
Transformation Strategies between Block-Oriented and
Graph-Oriented Process Modelling Languages

Jan Mendling1, Kristian Bisgaard Lassen2, Uwe Zdun1

1 Institute of Information Systems and New Media
Vienna University of Economics and Business Administration

Augasse 2-6, A-1090 Wien, Austria
{jan.mendling|uwe.zdun }@wu-wien.ac.at

2 Department of Computer Science, University of Aarhus
IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark

k.b.lassen@daimi.au.dk

Abstract: Much recent research work discusses the transformation between different
process modelling languages. This work, however, is mainly focussed on specific pro-
cess modelling languages, and thus the general reusability of the applied transformati-
on concepts is rather limited. In this paper, we aim to abstract from concrete transfor-
mation strategies by distinguishing two major paradigms for representing control flow
in process modelling languages: block-oriented languages (such as BPEL and BPML)
and graph-oriented languages (such as EPCs and YAWL). The contribution of this pa-
per are generic strategies for transforming from block-oriented process languages to
graph-oriented languages, and vice versa.

1 Introduction

Business process modelling (BPM) languages play an important role not only for the spe-
cification of workflows but also for the documentation of business requirements. Even
after more than ten years of standardization efforts [Hol04], the primary BPM langua-
ges are still heterogeneous in syntax and semantics. This problem mainly relates to two
issues: Firstly, various BPM language concepts that need to be specified in terms of con-
trol flow [vdAtHKB03] and data flow [RtHEvdA05] have been identified, and most BPM
languages introduce a different sub-set of these (see [MNN04] for a comparison of BPM
concepts). Secondly, the paradigm for representing control flow used in the BPM langua-
ges is another source of heterogeneity. This issue has not been discussed in full depth so
far, but it is of special importance when transformations between BPM languages need to
be implemented. In essence, two control flow paradigms can be distinguished, graph- and
block-oriented:

• Graph-orientedBPM languages specify control flow via arcs that represent the tem-
poral and logical dependencies between nodes. A graph-oriented language may in-

clude different types of nodes. These node types may be different from language to
language. Workflow nets [vdA97] distinguish places and transitions similar to Pe-
tri nets. EPCs [KNS92, MN05] include function, event, and connector node types.
YAWL [vdAtH05] uses graph nodes that represent tasks and conditions. Similar to
XPDL [Wor02], these tasks may specify join and split rules.

• Block-orientedBPM languages define control flow by nesting control primitives
used to represent concurrency, alternatives, and loops. XLANG [Tha01] is an ex-
ample of a pure block-oriented language. BPML [Ark02] and BPEL [ACD+03] are
also block-oriented languages but they also include some graph-oriented concepts
(i.e. links). In BPEL, the control primitives are called structured activities. Due to
the widespread adoption of BPEL as a standard, we will stick to BPEL as an exam-
ple of a block-oriented language. Please note that the concepts presented later are
also applicable for other block-oriented languages, but as our definitions of block-
oriented control flow are rather BPEL-specific, some effort is needed to customize
our concepts to other block-oriented languages.

Transformations between block-oriented languages and graph-oriented languages are use-
ful or needed in a number of scenarios. Many commercial tools support the import and
export in other formats and languages, meaning that transformations in both directions are
implemented by import and export filters. For instance, many graph-oriented tools are re-
cently enhanced to export BPEL in order to support the standard for interoperability and
commercial reasons. Transforming BPEL to Petri nets is done for the purpose of verifica-
tion [HSS05]. BPEL does not have formal semantics and can therefore not be verified. By
defining a transformation semantics for BPEL in terms of a mapping to Petri nets, it is pos-
sible to investigate behavioral properties, such as dead-locks and live-locks. BPEL process
definitions are also transformed to EPCs with the goal to communicate the process behavi-
or e.g. to business analysts in a more visual representation [MZ05]. In the other direction,
model-driven development approaches start from a visual graph-oriented BPM language
such as UML activity diagrams to generate executable BPEL models [Gar03]. These are
only some example scenarios, where BPM transformations are needed. The contribution
of this paper is to abstract from particular graph-oriented or block-oriented control flow
representation, to enable a generic discussion of transformation strategies between both.
The presented transformation strategies are independent from a certain application scena-
rio and can therefore be used in any setting where transformations between graph-oriented
and block-oriented languages are needed.

The rest of the paper is structured as follows. Section 2 defines the abstractions that are
used throughout this paper. In particular, we define an abstraction of graph-oriented BPM
languages calledProcess Graphthat shares most of its concepts with EPCs and YAWL.
Block-oriented languages are abstracted by a language calledBPEL Control Flow. This
language is – as mentioned before – an abstraction of BPEL concepts, but can be map-
ped to the concepts of other block-oriented languages such as BPML. In Section 3 we
discuss strategies for transforming BPEL Control Flow to Process Graph, and in Section
4 the opposite direction. The strategies are specified using pseudo-code algorithms and
their prerequisites, advantages, and shortcomings are discussed. Section 5 discusses rela-
ted work, and finally Section 6 concludes and discusses future work.

2 Process Graphs and BPEL Control Flow

2.1 Introductory Example

To discuss transformations between graph-oriented and block-oriented BPM languages in
a general way, we have to abstract from specific languages. Before that, we illustrate some
features of process graphs and BPEL control flow.

Start

A

Start

B C D

E

F

G

H

I J

End End

Pick

empty empty

Switch

empty

Flow

A

Flow

C D

Sequence

B E

F

G

While

H

Flow

I J

termi-
nate

termi-
nate

Sequence

Figure 1: Process graph and BPEL control flow

The left part of Figure 1 shows aprocess graph. As we are interested in syntax transfor-
mations, we give the semantics of process graphs only in an informal manner. A process
graph has at least one start event and can have multiple end events. Multiple start events
represent mutually exclusive, alternative start conditions. End events have explicit termi-
nation semantics. This means that when an end event is reached, the complete process is
terminated. Connectors represent split and join rules of type OR, XOR, or AND, as they
are specified for YAWL [vdAtH05] or EPCs [MN05]. All of these elements are connected
via arcs which may have an optional guard. Guards are logical expressions that can evalu-
ate to true or false. If a guard of an arc from a connector node with type OR or XOR yields
false, the target branch of the arc is not executed. If true, execution continues with the
target function. After an XOR split, the logical expressions of guards of the subsequent
arcs must be mutually exclusive.

The right part of Figure 1 gives aBPEL control flowwith similar control flow semantics
as the process graph. In the example, so-called structured activities are used whenever
possible. There are structured activities to define alternative start conditions (pick), par-
allel execution (flow), sequential execution (sequence), conditional repetition (while), and
alternative branches (switch). Structured activities can be nested for the definition of com-
plex control flow behavior. Basic activities represent atomic elements of work. There are
special basic activities to represent that nothing is done (empty) or that the BPEL control
flow is terminated (terminate). Within a flow activity, complex synchronization condi-

tions can be specified via so-called links. Each link can have a transition condition, and
each activity that is a target of links can include a join condition of the type OR, XOR, or
AND. For BPEL control flow, we adopt the semantics defined in the BPEL specification
[ACD+03].

2.2 Definition of Process Graphs

To provide for a precise description of the transformation strategies, we formalize the syn-
tax of process graphs and those aspects of BPEL that are relevant for a transformation of
control flow. We define process graphs to be close to EPCs and YAWL using an EPC-like
notation. The respective syntax elements provide the core of graph-based business process
modelling languages. Furthermore, AND and XOR connectors can easily be mapped to
Petri nets, XPDL, or UML activity diagrams.

Notation 1 (Predecessor and Successor Nodes)Let N be a set ofnodes andA ⊆ N ×
N a binary relation overN defining the arcs. For eachnode n ∈ N , we define the set of
predecessor nodes •n = {x ∈ N |(x, n) ∈ A}, and the set ofsuccessor nodes n• =
{x ∈ N |(n, x) ∈ A}.

Definition 1 (Process Graph PG)A process graphPG = (S,E, F,C, l, A, g) consists
of four pairwise disjoint setsS,E, F, C, a mappingl : C → {AND, OR, XOR}, a
binary relationA ⊆ (S ∪F ∪C)× (E ∪F ∪C), and a mappingguard : A → expr such
that:

– S denotes the set of start events.|S| ≥ 1 and∀s ∈ S : |s•| = 1 ∧ |•s| = 0.
– E denotes the set of end events.|E| ≥ 1 and∀e ∈ E : |•e| = 1 ∧ |e•| = 0.
– F denotes the set of functions.∀f ∈ F : |•f | = 1 ∧ |f•| = 1.
– C denotes the set of connectors.∀c ∈ C : |•c| = 1∧ |c•| > 1∨ |•c| > 1∧ |c•| = 1
– The mappingl specifies the type of a connectorc ∈ C asAND, OR, or XOR.
– A defines the flow as a simple and directed graph. An element ofA is calledarc.

Being a simple graph implies that∀n ∈ (E ∪ F ∪ C) : (n, n) /∈ A (no reflexive
arcs) and that∀x, y ∈ (E ∪F ∪C)} : |{(x, y)|(x, y) ∈ A}| = 1 (no multiple arcs).

– The mappingguard specifies a guard for an arca ∈ A. expr is a non-terminal
symbol to represent a logical expression that defines the guard condition. If and
only if this expression yields true, control is propagated to the node subsequent to
the guard. Guards of arcs afterXOR connector nodes have to be mutually exclusive.
Guards are defined on A, however it is only arcs (c,n), wherec ∈ C, l(c) 6= AND
andn ∈ E∪F ∪C, that can be expressed as any logical expression. All other guard
always yields true; e.g. a guard from an AND-split can never yield false and each
function in a sequence is always executed.

Definition 2 (Transitive Closure) Let PG = (S,E, F, C, l, A, g) be defined as in Defi-
nition 1. ThenA∗ is the transitive closure ofA. That is, if(n1, n2) ∈ A∗ there is a path
from n1 to n2 in the process graph via some arcs ofA.

2.3 Definition of BPEL Control Flow

Definition 3 (BPEL Control Flow) A BPEL Control FlowBCF is a tupleBCF =
(Seq, F low, Switch, While, P ick, Scope, Basic, Empty, Terminate, Link, de, jc, tc).
BCF consists of pairwise disjoint setsSeq, F low, Switch,While, P ick, Scope, Basic,
Empty, Terminate. The setStr = Seq ∪ Flow ∪ Switch ∪While ∪ Pick ∪ Scope is
called structured activities, the setBas = Basic ∪ Empty ∪ Terminate is called basic
activities, and the setAct = Str∪Bas activities. Furthermore,BCF consists of a binary
relationLink ⊆ Act × Act, a mappingde : S → P(A) \ ∅, a mappingjc : A → expr,
and a mappingtc : Link → expr, such that

– Seq defines the set of BPEL sequence activities.
– Flow defines the set of BPEL flow activities.
– Switch defines the set of BPEL switch activities.
– While defines the set of BPEL while activities.
– Pick defines the set of BPEL pick activities.
– Scope defines the set of BPEL scopes.
– Basic defines the set of BPEL basic activities without terminate and empty ac-

tivities. As we are only interested in control flow, the distinction of various basic
activities can be neglected here.

– Empty defines the set of BPEL empty activities.
– Terminate defines the set of BPEL terminate activities.
– Link defines a directed graph of BPEL links. These need not to be coherent, but

acyclic, and not be connected across the borders of a while activity.
– The mappingde denotes a decomposition relation from structured activities to set

of nested activities modelled as the power setP(A). de is a tree, i.e. there is no
recursive decomposition.

– The mappingjc defines the join condition of activities.
– The mappingtc defines the transition condition of links.

Definition 4 (Join condition) The join condition, jc, on activities is defined as ajc : A →
expr using operations such as∧, ∨ andY. For an activity x, where•x = {y1, . . . , yn}
including its predecessor in a structured activity, we use the shorthand AND, OR and XOR
for the boolean expressions

jc(x) = tc(y1, x) ∧ . . . ∧ tc(yn, x) (AND)

jc(x) = tc(y1, x) ∨ . . . ∨ tc(yn, x) (OR)

jc(x) = tc(y1, x) Y . . . Y tc(yn, x) (XOR)

Definition 5 (Subtree Fragment) Let Struct ⊆ Act × Act be relation with(a1, a2) ∈
Struct if and only if a2 ∈ de(a1). Struct∗ is the transitive closure ofStruct. This
implies thata2 is nested in the subtree fragment ofa1.

Notice that Definition 2.3 do not describe event-, fault-, and compensation handlers. This
is because our strategies do not take these into consideration. Also, we do not allow links
to cross scope boundaries.

For the purpose of discussing control flow transformations, other BPEL elements than
those included in the definition can be neglected. For details on BPEL semantics refer to
[ACD+03]. Note that e.g. BPML has similar syntax elements with comparable semantics
[Ark02]. Accordingly, the strategies discussed in the following section can also be applied
to define transformations between BPML and process graphs.

2.4 Structural Properties of Process Graphs and BPEL Control Flow

Various transformation choices are bound to certain structural properties of the input
model. A process graph can be structured or unstructured and acyclic or cyclic. We define
a process graph to be structured by the help of reduction rules. They provide not only a
formalization of structuredness but also a means to define a transformation strategy from
process graphs to BPEL control flow. Details on this will be explained in Section 4.

Definition 6 (Structured Process Graph) A process graph PG is structured if and only
if it can be reduced to a single node by the reduction rules formally defined in [MLZ05],
otherwise it is unstructured. All the reduction rules describe a certain component that
is part of the process graph and then how to replace it by a single function. There are
reduction rules for sequences, connector pairs, XOR-loops, and start- and end-blocks. For
details refer to [MLZ05].

Definition 7 (Cyclic versus Acyclic Process Graph)Let F ∪ C be the set of functions
and connectors of a process graphPG. If ∃n ∈ F ∪ C : (n, n) ∈ A∗, thenPG is cyclic.
If ∀n ∈ F ∪C : (n, n) /∈ A∗, thenPG is acyclic. As a process graph is a simple graph, it
holds that(n, n) /∈ A (no reflexive arcs). But if(n, n) ∈ A∗, there must be a path fromn
to n via some further nodesn1, ..., nm ∈ (E ∪ F ∪ C).

Definition 8 (Structured BPEL Control Flow) A BPEL Control FlowBCF is struc-
tured if and only if its setLink = ∅. OtherwiseBCF is unstructured.

Furthermore, we define the point wise application of mapping functions which we need in
algorithms for the transformation strategies.

Definition 9 (Point Wise Application of Functions) If a function is defined asf : A →
B then we extend the behavior to sets so thatf(X) = ∪x∈Xf(x), X ⊆ A.

3 BPEL Control Flow to Process Graph Transformation Strategies

3.1 Strategy 1: Flattening

Before we present the transformation algorithms, we need to define the mapping function
M that transforms a BPEL basic activity to a process graph function.

Definition 10 (Mapping Function M) Let F be a set of functions of a process graphPG
andBasic a set of basic activities of aBCF . The mappingM : Basic → F defines a
transformation of a BPEL basic activity to a process graph function.

Algorithm 1 Pseudo code for Flattening strategy
procedure: Flattening(BCF)

1: Struct ← Seq ∪ Flow ∪ Switch ∪While ∪ Pick ∪ Scope
2: S ← {s}; E ← {e}; F ← ∅; C ← ∅; A ← ∅
3: root ← a, wherea ∈ Struct ∧ @s ∈ Struct : de(s) = a
4: BCFtransform(root, s, e, PG)
5: for all (l1, l2) ∈ Link do
6: A ← A ∪ {(c1, c2)}
7: guard(c1, c2) = tc(l1, l2)
8: end for
9: return PG

Thegeneral ideaof the Flattening strategy is to mapBCF structured activities to respec-
tive process graph fragments. The nestedBCF control flow then becomes a flat process
graph without hierarchy. For this strategy, there areno prerequisites, both structured and
unstructured BPEL control flow can be transformed according to this strategy. Thead-
vantageof Flattening is that the behavior of the whole BPEL process is mapped to one
process graph. Yet, as adrawbackthe descriptive semantics of structured activities get
lost. Such a transformation strategy is useful in ascenariowhere a BPEL process has to
be communicated to business analysts.
Thealgorithm for the Flattening strategy takes aBCF as input and returns aPG. It re-
cursively traverses the nested structure of BPEL control flow in a top-down manner. This
is achieved by identifying the root activity and invoking theBCFtransform(activity, pre-
decessor, successor, partialResult)procedure (see Algorithm 1, line 4) which is reinvoked
recursively on nested elements. The respective code is given in Algorithm 2 in [MLZ05].
The first parameteractivity represents the activity to be processed followed by the prede-
cessor and successor node of the output process graph between which the nested structure
is hooked in; i.e.predecessor andsuccessor. For the root activity these are the start and
end eventss ande. The parameterpartialResult is used to forward the partial result of
the transformation to the procedure. In lines 5–8 links are mapped to arcs and respective
join and split connectors around the activity are added.
The BCFtransform procedure (see Algorithm 2 in [MLZ05]) starts with checking
whether the current activity serves as target or source for links. If so, respective con-
nectors are added at the beginning and the end of the current activity block. There are four
sub-procedures to handle the five structured activitiesSeq, Flow, Switch, While, and
Pick. Here, it is assumed thatPick is only used to model alternative start events.1 The
transformation ofScopes simply calls the procedure for its nested activity.2 Terminate
is mapped to an end event. Moreover,Basic activities are mapped to functions usingM
and hooked in the process graph.Empty activities map to an arc between predecessor and

1In BPEL, Pick can be used at any place where the process waits for concurrent events. As we do not
distinguish message-based and other basic activities, decisions are captured by aSwitch in BCF .

2Please note thatScopes play an important role in BPEL as a local context for variables, handlers, and also
Terminate activities. In the algorithm we abstract from the fact thatTerminate only terminates the current
Scope but not the whole process. Furthermore, we abstract from the fact that a BPEL terminate leads to improper
termination.

successor nodes.
The proceduresBCFtransformSeq, BCFtransformBlock, BCFtransformPick,
andBCFtransformWhile used in theBCFtransform procedure generate the pro-
cess graph elements that correspond to the respectiveBCF structured activities. The
BCFtransformSeq procedure connects all nested activities of a sequence with pro-
cess graph arcs. Although not explicitly defined, this transformation requires an order
defined on the nested activities. For each sub-activities theBCFtransform procedure
is invoked again. This is similar toBCFtransformBlock. Here, a split and a join
connector are generated. Depending on the label given as a fourth parameter the proce-
dure can transform bothSwitch or Flow. TheBCFtransformPick replaces the start
event of the process graph with one start event for each nested sub-activity. Finally, the
BCFtransformWhile procedure generates a loop between an XOR join and XOR split.

3.2 Strategy 2: Hierarchy-Preservation

Many graph-based BPM languages allow to define hierarchies of processes. EPCs for
example include hierarchical functions and process interfaces to model sub-processes. In
YAWL tasks can be decomposed to sub-workflows. Process graphs can be extended to
process graph schemas in a similar way to allow for decomposition.

Definition 11 (Process Graph Schema PGS)A process graph schemaPGS = {PG, s}
consists of a set of process graphsPG and a mappings : F → {∅, pg}with pg ∈ PG. The
mappings is called subprocess relation. It points from a function to a refining subprocess
or, if the function is not decomposed, to the empty set. The relations is a tree, i.e. there is
no recursive definition of sub-processes.

Thegeneral ideaof the Hierarchy-Preservation strategy is to map eachBCF structured
activity to a process graph of a process graph schema. The nesting of structured activ-
ities is preserved as functions with subprocess relations. The algorithm can be defined
in a top-down way similar to the Flattening strategy. Changes have to be defined for the
transformation of structured activities as each is mapped to a new process graph. Aprereq-
uisiteof this strategy is that theBCF is structured: links across the border of structured
activities cannot the expressed by the subprocess relation. Theadvantageof the Hierarchy-
Preservation strategy is that the descriptive semantics of structured activities can be pre-
served. Furthermore, such a transformation can correctly map the BPEL semantics of
Terminate activities that are nested inScopes. As adrawback, the model hierarchy has
to be navigated in order to understand the whole process. This strategy might be useful in
ascenariowhere process graphs have to be mapped back to BPEL structured activities.

3.3 Strategy 3: Hierarchy-Maximization

One disadvantage of Strategy 2 is that it is bound to structured BPEL. The Hierarchy-
Maximization Strategy aims at preserving as much hierarchy as possible with also being
applicable to any BPEL control flow – anyway if structured or unstructured. Thegeneral

ideaof the strategy is to map thoseBCF structured activitiess to subprocess hierarchies
if there are no links nested that cross the border ofs. Accordingly, this strategy is not
subject to any structuralprerequisites. The advantage is that as much structure as possible
is preserved. Yet, the logic of both Strategy 1 and Strategy 2 need to be implemented.

4 Process Graph to BPEL Control Flow Transformation Strategies

4.1 Strategy 1: Element-Preservation

In this section we will describe the first strategy for going from process graphs toBCF .
The following Definitions 12 (Annotated Process Graph) and 13 (Annotated Process Graph
Node Map) are also relevant of further strategies. Before we go through the strategies we
will make some definitions where we introduce the notion of an annotated process graph
to ease the notation in strategy.

Definition 12 (Annotated Process Graph)Let APG = (S,E, F,C, l, A, B) define an
annotated graph, where S, E, F, C and l are defined as Definition 1. We define A and B as

– A is a flow relation on the nodes in PG,A = (S ∪F ∪C ∪B) × (E ∪F ∪C ∪B).

– B is a node in PG that holds an annotation in BCF.

One could think of the set B in the annotated graph, Definition 12, as the set of already
translated parts of the process graph. Definition 13 shows how to translate the nodes
in an annotated process graph. Thegeneral ideaof this strategy is to map all process
graph elements to aFlow and map arcs toLinks. In particular, start events are mapped
to Basic,3 function are mapped to elements ofBasic, and connectors are mapped to
elements ofEmpty, and end events are translated to elements ofTerminate. M defines
the identity on BPEL constructs.

Definition 13 (Annotated Process Graph Node Map)Let M define a mapping:E∪S∪
F ∪ C ∪B → Basic ∪ Empty ∪ Terminate ∪B and M is defined as

M(x) =

Empty(x), if x ∈ C;
Basic(x), if x ∈ F ∪ S;
Terminate(x), if x ∈ E;
x, if x ∈ B.

an injective translation from the nodes in the graph to activities in BPEL.

It is a prerequisiteof this strategy that the process graph needs to be acyclic, i.e.(x, x) /∈
A∗. This is because it is not possible to create an activity that logically precedes itself
[ACD+03]. I.e., if X precedes Y then Y cannot precede X. Theadvantageof the Element-
Preservation strategy is that it is simple to implement and the resulting BPEL will be very
similar to the original process graph since there is a one-to-one correspondence between

3As a consequence, all alternative start branches are activated when the process is started. Specific transition
conditions could be defined to have only one branch being activated. In the algorithm we abstract from this issue.

the nodes. As adrawback, the resulting BPEL control flow includes more elements than
actually needed: connectors are explicitly translated to empty activities in BPEL instead of
join condition on nodes. This means that the BPEL code might have a lot of nodes which
simply act as synchronization points. Furthermore, the resulting BPEL might be more
difficult to understand than if structured activities, such as the Switch, where chosen to
represent some part of the translated graph. If the BPEL code is used in ascenariowhere
readability is important, then it should be applied only for small process graphs since all
elements of the process graph are mapped toBCF .

Algorithm 2 Pseudo Code for Element-Preservation strategy

procedure: Element-Preservation(PG)
1: Empty ← M(C)
2: Basic ← M(F ∪ S)
3: Terminate ← M(E)
4: Flow ← flow
5: de(flow) ← Empty ∪Basic ∪ Terminate
6: Link ← ∅
7: for all (x, y) ∈ A do
8: Link ← Link ∪ (M(x),M(y))
9: end for

10: jc(x) =

AND, | •M−1(x)| > 1 ∧ l(M−1(x)) = and;
XOR, | •M−1(x)| > 1 ∧ l(M−1(x)) = xor;
OR, otherwise.

11: tc(x, y) = guard(M−1(x), M−1(y))
12: return (BCF)

The algorithm for the Element-Preservation strategy takes a process graph as input and
generates a respectiveBCF as output. The Algorithm 2 applies the mapM as defined
in Definition 13 in lines 1–3. Then, a flow element is added that nests all other activities
(lines 4–5). For each arc in the process graph between two nodes a link is added in the BCF
between the corresponding two BCF nodes (lines 6–9). The join condition of activities is
determined from their corresponding node in the process graph. If it is a connector it will
get a similar join condition, i.e. AND for and, OR for or and XOR for xor. Other nodes
will get an OR join condition (line 10). If two nodes are connected by a guarded arc then
this guard will also be present in the BPEL (line 11).

4.2 Strategy 2: Element-Minimization

This strategy simplifies the generatedBCF of strategy 1. Thegeneral ideais to re-
move the empty activities that have been generated from connectors and instead represent
splitting behavior by transition conditions of links and joining behavior by join condi-
tions of subsequent activities. As aprerequisitethe process graph needs to be acyclic,
i.e. (x, x) /∈ A∗, in order to make dead path elimination of BPEL work. Theadvantage
of the resulting BCF specification is, at least to a greater extent than strategy 1, that it is

in the spirit of BPEL Flow, since it removes empty activities generated from connectors.
As adrawback, it is less intuitive to identify correspondences between the process graph
and the generated BCF specification. This strategy should be used inscenarioswhere the
resulting BPEL code needs to have as few nodes as possible. This might be the case when
performance of the BPEL process matters. In contrast to strategy 1, the amount of nodes
is decreased since all empty activities translated from connector nodes are skipped .

Algorithm 3 Pseudo code for Element-Minimization strategy

procedure: Element-Minimization(PG)
1: BCF ← Element-Preservation(PG)
2: while ∃x ∈ Empty : M−1(•x) ∩ C = ∅ do
3: Link ← Link ∪ {(y1, y2) | y1 ∈ •x ∧ y2 ∈ x•}
4: for all y ∈ x• do

5: jc ←
(

jc′(y′) =
{

jc(y′), y′ 6= y;
jc(y′) ∧ jc(x), otherwise.

)

6: end for
7: Link ← Link \ ({(x, y) | y ∈ x•} ∪ {(x, y) | y ∈ •x})
8: Empty ← Empty \ {x}
9: end while

10: return (BCF)

The algorithm translates aPG into a BCF using Algorithm 2 (line 1). Then, there is
a loop iterating over all empty activities that have been generated from connectors (line
2) and do not have other translated connector nodes as input links. Finally all translated
connector nodes will be removed. For each empty activityx, the nodes having a link to
it, are connected to nodes having a link from it. Then, the join conditions of the activities
subsequent tox need to be updated. The join condition of an activity is the old join
condition it had, before removingx, in conjunction with the join condition of x (lines 4–
6). Lines 7–9 defines the actual removal ofx. This involves removing all link relations
thatx occurs in and removingx from the set of Empty activities.

4.3 Strategy 3: Structure-Identification

The general ideaof this transformation strategy is to identify structured activities in the
process graph and apply mappings that are similar to the reduction rules given in Definition
6 on them. As aprerequisitethe process graph needs to be structured according to Defi-
nition 6. Theadvantageof this strategy is that all control flow is translated to structured
activities. For understanding the resulting code this is the best strategy since it reveals
the structured components of the process graph. As adrawbackthe relation to the original
process graph might not be intuitive to identify. This transformation strategy is appropriate
in ascenariowhen theBCF is to be edited by a BPEL modeling tool or, generally, when
understanding the control flow of the process graph is important.
Ouralgorithmuses the reduction rules of Definition 6, but instead of substituting a pattern
with a function it is replaced by an annotated node containing the BPEL translation of

the process graph fragment. This means, in reducing the process graph we generate an
annotated process graph that finally includes only one single annotated node. A single
function is mapped toBasic in the resultingBCF , whereas annotated nodes are mapped
to the set which their annotation is a member of; e.g.Switch if a Switch annotation. Each
of the rules identifies structure that has an equivalent representation in BPEL as follows:

– A sequence of elements is translated to aBCF sequence with activities in the same
order as nodes of the process graph sequence.

– An AND-block is translated to a flow in theBCF . The nodes of the AND-block
are translated to nested activities of the flow.

– An OR-block is translated to a flow in theBCF . The nodes of the OR-block are
translated to nested activities of the flow with an additional empty activity. This
points to each alternative branch and transition conditions are used to activate only
a subset of branches. Notice that this translation makes theBCF unstructured.

– An XOR-block is translated to a switch in theBCF . Each branch of the XOR-block
is mapped to a nested activity of the switch including the respective guard.

– A mixed loop has no direct representation in theBCF . As the rule in Definition
6 state the graph has the structurec1• = {a1}, •c1 ∩ c2• = {a2, . . . , an}. The
condition to leave the loop iscond , i.e. the boolean expression(Yx∈Aguard(x))∧
¬(Yx∈Bguard(x)), A = {(c2, x)|x ∈ •c1∩c2•} andB = {(c2, x)|x /∈ •c1∩c2•}.
However, since exactly one of the arcs from an XOR connector node is true at a
time the boolean expression can be reduced to both the left and the right part in the
conjunction. Guards in PG are mapped to transition conditions in theBFC. The
mixed loop can be mapped to the following BPEL pseudo code:

1: assign(continueLoop,true);
2: while(continueLoop) {
3: M(a1);
4: switch {
5: case cond: assign(continueLoop,false);
6: case tc(c2,a2)): M(a2);
7: ...
8: case tc(c2,an)): M(an);
9: }
10:}

– A while-do loop is translated into a while activity with a switch inside it. It is
mapped as the mixed loop with the difference that lines 1, 3, and 5 are omitted and
the condition,cond , for looping replaces thecontinueLoop in line 2.

– A repeat-until loop has no direct representation in theBCF . It is mapped in a
similar way as the mixed loop – lines 6 through 8 in the pseudo code are omitted.

– An empty loop is translated to an empty activity.
– A start-block is mapped to a Pick containing empty activities for each branch.
– An end-block is translated to a respective AND-, OR-, or XOR-block with each

branch followed by a terminate activity.

Algorithm 4 describes the Structure-Identification transformation strategy. Line 1 initial-
izes the annotated process graph. After that, a loop is iterated until the annotated process
graph is reduced down to one activity. The reduction rules of Definition 6 are used to

Algorithm 4 Pseudo code for Structure-Identification strategy

procedure: Structure-Identification (PG)
1: APG ← (S, E, F,C, l, A, ∅)
2: while |F ∪ C ∪B| > 1 do
3: APG′ ← match(APG) {Using rules in Definition 6}
4: b ← translate(APG′) {Using the described translations above}
5: Reduce APG substituting APG’ with b{Using rules in Definition 6}
6: end while
7: return (BCF)

substitute components of the process graph by correspondingBCF structured activities
in the same way as the functionfC substituted components in Definition 6.

4.4 Strategy 4: Structure-Maximization

Thegeneral ideaof this strategy is to apply the reduction rules of the Structure-Identification
strategy as often as possible to identify a maximum of structure. The remaining anno-
tated process graph is then translated following the Element-Preservation or Element-
Minimization strategy. Theadvantageof this strategy is that it can be applied for arbitrary
unstructured process graphs as long as its loops can be reduced via the reduction rules of
Definition 6. Still this strategy is also not able to translate arbitrary cycles, i.e. cycles with
multiple entrance and/or multiple exit points. Adrawbackof this strategy is that both the
Structure-Identification strategy and at least the Element-Preservation strategy needs to be
implemented. The strategy could be used inscenarioswhere models have to be edited by
a BPEL modeling tool that uses structured activities as the primal modeling paradigm.

5 Related Work

A lot of work exists on transformation between BPEL and other process languages. We
highlight only a part and refer to [MLZ05] for a more complete discussion of related work.
One branch of related work is dedicated tomodel-driven developmentof executable BPEL
process definitions. In [Gar03] a BPM-specific profile of UML is used to generate BPEL
code. The aim is rather to prove the feasibility of such an approach than the discussion
of different transformation alternatives. It is not clear from the paper which strategy the
author choose. The code fragments suggest that an Element-Preservation strategy is taken
and sequences are mapped to BPEL sequence. The Element-Preservation strategy can also
be found in a mapping from EPCs to BPEL [ZM05]. The BPMN specification [Whi04]
comes along with a proposal for a mapping to BPEL. As BPMN is a graph-oriented BPM
language similar to process graphs, the strategies of Section 4 can be applied. The sub-
section 6.17 of BPMN spec presents a mapping that is close to the Structure-Identification
strategy proposed in this paper. The authors introduce so-called conceptual tokens to iden-
tify structure. Yet, the mapping is given rather in prose, a precise algorithm and a definition

of required structural properties is missing. Further work using a Structure-Identification
strategy is reported in [vdAJL05] where Workflow nets, and in [KvM05] where XML nets
are mapped to BPEL.
A second branch of research is related toconceptual mappingsin order to better understand
BPEL behavior and its relation to other BPM languages. In [HSS05] a transformation from
BPEL to Petri Nets is presented in order to give BPEL formal semantics. The authors use a
Flattening strategy to generate a Petri Net that covers BPEL behavior including exceptional
behavior. The generated Petri Net is used for formal static analysis of the BPEL model.

6 Conclusion and Future Work

In this paper, we addressed the problem of transformations between graph-oriented and
block-oriented BPM languages. In order to discuss such transformations in a general
way, we defined process graphs as an abstraction of graph-oriented BPM languages and
BPEL control flow as an abstraction of BPEL that shares most of its concepts with block-
oriented languages like BPML. Our major contribution is the identification of different
transformation strategies between the two BPM modelling paradigms and their specifi-
cation as pseudo code algorithms. In particular, we identify the Flattening, Hierarchy-
Preservation, and the Hierarchy-Maximization strategy for transformations from BPEL
control flow to process graphs. In the other direction we identify Element-Preservation,
Element-Minimization, Structure-Identification, and Structure-Maximization strategy. As
such, the strategies provide a useful generalization of many current X-to-BPEL and BPEL-
to-Y papers not only for identifying design alternatives but also for discussing design de-
cisions. We checked the applicability of these strategies in two case studies which are
reported in [MLZ05].
In future research, we aim to conduct further case studies in order to identify how aspects
that are not captured by process graphs and BPEL control flow can be addressed in a
systematic way. Another issue is the upcoming new version of BPEL which is expected to
be issued as a standard in the beginning of 2006. It will be interesting to discuss in how far
that new version simplifies or complicates the mapping to and from graph-oriented BPM
languages.

References

[ACD+03] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu,
D. Roller, D. Smith, S. Thatte, I. Trickovic and S. Weerawarana. Business Process
Execution Language for Web Services, Version 1.1. Specification, BEA Systems,
IBM Corp., Microsoft Corp., SAP AG, Siebel Systems, 2003.

[Ark02] A. Arkin. Business Process Modeling Language (BPML). Spec., BPMI.org, 2002.

[Gar03] Tracy Gardner. UML Modelling of Automated Business Processes with a Mapping
to BPEL4WS. InProceedings of the First European Workshop on Object Orientation
and Web Services at ECOOP 2003, 2003.

[Hol04] David Hollingsworth.The Workflow Handbook 2004, chapter The Workflow Refer-
ence Model: 10 Years On, pages 295–312. Workflow Management Coalition, 2004.

[HSS05] Sebastian Hinz, Karsten Schmidt and Christian Stahl. Transforming BPEL to Petri
Nets. InProceedings of BPM 2005, LNCS 3649, pages 220–235, 2005.

[KNS92] G. Keller, M. Nüttgens and A. W. Scheer. Semantische Prozessmodellierung auf
der Grundlage “Ereignisgesteuerter Prozessketten (EPK)”. Heft 89, Institut für
Wirtschaftsinformatik, Saarbrücken, Germany, 1992.

[KvM05] Agnes Koschmider and Marco von Mevius. A Petri Net Based Approach for Pro-
cess Model Driven Deduction of BPEL Code. In Robert Meersman, Zahir Tari and
Pilar Herrero, editors,OTM Workshops, volume 3762 ofLecture Notes in Computer
Science, pages 495–505. Springer, 2005.

[MLZ05] J. Mendling, K. Lassen and U. Zdun. Transformation Strategies between Block-
Oriented and Graph-Oriented Process Modelling Languages. Technical Report JM-
2005-10-10, WU Vienna, October 2005.

[MN05] Jan Mendling and Markus N̈uttgens. EPC Markup Language (EPML) - An XML-
Based Interchange Format for Event-Driven Process Chains (EPC). Technical Re-
port JM-2005-03-10, WU Wien, Austria, 2005.

[MNN04] Jan Mendling, Markus N̈uttgens and Gustaf Neumann. A Comparison of XML
Interchange Formats for Business Process Modelling. In F. Feltz, A. Oberweis and
B. Otjacques, editors,Proceedings of EMISA 2004, LNI 56, pages 129–140, 2004.

[MZ05] J. Mendling and J. Ziemann. EPK-Visualisierung von BPEL4WS Prozessdefinitio-
nen. InProc. of Workshop on Software Reengineering, Germany, 2005.

[RtHEvdA05] Nick Russell, A.H.M. ter Hofstede, D. Edmond and Wil M.P. van der Aalst. Work-
flow Data Patterns: Identification, Representation and Tool Support. InProc. of the
24th International Conference on Conceptual Modeling (ER 2005), LNCS, 2005.

[Tha01] S. Thatte. XLANG. Specification, Microsoft Corp., 2001.

[vdA97] W. M. P. van der Aalst. Verification of Workflow Nets. In Pierre Azéma and Gi-
anfranco Balbo, editors,Application and Theory of Petri Nets, LNCS 1248, pages
407–426, 1997.

[vdAJL05] Wil M.P. van der Aalst, Jens Bæk Jørgensen and Kristian Bisgaard Lassen. Let’s Go
All the Way: From Requirements via Colored Workflow Nets to a BPEL Implemen-
tation of a New Bank System. In R. Meersman and Z.Tari, editors,Proceedings of
CoopIS/DOA/ODBASE 2005, Agia Napa, Cyprus, LNCS 3760, pages 22–39, 2005.

[vdAtH05] Wil M. P. van der Aalst and Arthur H. M. ter Hofstede. YAWL: Yet Another Work-
flow Language.Information Systems, 30(4):245–275, 2005.

[vdAtHKB03] Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, Bartek Kiepuszewski and Alis-
tair P. Barros. Workflow Patterns.Distributed and Parallel Databases, 14(1):5–51,
July 2003.

[Whi04] S. A. White. Business Process Modeling Notation. Specification, BPMI.org, 2004.

[Wor02] Workflow Management Coalition. Workflow Process Definition Interface – XML
Process Definition Language. Document Number WFMC-TC-1025, October 25,
2002, Version 1.0, Workflow Management Coalition, 2002.

[ZM05] J. Ziemann and J. Mendling. EPC-Based Modelling of BPEL Processes: a Pragmatic
Transformation Approach. InProceedings of MITIP 2005, Italy, 2005.

