.002

Bibliography

[153] A. van Deursen, P. Klint, and J. Visser. Domain-specific languages: an annotated bibli-
ography. SIGPLAN Not., 35(6):26–36, 2000. doi:10.1145/352029.352035.

[154] E. Visser. WebDSL: A Case Study in Domain-Specific Language Engineering.
Technical Report TUD-SERG-2008-023, TU Deflt, The Netherlands, 2008. Avail-
able from: http://swerl.tudelft.nl/twiki/pub/Main/TechnicalReports/
TUD-SERG-2008-023.pdf [cited April 28, 2009].

[155] A. Vogel, B. Kerhervé, G. von Bochmann, and J. Gecsei. Distributed Multimedia and QS:
A Survey. IEEE MultiMedia, 2(2):10–19, 1995. doi:10.1109/93.388195.

[156] M. Völter and T. Stahl. Model-Driven Software Development : Technology, Engineering,
Management. John Wiley & Sons, June 2006.

[157] W3C. Web Services Description Language (WSDL) 1.1, 2001. Available from: http:
//www.w3.org/TR/wsdl [cited March 15, 2009].

[158] W3C. SOAP Version 1.2, 2003. Available from: http://www.w3.org/TR/soap [cited
March 15, 2009].

[159] W3C. OWL-S: Semantic Markup for Web Services, 2004. Available from: http://www.
w3.org/Submission/OWL-S/ [cited March 15, 2009].

[160] W3C. Resource Description Framework (RDF), 2004. Available from: http://www.
w3.org/RDF/ [cited April 5, 2009].

[161] W3C. Web Services Choreography Description Language (WS-CDL), Nov. 2005. Avail-
able from: http://www.w3.org/TR/ws-cdl-10/ [cited March 15, 2009].

[162] W3C. Web Services Eventing (WS-Eventing), 2006. Available from: http://www.w3.
org/Submission/WS-Eventing/ [cited Arpil 28, 2009].

[163] W3C. Semantic Annotations for WSDL and XML Schema, 2007. Available from: http:
//www.w3.org/TR/sawsdl/ [cited May 22, 2009].

[164] W3C. Web Services Policy Attachment, Sept. 2007. Available from: http://www.w3.
org/TR/ws-policy-attach/ [cited March 15, 2009].

[165] W3C. Web Services Policy Framework v1.5, Sept. 2007. Available from: http://www.
w3.org/TR/ws-policy/ [cited March 15, 2009].

[166] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D. F. Ferguson. Web Services
Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable
Messaging, and More. Prentice Hall, 1st edition, 2005.

[167] N. Wickramage and S. Weerawarana. A Benchmark for Web Service Frameworks. In
Proceedings of the IEEE International Conference on Service Computing (SCC’05), pages 233–
240. IEEE Computer Society, July 2005. doi:10.1109/SCC.2005.9.

165

http://dx.doi.org/10.1145/352029.352035
http://swerl.tudelft.nl/twiki/pub/Main/TechnicalReports/TUD-SERG-2008-023.pdf
http://swerl.tudelft.nl/twiki/pub/Main/TechnicalReports/TUD-SERG-2008-023.pdf
http://dx.doi.org/10.1109/93.388195
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/soap
http://www.w3.org/Submission/OWL-S/
http://www.w3.org/Submission/OWL-S/
http://www.w3.org/RDF/
http://www.w3.org/RDF/
http://www.w3.org/TR/ws-cdl-10/
http://www.w3.org/Submission/WS-Eventing/
http://www.w3.org/Submission/WS-Eventing/
http://www.w3.org/TR/sawsdl/
http://www.w3.org/TR/sawsdl/
http://www.w3.org/TR/ws-policy-attach/
http://www.w3.org/TR/ws-policy-attach/
http://www.w3.org/TR/ws-policy/
http://www.w3.org/TR/ws-policy/
http://dx.doi.org/10.1109/SCC.2005.9

Bibliography

[168] WinPcap: The Windows Packet Capture Library [online]. Available from: http://
www.winpcap.org/ [cited March 22, 2009].

[169] Wireshark – network protocol analyzer [online]. Available from: http://www.

wireshark.org/ [cited March 22, 2009].

[170] T. Yu, Y. Zhang, and K.-J. Lin. Efficient algorithms for Web services selection with end-
to-end QoS constraints. ACM Transactions on the Web, 1(6):1–26, 2007. doi:10.1145/
1232722.1232728.

[171] J. M. Zaha, A. P. Barros, M. Dumas, and A. H. M. ter Hofstede. Let’s Dance: A Language
for Service Behavior Modeling. In R. Meersman and Z. Tari, editors, Proceedings of the
International Conference on Cooperative Information Systems (CoopIS’06), Montpellier, France,
volume 4275 of Lecture Notes in Computer Science, pages 145–162. Springer, 2006. doi:
http://dx.doi.org/10.1007/11914853_10.

[172] J. M. Zaha, M. Dumas, A. H. M. ter Hofstede, A. P. Barros, and G. Decker. Service
Interaction Modeling: Bridging Global and Local Views. In Proceedings of the 10th IEEE
International Enterprise Distributed Object Computing Conference (EDOC’06), Hong Kong,
China, pages 45–55, Oct. 2006. doi:10.1109/EDOC.2006.50.

[173] U. Zdun, C. Hentrich, and S. Dustdar. Modeling Process-Driven and Service-Oriented
Architectures Using Patterns and Pattern Primitives. ACM Transactions on the Web
(TWEB), 1(3):14:1–14:44, 2007. doi:10.1145/1281480.1281484.

[174] U. Zdun, C. Hentrich, and W. M. van der Aalst. A Survey of Patterns for Service-
Oriented Architectures. International Journal of Internet Protocol Technology, 1(3):132–143,
2006. doi:10.1504/IJIPT.2006.009739.

[175] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and Q. Z. Sheng. Quality Driven Web
Services Composition. In Proceedings of the 12th International Conference on World Wide
Web (WWW’03), Budapest, Hungary, pages 411–421. ACM Press, 2003. doi:10.1145/
775152.775211.

[176] L. Zeng, B. Benatallah, A. H. Ngu, M. Dumas, J. Kalagnanam, and H. Chang. QoS-Aware
Middleware for Web Services Composition. IEEE Transactions on Software Engineering,
30(5):311–327, May 2004. doi:10.1109/TSE.2004.11.

[177] L. Zeng, H. Lei, and H. Chang. Monitoring the QoS for Web Services. In Proceedings of
the 5th International Conference on Service-Oriented Computing (ICSOC’07), Vienna, Austria,
pages 132–144. Springer, 2007. doi:10.1007/978-3-540-74974-5_11.

[178] C. Zhou, L.-T. Chia, and B.-S. Lee. DAML-QoS Ontology for Web Services. In IEEE
International Conference on Web Services (ICWS’04), San Diego, CA, USA, pages 472–479.
IEEE Computer Society, 2004. doi:10.1109/ICWS.2004.1314772.

166

http://www.winpcap.org/
http://www.winpcap.org/
http://www.wireshark.org/
http://www.wireshark.org/
http://dx.doi.org/10.1145/1232722.1232728
http://dx.doi.org/10.1145/1232722.1232728
http://dx.doi.org/http://dx.doi.org/10.1007/11914853_10
http://dx.doi.org/http://dx.doi.org/10.1007/11914853_10
http://dx.doi.org/10.1109/EDOC.2006.50
http://dx.doi.org/10.1145/1281480.1281484
http://dx.doi.org/10.1504/IJIPT.2006.009739
http://dx.doi.org/10.1145/775152.775211
http://dx.doi.org/10.1145/775152.775211
http://dx.doi.org/10.1109/TSE.2004.11
http://dx.doi.org/10.1007/978-3-540-74974-5_11
http://dx.doi.org/10.1109/ICWS.2004.1314772

Appendix A

QUATSCH Tool Support

In Figure A.1, a screenshot of the UI is depicted. The open dialog can be used to enter all
the details about a service that should be monitored. After entering the details, QUATSCH

starts preprocessing the service and it is then immediately available and several evaluation
configurations can be defined.

Figure A.1: QUATSCH UI - Add Service

In Figure A.2, the dynamic chart builder is shown. On the left-side, the data on the chart
can be defined and customized. The chart itself is then visible on the right-side of the screen.

167

Appendix

Figure A.2: QUATSCH UI - Dynamic Charts

168

Appendix B

VCL Example Listing

Listing B.1 depicts the VCL code for the cell phone number porting process introduced in
Chapter 6 (page 92).� �

1 composition TelcoCasestudy;
2

3 # define required features
4 feature Crm, *.TelcoCasestudy.CustomerService.CustomerLookup;
5 feature LookupPartner, *.PhoneManagementService.LookupPartner;
6 feature PortCheck, *.PortingService.PortabilityCheck;
7 feature PortNumber, *.PortingService.PortNumber;
8 feature ActivatePort, *.PhoneManagementService.ActivatePortedNumber;
9 feature Notify, *.NotificationService.NotifyUser;

10

11 # define global constraints
12 constraint global {
13 input = {
14 long customerId;
15 string numberToPort;
16 }
17 output = {
18 string status;
19 }
20 qos = {
21 responseTime = 4500;
22 availability = 0.90;
23 reliableMessage = true;
24 }
25 }
26

27 # define feature constraints
28 constraint Crm {
29 input = {
30 CustomerLookupRequest[
31 int CustomerId;
32]
33 }
34 output = {
35 CustomerLookupResponse[
36 string Firstname;
37 string Lastname;
38 string PhoneNumber;
39 string Mail;
40 string Street;
41 string Zip;
42 string City;

169

Appendix

43]
44 }
45 qos = {
46 responseTime = 2500, required;
47 availability = 0.95, required;
48 reliableMessage = true, weak;
49 security = X509, strong;
50 accuracy = 0.9, weak;
51 throughput = 100, weak;
52 price = 10.5, weak;
53 }
54 }
55

56 constraint LookupPartner {
57 input = {
58 LookupPartnerRequest[
59 string NumberToPort;
60]
61 }
62 output = {
63 LookupPartnerResponse[
64 string ProviderName;
65]
66 }
67 qos = {
68 responseTime = 2500, required;
69 availability = 0.95;
70 reliableMessage = true;
71 }
72 }
73

74 constraint PortCheckOne {
75 input = {
76 PortabilityCheckRequest[
77 string NumberToPort;
78]
79 }
80 output = {
81 PortabilityCheckResponse[
82 int IsPortable;
83]
84 }
85 }
86

87 constraint PortNumberOne {
88 input = {
89 PortNumberRequest[
90 string NumberToPort;
91]
92 }
93 output = {
94 PortNumberResponse[
95 int IsPorted;
96]
97 }
98 }
99

100 constraint PortCheck {
101 input = {
102 PortabilityCheckRequest[
103 string NumberToPort;

170

Appendix

104]
105 }
106 output = {
107 PortabilityCheckResponse[
108 int IsPortable;
109]
110 }
111 }
112 constraint PortNumber {
113 input = {
114 PortNumberRequest[
115 string NumberToPort;
116]
117 }
118 output = {
119 PortNumberResponse[
120 int IsPorted;
121]
122 }
123 }
124

125 constraint ActivatePort {
126 input = {
127 ActivatePortedNumberRequest[
128 string CustomerId;
129 string PortedNumber;
130]
131 }
132 output = {
133 ActivatePortedNumberResponse[
134 string Status;
135]
136 }
137 }
138

139 constraint Notify {
140 input = {
141 NotifyUserRequest[
142 string Mail;
143 string Message;
144]
145 }
146 output = {
147 NotifyUserResponse[
148 string Status;
149]
150 }
151 }
152

153 # business protocol specification
154 invoke Crm {
155 CustomerLookupRequest[
156 CustomerId = customerId;
157]
158 }
159

160 invoke LookupPartner{
161 LookupPartnerRequest[
162 NumberToPort = numberToPort;
163]
164 }

171

Appendix

165

166 invoke PortCheck {
167 PortabilityCheckRequest[
168 NewProvider = LookupPartner.LookupPartnerRequest.ProviderName;
169 NewNumber = numberToPort;
170]
171 }
172

173 check (PortCheck.PortabilityCheckResponse.IsPortable = true)
174 {
175 invoke PortNumber {
176 PortNumberRequest[
177 PortedNumber = numberToPort;
178]
179 }
180 }
181 else
182 {
183 throw "Number can’t be ported by external provider";
184 }
185

186 check (PortNumber.PortNumberResponse.IsPorted = true)
187 {
188 invoke ActivatePort {
189 ActivatePortedNumberRequest [
190 CustomerId = customerId;
191 NumberToPort = Crm.CustomerLookupResponse.PhoneNumber;
192]
193 }
194 invoke Notify {
195 NotifyUserRequest [
196 Mail = Crm.CustomerLookupResponse.PhoneNumber;
197 Message = "Phone number ported";
198]
199 }
200 }
201 else
202 {
203 throw "Problem occurred on external partner side";
204 }
205

206 return {
207 status = "Ported";
208 }� �

Listing B.1: Telco Example Implementation

172

Appendix

Listing B.2 shows the textual representation of the VCL composition from Listing B.1 ac-
cording to the structured composition language introduced by Eshuis et al. [49].� �

1 {
2 AND {
3 SEQ [
4 ROOT,
5 AND {
6 SEQ [Crm(CustomerLookup)],
7 SEQ [
8 LookupPartner(LookupPartner),
9 PortCheck(PortabilityCheck),

10 IFTHENBLOCK,
11 XOR {
12 SEQ [THENBLOCK, PortNumber(PortNumber)],
13 SEQ [ELSEBLOCK, THROW]
14 },
15 SYNC
16]
17 },
18 IFTHENBLOCK,
19 XOR {
20 SEQ [
21 THENBLOCK,
22 AND{
23 SEQ [ActivatePort(ActivatePortedNumber)],
24 SEQ [Notify(NotifyUser)]
25 }
26],
27 SEQ [ELSEBLOCK,THROW]
28 },
29 SYNC
30]
31 }
32 }� �

Listing B.2: Structured Composition Representation

173

Curriculum Vitae
Florian Rosenberg

1 Personal Information

Current Position: University Assistant (Faculty Member)
Address (Work): Distributed Systems Group

Information Systems Institute
Technical University Vienna
Argentinierstrasse 8/184-1, 1040 Vienna, Austria

Phone (Work): +43 1 58801 18418
Fax (Work): +43 1 58801 18491
Email: florian@infosys.tuwien.ac.at
Web: http://www.florianrosenberg.com
Data and Place of Birth: 19. May 1981, Steyr, Austria
Citizenship: Austrian

2 Education

PhD Studies in Computer Science 02/2005 - 06/2009
Technical University Vienna, Austria

Thesis: QoS-Aware Composition of Adaptive Service-Oriented Applications
Supervision:

Prof. Dr. Schahram Dustdar – Technical University Vienna, Austria
Prof. M. Brian Blake, PhD – University of Notre Dame, USA

Software Engineering Studies (equivalent to MSc) 10/1999 – 10/2004
Upper Austrian University of Applied Sciences, Hagenberg, Austria
University of Linz (1st year)

Thesis: A Configurable Deep Web MetaSearch Engine Based on Lixto

3 Work Experience

University Assistant 12/2005 – now
Distributed Systems Group, Technical University Vienna, Austria

175

PhD Co-Op Student 06/2008 - 09/2008
IBM T.J. Watson Research Center, New York, USA

PhD Co-Op Student 06/2007 - 12/2007
IBM T.J. Watson Research Center, New York, USA

Research Assistant 01/2005 – 12/2005
Distributed Systems Group, Technical University Vienna, Austria

Java Developer 02/2004 – 08/2004
Lixto Software GmbH, Vienna, Austria

Java Developer 09/2003 – 01/2004
Siemens PSE, Vienna, Austria

Other summer internships and project work during undergraduate studies at IBM Austria,
Racon Software GmbH and DaimlerChrysler Research.

4 Research Interests

• Software Engineering, especially Software Architecture and Software Composition
• Service-Oriented Computing (SOC)
• Quality of Service (QoS) issues in SOC
• Middleware and Web technologies

5 Publications

Journals

[1] Christian Platzer, Florian Rosenberg, and Schahram Dustdar. Web Service Cluster-
ing using Multi-Dimensional Angles as Proximity Measures. ACM Transactions on
Internet Technologies, 2009. (forthcoming).

[2] Philipp Leitner, Florian Rosenberg, and Schahram Dustdar. Daios – Efficient Dy-
namic Web Service Invocation. IEEE Internet Computing, 13(3):72–80, May/June
2009. doi:10.1109/MIC.2009.57.

[3] Florian Rosenberg, Anton Michlmayr, and Schahram Dustdar. Top-Down Business
Process Development and Execution using Quality of Service Aspects. Enterprise In-
formation Systems, 2:459–475, November 2008. doi:10.1080/17517570802395626.

[4] Florian Rosenberg, Francisco Curbera, Matthew J. Duftler, and Rania Khalaf. Com-
posing RESTful Services and Collaborative Workflows: A Lightweight Approach. In-
ternet Computing, 12:24–31, September/October 2008. doi:10.1109/MIC.2008.98.

176

[5] Michael Mrissa, Chirine Ghedira, Djamal Benslimane, Zakaria Maamar, Florian
Rosenberg, and Schahram Dustdar. A Context-based Mediation Approach to Com-
pose Semantic Web Services. ACM Transactions on Internet Technologies, Special
Special Issue on Semantic Web Services: Issues, Solutions and Applications, 8(1),
2007. doi:10.1145/1294148.1294152.

[6] Matthias Baldauf, Schahram Dustdar, and Florian Rosenberg. A Survey on Context-
Aware Systems. Journal on Ad Hoc and Ubiquitous Computing, 2(4):263–277, 2007.
doi:10.1504/IJAHUC.2007.014070.

Conferences, Workshops and Demos

[7] Florian Rosenberg, Predrag Celikovic, Anton Michlmayr, Philipp Leitner, and
Schahram Dustdar. An End-to-End Approach for QoS-Aware Service Composition.
In Proceedings of the 13th IEEE International Enterprise Distributed Object Comput-
ing Conference (EDOC’09), Auckland, New Zealand. IEEE Computer Society, 2009.

[8] Branimir Wetzstein, Philipp Leitner, Florian Rosenberg, Ivona Brandic, Frank Ley-
mann, and Schahram Dustdar. Monitoring and Analyzing Influential Factors of Busi-
ness Process Performance. In Proceedings of the 13th IEEE International Enterprise
Distributed Object Computing Conference (EDOC’09), Auckland, New Zealand. IEEE
Computer Society, 2009.

[9] Anton Michlmayr, Florian Rosenberg, Philipp Leitner, and Schahram Dustdar. Ser-
vice Provenance in QoS-Aware Web Service Runtimes. In Proceedings of the Interna-
tional Conference on Web Services (ICWS’09), Los Angeles, USA. IEEE Computer
Society, July 2009. Acceptance rate: 15,6%.

[10] Florian Rosenberg, Philipp Leitner, Anton Michlmayr, Predrag Celikovic, and
Schahram Dustdar. Towards Composition as a Service - A Quality of Service Driven
Approach. In Proceedings of the First IEEE Workshop on Information and Software
as Services (WISS’09), co-located with the 25th International Conference on Data
Engineering (ICDE’09), 29. March 2009, Shanghai, China., pages 1733–1740. IEEE
Computer Society, March 2009. doi:10.1109/ICDE.2009.153.

[11] Florian Rosenberg, Philipp Leitner, Anton Michlmayr, and Schahram Dustdar. Inte-
grated Metadata Support for Web Service Runtimes. In Proceedings of the Middleware
for Web Services Workshop (MWS’08), co-located with the 12th IEEE International
Distributed Object Computing Conference (EDOC’08), Munich, Germany., pages
361–368. IEEE Computer Society, September 2008. doi:10.1109/EDOCW.2008.38.

[12] Philipp Leitner, Anton Michlmayr, Florian Rosenberg, and Schahram Dustdar. End-
to-End Versioning Support for Web Services. In Proceedings of the International
Conference on Services Computing, Honolulu, Hawaii, USA, pages 59–66. IEEE Com-
puter Society, July 2008. Acceptance rate: 18%. doi:10.1109/SCC.2008.21.

[13] Anton Michlmayr, Florian Rosenberg, Philipp Leitner, and Schahram Dustdar. Ad-
vanced Event Processing and Notifications in Service Runtime Environments. In
Proceedings of the 2nd International Conference on Distributed Event-Based Sys-
tems (DEBS’08), Rome, Italy, pages 115–125. ACM Press, July 2008. doi:10.1145/
1385989.1386004.

177

[14] Anton Michlmayr, Philipp Leitner, Florian Rosenberg, and Schahram Dustdar. Pub-
lish/Subscribe in the VRESCo SOA Runtime (Demo Paper). In Proceedings of the
2nd International Conference on Distributed Event-Based Systems (DEBS’08), Rome,
Italy, pages 317–320. ACM Press, July 2008. doi:10.1145/1385989.1386031.

[15] Oliver Moser, Florian Rosenberg, and Schahram Dustdar. VieDAME – Flexi-
ble and Robust BPEL Processes through Monitoring and Adaptation (Informal
Demo Paper). In Proceedings of the 30th International Conference on Software
Engineering (ICSE’08), Leipzig, Germany, pages 917–918. ACM Press, May 2008.
doi:10.1145/1370175.1370186.

[16] Oliver Moser, Florian Rosenberg, and Schahram Dustdar. Non-Intrusive Monitoring
and Adaption for WS-BPEL. In Proceedings of the 17th International World Wide
Web Conference (WWW’08), Beijing, China., pages 815–824. ACM Press, April 2008.
Acceptance rate: 11% (97 of 880). doi:10.1145/1367497.1367607.

[17] Florian Rosenberg, Christian Enzi, Anton Michlmayr, Christian Platzer, and
Schahram Dustdar. Integrating Quality of Service Aspects in Top-Down Business
Process Development using WS-CDL and WS-BPEL. In Proceedings of the 11th IEEE
International Enterprise Distributed Object Computing Conference (EDOC’07), An-
napolis, Maryland, USA. IEEE Computer Society, October 2007. Acceptance rate:
28% (33 of 115). doi:10.1109/EDOC.2007.23.

[18] Anton Michlmayr, Florian Rosenberg, Christian Platzer, Martin Treiber, and
Schahram Dustdar. Towards Recovering the Broken SOA Triangle - A Software En-
gineering Perspective. In Proceedings of the 2nd International Workshop on Service
Oriented Software Engineering (IW-SOSE’07), co-located with the 6th Joint Meeting
of the European Software Engineering Conference and the ACM SIGSOFT Sympo-
sium on the Foundations of Software Engineering (ESEC/FSE’07), Dubrovnik, Croa-
tia., pages 22–28. ACM Press, September 2007. doi:10.1145/1294928.1294934.

[19] Lukasz Juszczyk, Anton Michlmayr, Christian Platzer, Florian Rosenberg, Alexander
Urbanec, and Schahram Dustdar. Large Scale Web Service Discovery and Compo-
sition using High Performance In-Memory Indexing. In Proceedings of the IEEE
Joint Conference on E-Commerce Technology (CEC’07) and Enterprise Computing,
E-Commerce and E-Services (EEE’07), Tokyo, Japan. IEEE Computer Society, July
2007. doi:doi/10.1109/CEC-EEE.2007.60.

[20] Christoph Nagl, Florian Rosenberg, and Schahram Dustdar. ViDRE – A Distributed
Service-Oriented Business Rule Engine based on RuleML. In Proceedings of the 10th
International Conference on Enterprise Computing (EDOC’06), Hong Kong, China,
pages 35–44. IEEE Computer Society, October 2006. Acceptance rate: 24%. doi:
10.1109/EDOC.2006.67.

[21] Florian Rosenberg, Christian Platzer, and Schahram Dustdar. Bootstrapping Per-
formance and Dependability Attributes of Web Services. In Proceedings of the
IEEE International Conference on Web Services (ICWS’06), Chicago, USA, pages
205–212. IEEE Computer Society, September 2006. Acceptance rate: 18%. doi:
10.1109/ICWS.2006.39.

[22] Florian Rosenberg, Christoph Nagl, and Schahram Dustdar. Applying Distributed
Business Rules – The ViDRE Approach. In Proceedings of the IEEE International

178

Conference on Services Computing (SCC’06), Chicago, USA, pages 471–478. IEEE
Computer Society, September 2006. doi:10.1109/SCC.2006.22.

[23] Marco Aiello, Florian Rosenberg, Christian Platzer, Agata Ciabattoni, and Schahram
Dustdar. Service QoS Composition at the Level of Part Names. In Proceedings of
the 3rd International Workshop on Web Services and Formal Methods (WS-FM’06),
Vienna, Austria, September 8-9, 2006, volume 4184 of Lecture Notes in Computer
Science, pages 24–37. Springer, 2006. doi:10.1007/11841197_2.

[24] Marco Aiello, Christian Platzer, Florian Rosenberg, Huy Tran, Martin Vasko, and
Schahram Dustdar. Web Service Indexing for Efficient Retrieval and Composition. In
Proceedings of the IEEE Joint Conference on E-Commerce Technology (CEC’06) and
Enterprise Computing, E-Commerce and E-Services (EEE’06), San Francisco, USA,
pages 63–65. IEEE Computer Society, June 2006. doi:10.1109/CEC-EEE.2006.96.

[25] Florian Rosenberg and Schahram Dustdar. Towards a Distributed Service-Oriented
Business Rules System. In Proceedings of the 3th European Conference on Web Ser-
vices (ECOWS’05), Växjö, Sweden, pages 14–23. IEEE Computer Society, November
2005. doi:10.1109/ECOWS.2005.28.

[26] Johann Oberleitner, Florian Rosenberg, and Schahram Dustdar. A Lightweight
Model-Driven Orchestration Engine for e-Services. In Proceedings of the 6th Inter-
national Workshop on Technologies for E-Services (TES’05) Trondheim, Norway,
September 2-3, 2005, Revised Selected Papers, volume 3811 of Lecture Notes in Com-
puter Science, pages 48–57. Springer, 2005. doi:10.1007/11607380_5.

[27] Florian Rosenberg and Schahram Dustdar. Business Rules Integration in BPEL –
A Service-Oriented Approach. In Proceedings of the 7th International IEEE Confer-
ence on E-Commerce Technology (CEC’05), Munich, Germany, pages 476–479. IEEE
Computer Society, February 2005. doi:10.1109/ICECT.2005.25.

[28] Florian Rosenberg and Schahram Dustdar. Design and Implementation of a Service-
Oriented Business Rules Broker. In Proceedings of the 1st IEEE International
Workshop on Service-oriented Solutions for Cooperative Organizations (SoS4CO’05),
Munich, Germany, pages 55–63. IEEE Computer Society, February 2005. doi:
10.1109/CECW.2005.10.

Book Chapters

[29] Philipp Leitner, Florian Rosenberg, Anton Michlmayr, Andreas Huber, and Schahram
Dustdar. A Mediator-Based Approach to Resolving Interface Heterogeneity of Web
Services. In Walter Binder and Schahram Dustdar, editors, Post-proceedings of the
3rd Workshop on Emerging Web Services Technology (WEWST’08), Dublin, Ireland.
Birkhäuser, 2009. forthcoming.

[30] Anton Michlmayr, Philipp Leitner, Florian Rosenberg, and Schahram Dustdar. Event
Processing in Web Service Runtime Environments. In Annika Hinze and Alex Buch-
mann, editors, Handbook of Research on Advanced Distributed Event-Based Systems,
Publish/Subscribe and Message Filtering Technologies. IGI Global, 2009. forthcom-
ing.

179

[31] Florian Rosenberg, Anton Michlmayr, Christoph Nagl, and Schahram Dustdar. Dis-
tributed Business Rules within Service-Centric Systems. In Kuldar Taveter Dra-
gan Gasevic, Adrian Giurca, editor, Handbook of Research on Emerging Rule-Based
Languages and Technologies: Open Solutions and Approaches. IGI Global, 2009.
forthcoming.

[32] Christian Platzer, Florian Rosenberg, and Schahram Dustdar. Enhancing Web Ser-
vice Discovery and Monitoring with Quality of Service Information. In Panos Peri-
orellis, editor, Securing Web Services: Practical Usage of Standards and Specification.
Idea Publishing Group, 2007.

Theses

[33] Florian Rosenberg. QoS-Aware Composition of Adaptive Service-Oriented Systems.
PhD thesis, Technical University Vienna, Austria, June 2009.

[34] Florian Rosenberg. A Configurable Deep Web MetaSearch Engine Based on Lixto.
Master’s thesis, Upper Austria University of Applied Sciences (Campus Hagenberg),
Austria, September 2004.

6 Professional Activities

Conference Organization

1. Local Organization Chair of the 4th International Conference on Business Process
Management (BPM’06), 5.-7. Sept. 2006, Vienna, Austria.

Program Committee Memberships

1. 2nd International Workshop on Dynamic and Declarative Business Processes (DDBP’09)
in conjunction with the 13th IEEE International EDOC Conference (EDOC’09),
31. Aug. - 4. Sept. 2009, Auckland, New Zealand

2. BPM Demo Track, 7th International Conference on Business Process Management
(BPM’09), 7.-10. Sept. 2009, Ulm, Germany

3. 1st International Workshop on Dynamic and Declarative Business Processes (DDBP’08)
in conjunction with the 12th IEEE International EDOC Conference (EDOC’08), 15.-
19. Sept. 2008, Munich, Germany

4. BPM Demo Track, 6th International Conference on Business Process Management
(BPM’08), 2.-4. Sept. 2008, Milan, Italy

5. 9th ACIS International Conference on Software Engineering, Artificial Intelligence,
Networking, and Parallel/Distributed Computing (SNPD’08), 6.-8. Aug. 2008, Phuket,
Thailand

6. IADIS International Conference on Applied Computing (AC’08), 10.-13. Apr. 2008,
Algavre, Portugal

7. BPM Demo Track, 5th International Conference on Business Process Management
(BPM’07), 25.-27. Sept. 2007, Brisbane, Australia

180

8. 8th ACIS International Conference on Software Engineering, Artificial Intelligence,
Networking, and Parallel/Distributed Computing (SNPD’07), 25.-27. Jul. 2007, Qing-
dao, China

9. IADIS International Conference on Applied Computing (AC’07), 17.-20. Feb. 2007,
Salamanca, Spain

10. BPM Demo Session, 4th International Conference on Business Process Management
(BPM’06), 5.-7. Sept. 2006, Vienna, Austria

Reviewer for Journals

ACM Transactions on Adaptive and Autonomous Systems (TAAS), ACM Transactions
on the Web (TWEB), Data & Knowledge Engineering (Elsevier), IBM Systems Journal,
IEEE Internet Computing, IEEE Systems Journal, IEEE Transactions on Services Com-
puting, IEEE Transactions on Software Engineering, International Journal of Computers
and Applications, International Journal of E-Business Research, Journal of System Ar-
chitecture (Elsevier), Service Oriented Computing and Applications (Springer), Software:
Practice and Experience (Wiley)

7 Teaching Activities

Courses

1. Distributed Systems Lab, Technical University Vienna
Winter 2005-2009; 500 undergraduate students

2. Technologies for Distributed Systems, Technical University Vienna
Summer 2007-SS 2009; 160 master students

3. Project Lab, Computer Science Lab Work, Internet Computing Lab Work,
Technical University Vienna
2005-2009; undergraduate and master students

Master Thesis Supervision

1. Predrag Celikovic: A Domain-Specific Language for QoS-Aware Service Composition
(working title)

2. Christian Enzi: Modeling Web Service Choreographies with WS-CDL and WS-
BPEL

3. Stephan Herzog: V-BSE – A Simulation Environment for WS-BPEL Processes

4. Andreas Huber: A Transformation Engine for Resolving Web Service Heterogeneities
within the VRESCo Runtime

5. Thomas Laner: A Semantically Enriched Querying Language for the VRESCo Meta-
data Model

6. Philipp Leitner: Daios - Dynamic, Asynchronous and Message-oriented Invocation
of Web Services

181

7. Daniela Malfatti (Univ. of Trento): A Meta-Model for QoS-Aware Service Compo-
sitions (assistant supervisor together with Prof. Marco Aiello)

8. Oliver Moser: A Non-Intrusive Monitoring and Adaptation Approach for WS-BPEL

9. Benjamin Mueller: Optimization of QoS-Aware Service Composition Algorithms
(working title)

10. Christoph Nagl: ViDRE – A Service-Oriented Business Rule Engine Based on
RuleML

11. Alexander Schindler: QoS Monitoring of Workflows within the Microsoft .NET En-
vironment (working title)

12. Bernhard Schreder: Legacy Datasource Integration for the Semantic Web

8 Awards and Prices

• 3rd place at the Web Service Challenge 2007 (together with Lukasz Juszczyk, An-
ton Michlmayr, Christian Platzer, Alexander Urbanec and Schahram Dustdar), co-
located with the IEEE Joint Conference on E-Commerce Technology and Enterprise
Computing, E-Commerce and E-Services (CEC & EEE’07), 23. - 26. July 2007,
Tokyo, Japan.

• 2nd place (out of 31 teams) at the First IEEE International Services Computing
Contest, co-located with the 4th International Conference on Web Services and
the 3th International Conference on Services Computing 2006, Chicago, IL, USA
(together with Christoph Nagl and Schahram Dustdar).

• 2nd place at the Web Service Challenge, co-located with the 2006 IEEE Conference
on E-Commerce Technology (CEC’06) and IEEE Conference on Enterprise Com-
puting, E-Commerce and E-Services (EEE’06), San Francisco, CA, USA (together
with Marco Aiello, Christian Platzer, Martin Vasko and Huy Tran and Schahram
Dustdar).

182

	List of Figures
	List of Tables
	Listings
	Abbreviations
	Introduction
	Motivation
	Problem Definition
	Key Research Issues
	Research Questions

	Contributions
	Organization of the Thesis

	Related Work
	Quality of Service Models
	QoS Monitoring
	Choreography Modeling and Transformation
	Service Composition Approaches
	QoS-Aware Composition and Optimization
	DSLs for Service Composition
	Other Service Composition Approaches

	QoS Integration in Service-Oriented Systems
	A Multi-Layer QoS Model for Service-Oriented Systems
	Motivation
	Service Layer
	Performance
	Dependability
	Security and Trust
	Cost and Payment
	Summary of QoS Attributes

	Choreography Layer
	Orchestration Layer
	Integration of QoS Policies
	Aggregation of Service Layer QoS

	Summary

	Monitoring and Measuring Web Service QoS Attributes
	Motivation
	Overview of Monitoring Approaches
	Provider-Side Instrumentation
	SOAP Intermediaries
	Probing
	Sniffing

	Client-Side Monitoring Approach
	Quatsch Toolkit
	AOP-based Evaluation
	Interceptor-based Evaluation
	TCP Sniffing and Reassembly
	Implementation Aspects

	Evaluation
	Discussion and Limitations

	Transformation of SLA-Aware Choreographies into Orchestrations
	Motivation
	Illustrative Example
	Background and Basic Concepts
	An Overview of WS-CDL
	An Overview of WS-BPEL

	Transformation and QoS Integration Approach
	Overview
	Mapping WS-CDL to BPEL
	Generating WSDL Descriptions
	SLA/QoS Integration

	Architecture and Execution Environment
	Modeling Phase
	Execution Phase

	Discussion

	QoS-Aware Service Composition and Execution
	VRESCo – A Runtime for Adaptive Service-Oriented Systems
	Motivation and Overview
	A Metadata Model for Services
	Illustrative Example
	Metadata Model
	Service Model and Metadata Model Mapping

	Core Runtime Services
	Overview
	VRESCo Query Language
	VRESCo Mapping Framework
	Dynamic Binding and Invocation with Daios

	Evaluation and Discussion
	Querying Performance
	Mediation Performance

	VCL - A Constraint-Based and QoS-Aware Composition Language
	Motivation
	Vienna Composition Language
	Overview and Structure
	Grammar and Language Constructs

	Implementation
	Evaluation

	Composition as a Service using VCL
	Motivation
	CaaS Overview
	Formal Composition Model

	Feature Resolution and Pre-filtering
	Generating Structured Compositions
	Abstract Dependency Graph
	Generating the Structured Composition

	QoS-Aware Optimization
	QoS Aggregation
	Constraint Optimization Problem
	Integer Programming Approach

	Generation and Deployment of the Composite Service
	Implementation and Evaluation
	Feature Resolution
	Structured Composition Generation
	QoS-Aware Optimization
	Composite Service Generation and Deployment
	End-to-End Performance

	Discussion

	Conclusions and Future Research
	Summary
	Assessment of the Research Questions
	Outlook and Future Research

	Bibliography
	Quatsch Tool Support
	VCL Example Listing
	Curriculum Vitae

