
Patterns of Tracing Software Structures
and Dependencies

Uwe Zdun
New Media Lab, Department of Information Systems

Vienna University of Economics and BA, Austria
zdun@acm.org

Tracing the structures and dependencies in existing, formal source documents, such as
code or design specifications, or in the running software system is required for many dif-
ferent software engineering areas. Typical uses include reengineering tools, programming
languages and language extensions, aspect composition frameworks, self documentation,
and visualizations. There are many recurring techniques used to gather and manipulate
the relevant trace information. This paper presents a pattern language covering common
techniques in this area, as well as technology projections and known uses. The target
audience of this paper are developers who want to develop new solution or modify an ex-
isting solution in one of the named software engineering areas, as well as developers who
want to gain a deeper understanding of the internal workings of the software engineering
tools and frameworks they use.

Introduction

Structure and dependency tracing primarily means to extract some knowledge from existingStructure
and
Dependency
Tracing

source documents of a software system or from the running system. Typical source documents
are the source code, documentations, requirements specifications, and design documents. In
this paper, we primarily deal with techniques that extract and manipulate information on static
structures, such as pre-defined class graphs or class membership relationships, and dynamic
structures, such as call graphs, from a software system.

There are different fields in which techniques for structure and dependency tracing are applied,
including:

• Software maintenance and reengineering projects are often concerned with finding the
structures and relationships in software systems. Typical maintenance and reengineering
tasks (that should be supported) are architecture recovery, code analysis, refactoring,
visualization, metrics computation, tracing dependencies, history analysis, consistency
checking, finding systems’ problems/hot spots, analysis of quality attributes, grouping,
integration, and wrapping.

• Development tools, such as IDEs, performance analyzers, architecture visualizations,
etc., also need to trace structures and dependencies in the source code.

• Programming language implementations and programming language extensions need to
find existing structures and dependencies in the source code when parsing it. They also
require knowledge of runtime structures for implementing a language runtime or support
of high-level tasks such as reflection, traces, or message interception.

• Aspect composition frameworks are used inside of aspect languages and other aspect-
oriented solutions [KLM+97]: they find the structure and control flows to which the
aspects are applied and introduce the aspects at these points. In [Zdu04] we discuss how
the patterns presented in this paper are applied in a number of popular aspect composi-
tion frameworks, such as AspectJ [KHH+01], HyperJ [TOHS99], D [Lop97], ComposeJ
[W+02], or JAC [PSDF01].

• Meta-object protocols and meta-level architectures require (runtime) structure informa-
tion about their base-level objects in order to control them from the meta-level.

• Component gluing and configuration mechanisms provide some means to compose soft-
ware components in a customized way, either statically at compile time (or load time)
or dynamically at runtime. At the composition time, the component composition mech-
anisms requires a knowledge about the (current) architectural configuration.

Even though these application fields are quite diverse, many implementations are based on a
set of common techniques for structure and dependency tracing. These are in focus of our
pattern language. In the Known Uses section, following the pattern language, we illustrate
these commonalities, when we discuss some concrete implementations from these application
fields.

In all the application fields, listed above, tracing is needed, but it is not the main task. That is, in
many projects it must be “cheap”. In many situations developers, therefore, should search for
existing implementations of the patterns that can be used or tailored to the particular problem
task, before considering to implement the patterns from scratch.

We present a pattern language consisting of basic, technical patterns that provide successfulPattern
Language
Outline

solutions for implementing such techniques and tools. Important tasks of structure and de-
pendency tracing, concerned in this paper and required in the application fields named above,
are:

• extracting relevant structures and dependencies, the trace information, either from source
documents or from the running system,

• modifying or adapting the system using the trace information (either statically in the
source documents or dynamically in the running system),

• documenting missing architecture knowledge that is yet missing in the source docu-
ments, and

• providing an integrated extraction framework for trace information.

In this paper, we first explain what we mean with the term “trace information.” Next we
present an overview of the pattern language. Then we present the individual patterns. Finally
we provide some as known uses examples.

Trace Information

Tracing structures and dependencies is mainly done by extracting trace information. On the
basis of extracted trace information, adaptations or modifications of the system can be per-
formed. In this section, we explain the term “trace information” in detail.

Consider developing a web interface for a given, huge legacy system. To write suitable wrap-Example:
Reengineer-
ing to the
Web

pers for the legacy system, at first, it is necessary to aquire an understanding of the overall
system architecture. Next the relevant architecture fragments and their APIs have to be found.
To find out which architecture fragments are relevant, we have to recover the features they re-
alize. An understanding of the dependencies of these architecture fragments among each other
is also required.

There are different sources of information. In the ideal case all required information is well
documented. Requirement specifications or design documents may also provide useful infor-
mation. In many legacy reengineering contexts, however, the code is the only (textual) basis
of information. It is quite typical that legacy code that has evolved over a long time is neither
well structured nor well documented.

In the context of tracing dependencies and working with views, redundancy of information
cannot always be avoided and, if so, consistency has to be ensured. Manually finding de-
pendencies that are neither explicit language relationships nor one-to-one correspondences is
hard and error-prone. If information is collected from a legacy system, the consistency of this
collected information has to be ensured as well.

As a solution, we can trace the structural dependencies and associated data automatically,Extracting
Trace
Information

either from existing electronic documents (like code, design documents, etc.), from additional
documents, or from the running system. Trace information contains information on static
structures, such as pre-defined class graphs or class membership relationships, and dynamic
structures, such as call graphs.

To produce the trace information it might be necessary that developers markup missing de-
pendencies and metadata (e.g. within one of the documents), but the actual extraction process
should require no manual interference.

Documentation in separate documents is often forgotten during maintenance, and self docu-
mentation [Mey97] requires less discipline from developers. In other words, it is easier to
maintain trace information sources that are part of or close to the program code than main-
taining additional documentation artifacts. An example for trace information that is usually
better handled in separate documents is history data (that is, information documenting depen-
dencies in time). A typical way to derive history data is to compare the dependency graphs
produced from different versions of the same source document. This information should be
kept separated from the source document instances.

The patterns in the pattern language presented mainly provide means to document and auto-
matically extract various kinds of trace information. Some of the patterns can also be used to
manipulate this information. In this paper we do not deal with information that cannot be ex-
tracted directly from the structures of the system, such as logging information, warnings, error
messages, memory structures, timing information, etc. Of course, there are applications where
such other information need to be combined with trace information – but the other information
must be extracted with other techniques than those documented in the patterns presented in

this paper.

A Pattern Language for Extracting Trace Information

In this section, we provide short thumbnails for the patterns, give a pattern language map, and
explain the pattern form.

The individual patterns in the pattern language are:Pattern
Thumbnails

• P   uses a full-fledged parser for the used programming language
and extracts or modifies static trace information from the parse tree.

• I  hides a sub-system, component, or layer, and provides access to this
sub-system, component, or layer using an indirection concept, such as an object system,
a virtual machine abstraction, an interpretation mechanisms, or wrapping concept.

• T  provides a tracing mechanism for structures of an  ,
such as variable slots, operations, or objects. A   can be dynamically
added and removed by developers.

• M  can be used to implement a dynamic, object-oriented 
: it redirects symbolic invocations to implementations. During the redirection,
trace information can be extracted and operation invocations can be modified or adapted.

• H  implement a static   by injecting hook invocations into
the existing program (either in the code, bytecode, or machine code). These hooks
invoke operations for extracting, modifying, or adapting trace information.

• M  trace, adapt, or modify operation invocations in a dynamic and
transparent fashion. They are typically invoked by a   or  -
’ hooks.

• I  expose structural trace information from an   at
runtime.

• I  expose invocation-specific trace information.

• M  add missing trace information as embedded metadata elements.

• P  provides a limited interpreter for a language to statically extract
specific trace information.

The form of our patterns is a variant of the Alexandrian form. Each pattern starts with a name.Pattern Form
It is followed by the context of the pattern in the language. After that, the problem is described
in bold face. Then in plain face, more problem details are given to illustrate the problem and
the forces of the pattern, for instance, with one or more problem scenarios. Then, after the
word “Therefore” follows the solution, again in bold face. A figure illustrating the pattern and
an example of the solution come next. Finally, a discussion of variants, related pattern, and

Invocation Context Introspection Option

Message Interceptor

Trace Information

Indirection Layer

(runtime)
extraction

Message Redirector Hook Injector

dynamic/static
alternatives

implement static
indirection layer

implements and
provides

uses

Partial Interpreter

Trace Callback

Parse Tree Interpreter

extract
statically extract

statically

command
dispatching

implement dynamic
indirection layer

Metadata Tags

get invocation
 information
at runtime

get structure
information
at runtime

implements and
provides

uses

static
extraction

static
extraction

dynamic
extraction

In the pattern map the most important relationships of the patterns are represented
by labeled arrows.

consequences ends the pattern description. S font is used for internal patterns names,
emphasized font for external patterns.

Parse Tree Interpreter

You want to extract trace information from a system, and perhaps modify the system using theContext
trace information.

Static trace information, as available from the code or other (formal) source documents,Problem
is required. A parser for the source document’s language is available and can be reused,
or it does not seem too much effort to write a (full) parser for the source documents’
languages. But the relevant trace information still has to be extracted from parser’s out-
puts and provided in suitable form to the application logic. How to extract (and possibly
modify) these trace information?

Consider an architectural view of the class graph of a Java application should be created.Problem
Details Typical applications of a class graph are to calculate metrics or visualize the class graph. In

Java, all relevant information for this task is given in the source files. In particular, we have to
find all class definitions and class relationships in the source code somehow.

When you want to extract simple trace information from a source document, it might be enough
to write a little parser that only finds this kind of trace information. As more requirements
for trace information arise, often this little parser is not enough anymore. Writing a full-
fledged parser (e.g. for a programming language) is a considerable effort. Often existing source
language parsers are usable, but sometimes the output format is not (directly) suitable.

In many cases, a client can directly use a parser’s outputs and, for instance, interpret them as
an event flow. The advantage of this is that the client has much control over trace information
extraction. But when trace information extraction requires more complex, application-specific
interpretation, the corresponding extraction code is tangled in the client. That means the client
code gets more complex. It also means in many cases that the interpretation code in the client
it is not reusable for other clients. If it is necessary to traverse or navigate through the trace
information, flow-based output formats can be cumbersome to work with.

Therefore: Parse the source language documents with the (given) source language parserSolution
and use its outputs to create a parse tree. Provide a suitable interface for tree traversal.
Then use this interface to build an application-specific    that offers
operations to extract the required trace information. If trace information modification
is required, the tree traversal interface additionally provides means to modify the parse
tree elements and structure, and the    offers operations to modify
the trace information application-specifically.

Parser

Parse Tree Interpreter

Parse Tree Builder

Token Tree

Client

1) parse document("doc1") 2) parse document

3a) read document 3b) add token

4a) query trace information

3c) create token tree element

4b) get trace information

Source Document
doc1

A typical    parses a source document and builds some
knowledge representation of the trace information contained in the document. It
also provides an application-specific API for querying the trace information.

Consider again you want to extract the Java class structure. Parsers for Java are available.Example
Consider your parser creates a token stream, one token for each lexical element in the Java
code. After a scanner has scanned the code for all tokens, a method nextToken of a tokenizer
class extracts the next lexical token as a string.

In a token tree builder [GHJV94], this method is repetitiously called with a loop and all relevant
statements are extracted. For each token containing a statement, the builder creates a new
node for the parse tree. In case of a statement in which other statements can nest (like a class
statement), we have to create all nested statements as child nodes. The builder can use existing
tree and traversal API implementations (like a DOM [W3C00] tree).

The    uses the parser and tree builder to create its internal parse tree
representation. For clients it provides operations for extracting the Java class structure, such as
getClasses, getSuperclass, or getInterfaces. Note that these operations provide application-
specific interpretations of the trace information in the parse tree.

To build a    the parser’s output has to be converted into a tree represen-Discussion
tation. There are different parser outputs possible, such as token or event streams, parse trees,

and others. Some tree-based parser outputs offer a suitable parse tree representation, others
have to be converted. Token or event streams also have to be converted into a tree represen-
tation. If a conversion of the parsed data is necessary, we have to walk through the whole
parsed data in the order of appearance in the source document, and call factories [GHJV94] or
builders [GHJV94] for the targeted tree representation.

The pattern parser/builder [Ber96] reads in data from a stream and builds up a respective,
generic object structure using a factory [GHJV94]. The pattern can be used for the parsing
part of a    if there is a need to interpret a raw data stream with a generic
tree structure.

The parse tree representation should be “suitable,” meaning that the tree’s node structures
should represent the language structure and that the offered tree traversal methods should sup-
port the application-specific requirements of the application effectively and efficiently:

• Regarding the tree’s node structure, in case of a programming language, typically one
node object per statement is created (it is also possible to create one node per lexical
token, but this is usually overkill). Nested statements are represented as child nodes.
Attributes of statements are represented as node object properties. Each node object
type represented one kind of statement in the source language.

• Regarding the offered tree traversal methods the parse tree can either offer a tree traversal
API to navigate through the tree and/or a visitor [GHJV94] that step-by-step visits all
nodes of a (sub-)tree.

The interpretation step following the parsing step is implemented on the   -
 class. This class uses the domain knowledge about the interpreted language and the
required trace information to effectively and efficiently extract (and perhaps modify) the trace
information. Note that different, application-specific    classes can reuse
the same parse tree and parser implementations.

If modification of data is supported, usually an operation to write the modifications back into
the source language is supported. This can be done with a visitor that visits all elements of the
tree and converts them into the source language format.

A    avoids implementing a new parser for the source language. However,
some existing parsers have very complex outputs, bugs, or other practical problems that cause
more work than writing a simple   would cause. A   
can only extract information that are (statically) given in the source documents.

Indirection Layer

You want to extract trace information from a system or sub-system.Context

Trace information can consist of information in electronic documents (such as the sourceProblem
code), but also of information derived from dynamic invocation data (and data flows).
It is hard to integrate these two kinds of trace information, as the former is statically
provided in the sources, whereas the later is obtained from the running system. How to
gather and integrate all relevant static and dynamic trace information in a unique way?

Consider extracting trace information from a large legacy system written in some (dialect ofProblem
Details a) programming language. The straightforward solution is to write a   

for the programming language that statically extracts the information from the code. But this
requires a working parser for that language. If no parser is available, it can be a complex, but
not very challenging, task to write a suitable parser. This work is also annoying as it has been
done already for the compiler or interpreter of the language (which is often not available in
source code).

Static information, as contained in the program text, may not be the only required trace infor-
mation. Consider you also require dynamic invocation data, call graphs, or other runtime trace
information. Obviously, scanning the program text is not enough in such cases.

If more than one type of trace information is extracted, these information have to be integrated.
To ease development of trace information extraction tools, one consistent API should be pro-
vided for all kinds of trace information, instead of a specific interface for each kind of trace
information.

Therefore: Provide an   between the application logic and the instructionSolution
set of the (sub-)system that should be traced. The general term “instruction set” can refer
to a whole programming language, but it can also refer to the public interface of a used
component, sub-system, or layer. The   wraps all accesses to the relevant
(sub-)system and should not be bypassed. In this   provide custom hooks
to extract the relevant trace information.

Indirection Layer

Wrapper 1

Client 2

Client 1

Client Layer Hidden Layer

Wrapper 2

Wrapper 3

1) invoke wrapper O1

O3

O5

O2

O4

2a) invoke hidden layer elements
2b) ...
2c) ...
...

3) return result

A simple   consists of a set of wrappers. The client only access
the wrappers to interact with the layer hidden behind the  . The
  objects handle the complete interaction with the elements of the
hidden layer.

Consider again that you want to extract the dynamic structure and invocation information of aExample
legacy system. At first, you should search for an existing   that can be used:
for instance, a public interface layer or a remoting layer are good places to look for. This only
makes sense, if it is possible to change this layer’s implementation. If no appropriate -
  can be used, simply implement an   consisting of a set of wrapper
objects for all operations of the legacy system that are called from within the application logic
layer. This task is usually not too much work because in many cases it can be automated and/or

it is necessary anyway. For instance, if the goal of your project is reengineering to the web, the
web interface requires some public interface for the legacy system. This public interface can
also be used for indirections.

Once you have found or built an  , trace all methods invoking the legacy
system. The traces can be evaluated on-the-fly or logged (and evaluated later on). Required
structure information is often maintained within the   and can be queried using
 . For instance, for each open session the   will contain a
session object. An   on the session manager can return the list of all session
objects. If this information is needed, but not maintained in the  , it can be
obtained by tracing the operation invocations for creating and destroying session objects.

An   wraps a relevant (sub-)set of the language’s instruction set with objects.Discussion
This language can be a simple public interface of a component or even a full programming lan-
guage implementation. The   objects may be simple wrappers, just forwarding
messages, or may implement more sophisticated behavior. The application logic uses this -
 ’ objects instead of the original instruction set. Thus all calls can be traced here.
The use of an   remains hidden for clients, as they use the ordinary interfaces
of the application logic.

An   is available in many systems, even though it is not provided explicitly for
trace information extractions. Consider the following examples:

• A scripting language (implemented in C++) is an  , as it wraps the
instruction of its own implementation language (here: C++) with new script commands
that are solely used by the application objects in the scripts.

• A set of wrappers providing access to a legacy system also implement an 
, if these wrappers hide a conceptual subsystem completely and the 
 is not bypassed by application logic objects.

• A middleware can be used as a distributed  . All invocation to remote
objects [VKZ02] have to pass a client proxies [VKZ02] on client side and an invoker
[VKZ02] on server side. With access to the middleware structures one can indirect all
messages either on client side or server side.

• An   object can be seen as a meta-object for the application logic ob-
jects. An   can implement a meta-object protocol [KdRB91], but it does
not have to.

• A virtual machine is a low-level indirection layer that indirects byte-code instructions
into machine-code instructions.

An   can trace all invocations sent from application logic objects to the sub-
system behind the  . It can also trace structure information, either by deducing
them from the calls (e.g. observing object interactions to find out class relations) or by using
reflection or  .

Of course, for a given   hook invocations for gathering trace information can
simply be added by hand into the code of the  . There are various solutions
for automating trace information extraction from an  :

• A   invokes a callback whenever a certain runtime structure provided by
the   (as for instance an operation, object, or variable) is accessed. T
 mechanisms are part of the   implementation.

• M  can be used to implement dynamic, object-oriented 
: all invocations sent to the   have to pass the  .
It can thus be used to extract trace information for the invocations, either hard-coded or
using  .

• A   can be used for automatic insertion of callback hooks into a given
program text. It can be used to add a callback to each operation of the  
code that invokes a method of the hidden subsystem.

I  is a generalization for patterns wrapping an implementation layer with a
symbolic language, such as object system layer [GNZ00b], microkernel [BMR+96], virtual
machine [GMSM00], interpreter [GHJV94], and others. Note that these patterns are used in
many systems, often for other purposes than tracing structures or dependencies. Thus, if an
existing   is accessible, it can be (re-)used for extracting trace information.

I  can be built in the programming language of the application logic, but also
in any other language that can be integrated with the application logic language.

With an   the trace information can be extracted from the running system.
Usually monitoring can be turned on and off; thus the penalties of observing trace information
can be avoided in operational mode. To a certain extent structure information can be deduced as
well, e.g. with  . However, the indirection causes a performance decrease
and structures built for indirecting consume memory.

In many cases an existing   can be extended to support extracting trace infor-
mation (for instance in interpreted languages, the interpreter can be extended). But sometimes
there is no   or it is not accessible (for instance a closed virtual machine).
Then an additional   has to be built. Using this additional  
might imply a change in the programming model of the application logic objects.

Trace Callback

You are using an   and you want to extract trace information from the runningContext
program.

You want to trace one or more specific structures of the runtime system. It is not enoughProblem
to interpret the source document texts, the program has to be executed and analyzed at
runtime. As runtime structures can change dynamically, it might not be known until run-
time which structures are to be traced. You want to avoid larger performance penalties
due to tracing. How to trace specific runtime structures generically and dynamically?

Consider you are using a component that implements dynamic variable slots for objects inProblem
Details your programming language – that is, variables that can be added and removed at runtime to

any object. This component adds a slot table to each object, and handles memory allocation,
deallocation, and access of variable slots. You want to implement an automatic persistence

mechanism for application objects that use this component. That means you have to trace all
variable accesses to persistent variables used within these objects. The persistence mechanism
should be transparent to application logic objects and to the dynamic variable slots component.
It should be possible to dynamically add persistence tracing for new variable slots, and if a slot
is deleted, persistence tracing should stop.

Besides variable accesses, other elements of the   may require a similar low-
level observation of runtime elements, such as specific methods, objects, commands, or any
other structure of the runtime system.

Such low-level tracing can be done by inserting trace invocations in the respective code, wher-
ever the traced element is accessed. But usually this solution produces tangled and complex
code as a result.

The client may need to specify – at runtime – which structures are traced, for instance, to min-
imize the performance impact of tracing. This can hardly be done with a hard-coded solution.
An observer [GHJV94] may be a solution for this problem. But typical observers are not used
as low-level traces for specific structures only, and the observed classes have to be prepared
for observation, what is not always possible.

Therefore: Provide a   interface to an   and access the struc-Solution
tures to be traced via the   only. With this interface one can dynamically
add or remove a   for a specific runtime structure of the  .
When adding or removing a  , the developer specifies the type of the traced
runtime structure, the callback event, and a callback operation. The callback operation
is a user-defined operation handling the callback event. Whenever the callback event
happens for the specified runtime structure, the callback operation is executed by the
  implementation automatically.

Indirection Layer

Trace Manager

Client 2

Client 1

Client Layer

Object 1

Object 2
2) invoke aMethod

Object 3

4) invoke "Client1->callback"

3) "Object2->aMethod" invoked

1) addTraceCallback("method", "Object2->aMethod",
 "invoke", "Client1->callback")

A   is typically part of an  . Clients can register
callback operations for certain events, as for instance a method invocation. The
  supports a mechanism to automatically invoke the registered
 , when the respective event occurs.

Consider again you want to add a persistence mechanism to a given application logic layerExample
transparently. The   supports variable slots. T  for these slots

are required. To the   class that manages  , we can add the
respective operations for adding and removing  :
void addTraceCallback (String type, String ID, String event, Method traceMethod) {...}

void removeTraceCallback (String type, String ID, String event) {...}

For each persistent variable you can add a   for the “write” event. Regardless
whether the variable is accessed with an operator or with an operation, you can be sure to trace
all accesses of variables, as the   is rooted in the  . The 
 operation is used to write the new variable value into the database.

First, it is required to write a   operation handling the persistence tracing (e.g. in
a class PersistenceTracer):

void persistenceVarTrace (String identifier, String type, String event) {...}

Now a specific variable “a” can be traced with this operation:

Method meth = null;

try {

Class cls = Class.forName("PersistenceTracer");

meth = cls.getMethod("persistenceVarTrace", null);

varSlotLayer.addTraceCallback("variable", "a", "write", meth);

...

This solution assumes that the developer specifies the persistent variables and triggers reload-
ing them upon next application startup. If all variable slots should be persistent in the applica-
tion logic, you can automate setting up traces and reloading: set up a   for the
operation that is used for creating variable slots. Whenever a new variable slot is created in
the application logic, the   is invoked. It first checks the database for an existing
persistent value and possibly reloads it. Then it automatically sets up the variable trace for that
particular variable so that further changes are also persistent.

The   mechanism is directly invoked from within the implementation of theDiscussion
traced runtime structure in the  . That is, callback hooks are placed into the
component implementing or wrapping the traced runtime structure. These hooks raise callback
events.

For each traced runtime structure the   supports lists of registered  -
, one list for each supported callback event. There are different kinds of callback events:

• for a variable slot typical callback event are: access, write, delete, and read;

• for an object typical callback event are: access and destroy;

• for an operation typical callback event are: invoke, enter, and leave.

T  are registered for individual runtime structure using its identifier (such as the
variable name for a particular variable). When a callback event of a traced runtime structure
is raised, it is checked whether there is a   registered for the identifier of the
runtime structure that caused the event to be raised. If so, the  ’ operation is
executed.

All   operations are of a specific callback operation type. This operation type’s
parameters are the identifier(s) of the traced runtime structure, the callback type, and the call-
back event. Callback operations are provided by the developer when adding the  -
.

Besides adding  , the   interface of the   also
supports deleting a   at runtime. In many cases there is also an 
 for querying the  . It returns the list of   registered for
a particular structure and event.A   is a low-level mechanism for gathering dy-
namic structures dynamically, and it is transparent to the application logic objects. However,
it has to be coded into the   and adds a slight performance overhead.

Message Redirector

You want to build an object-oriented  .Context

An   essentially is an intermediate layer between the application logicProblem
and a hidden subsystem. In object-oriented systems that means it intercepts and adapts
all individual messages that are sent from the application logic to the hidden subsystem.
How to get control over the message flow in an object-oriented system so that we can at
least trace (and modify) all messages and their results?

Consider you are using a dynamic component loader in a mainstream language, such as JavaProblem
Details or C++, and want to allow customization of these components by non-programmers. Pure

parameterization is not enough, but you have to expose a few control structures, such as if
conditions, and provide some functionalities of your component framework. For instance, it
should be possible to query the runtime environment (such as which operating system is used)
and customize which components are dynamically loaded in which order. Somehow the user
customizations have to be specified in a way understandable for users, and then be transformed
into the proper invocations.

This can be done with an   with the users’ customizations as application logic.
The dynamic component loader is wrapped behind the  . The problem is how
to transform all messages properly into programming language invocations.

Note that one customization option may have influences on multiple   objects.
Implementing one orthogonal aspect as code tangled within multiple implementation classes
is tedious, and it is error-prone if changes to these scattered code fragments have to be made
[Lop97, KLM+97]. H  provides a solution in static environments, but as some
customization options have to be evaluated at runtime, this compile-time approach for building
an   does not work here. Tangled aspects can also be added as  ,
but as every possible message sent to the   should be customizable, 
 are tedious to apply because a huge number of   would be necessary.

Some languages provide means to implement   for their instructions, others
not. If the language does not implement the   natively, we have to gain a
control over the message flow. This control over the message flow should be transparent to the
developers of the customization script.

The application logic layer may use a different syntax than the  ’ implemen-
tation language. This means, individual instructions are provided in a script written in the
application logic layer’s syntax, and this script should be evaluated by the  .

Therefore: Provide a   as a facade to the  . Each objectSolution
and method in the   is registered with a  . Applica-
tion layer objects do not access   objects directly, but send symbolic (e.g.
string-based) invocations to the  . The   dispatches
these invocations to the respective method and object.

Indirection Layer

Message Redirector

Object 1

Object 2

Object 3Client 2

Client 1

Client Layer

1) invoke message redirector
 ("Object 3", "aMethod", ...)

2) lookup "Object3"
3) lookup "aMethod"
4) invoke found method

A   is a facade to the  . All invocation have to
pass it, thus it has complete control over the message flow to (and through) the
 .

Consider again building a little domain-specific customization language for a dynamic compo-Example
nent loader. We provide an   that wraps all interface methods of the dynamic
component loader. Instead of accessing the operations of the   directly, we
use an operation eval of a  . eval is applied to interpret the configuration
invocations for different components (that are loaded from disk). For instance the following
program checks for the operating system type (provided as an  ) and loads
either an emulator broadcast client component for the PC or it loads the broadcast client when
working on a settop box:
result = messageRedirector.eval("Runtime info ostype");

if (result == OK) {

String ostype = messageRedirector.getResult();

if (ostype.equals("PC") {

messageRedirector.eval("Component require BroadcastEmulator");

} else if (ostype.equals("SettopBox") {

messageRedirector.eval("Component require Broadcast");

}

}

Each   invocation contains the object ID of an   object,
followed by the method name, and a set of arguments. The   objects are
registered in the  . In the example, it looks up the objects for Runtime and
Component, and invokes the given method names with the given arguments.

A   implicitly builds a language with its symbolic instruction set. ThisDiscussion

can be a domain-specific set of a few instructions, or it can be a full-fledged programming
language. The objects in the application logic layer use this language.

For each language element there is one or more   object(s) responsible for
implementing it. The   is responsible for parsing the language instructions
and dispatching them to the responsible   object and method. The client object
might be a command [GHJV94] that is invokes the  .

A   often provides hooks for applying  . That is, the
developers can register   as callbacks that are then called before, after, or
instead-of the originally invoked operation automatically.

M  can be used as a dynamic, object-oriented variant for implementing a
custom  . Some (interpreted) programming languages already provide an ex-
tensible  . A custom-built   is used if the language does
not offer redirections natively.

Note that in many scenarios   are already in the system for other purposes
and can be used; for example:

• A distributed object framework has to invoke remote objects [VKZ02] on server side.
The responsible invoker [VKZ02] on server side can be implemented as a  -
.

• Object-oriented scripting languages implement a   between script and
scripting language implementation.

• Customization or configuration parameters are often written in a little language (for
instance using a markup language like XML). The object-oriented interpretation is done
with a  .

• Domain-specific languages can also be implemented with a  .

A   bundles all incoming calls from a (set of) client(s). It is often a facade
[GHJV94] for the indirection layer. Extraction of trace information, message modifications,
and message adaptations are transparent for clients. A   can provide a lan-
guage for application developers; then it is usually not visible to application developers. How-
ever, if a   is used in parallel with ordinary operation invocations, two differ-
ent styles of operation invocations are used. Building a complete language (including control
structures) with the   can turn out to be a non-trivial effort. Even though
  can be implemented quite efficiently, all   consume
additional computation time. In cases where these issues are a problem, a   can
be used as a static alternative.

The   pattern is also documented in [GNZ01].

Hook Injector

You want to implement an  .Context

Tracing or behavior modification is required for a (sub-)system. This can be done withProblem
an  . But you do not want the tracing implementation to require changes
of the (sub-)system or its clients, as in the pattern  . Also, trace code
and application logic code should not be tangled. Efficiency of traces is more important
than (runtime) flexibility of traces. How to trace (or modify) specific messages for a (sub-
)system transparently?

Consider you want to implement an aspect that should log any invocation to a method startingProblem
Details with the string set or get, say, to calculate metrics based on variable accesses with getter/setter

methods. If a   is used, one would have to trace all invocations in the system
and check whether the method name starts with get or set. This implies a larger performance
impact. However, it is statically known in advance which methods are getter/setter methods;
thus the expensive string comparison should not be applied for all invocations at runtime.

Besides performance issues, there is also the conceptual problem that   in-
vocations might look different than ordinary invocations in the base language, because the
symbolic messages are, for instance, encoded in strings. This might be undesired as well.

A solution to this problem should be straightforward to implement. Especially, the trace code
should not be hard-coded into the application classes. Changing such tangled code is tedious
and error-prone [Lop97, KLM+97]. In operational mode metrics calculation should be turned
off completely.

Therefore: Use a parser for the base language and let a   inject the indirec-Solution
tion hooks directly into the parse tree (for instance with a   ). Either
write a custom compiler to directly create machine code or byte code, or, as a simpler
alternative, produce a new program in the base language with the injected indirection
hooks. Then let this program be compiled or interpreted, instead of the original pro-
gram. Semantically the new code is equivalent to the original code, with exception of the
injected hooks for extracting or modifying the relevant operation invocations.

Hook Injector

Parse Tree Interpreter

Client

1) inject hooks

3) parse document

Modified Source Document

...
void setName(String n) {
 String params[] = new String[1];
 params[0] = n;
 callstack.push(this, setName, params);
 logger.logSetMethod("before");
 name = n;
 callstack.pop();
}
...

Source Document

...
void setName(String n) {
 name = n;
}
...

2) parse document 4) modify parse tree

5) write modified document

6) write parse tree

A   injects hooks by parsing a document, modifying its representation
in memory (here: a parse tree), and by writing the modified source document
back. This document is then interpreted or compiled, instead of the original source
document.

Consider again you want to log getter and setter methods using an aspect. Once a hook oper-Example
ation for the logging task is implemented, we have to enter the hook into all methods in the
system starting with get or set. The developer has to specify the injection rule, such as:
INSERT BEFORE void * set*(*) logger.logSetMethod;

This rule lets the   inject an invocation to the operation logSetMethod of the
object logger at the beginning of all methods starting with set (of any class and with any
arguments). For instance, the method setName:

void setName(String n) {

name = n;

}

is transformed into:

Logger logger;

CallStack callstack;

...

void setName(String n) {

String params[] = new String[1];

params[0] = n;

callstack.push(this, setName, params);

logger.logSetMethod("before");

name = n;

callstack.pop();

}

The   uses a    to search all method nodes in the parse tree,
and checks whether the method name starts with set. Additionally, we have to add the Logger
class (and logger object instantiation) to the existing code base.

All injection is done automatically by a code generator. Thus new getter and setter methods
can be written, and it is ensured that they are logged after the hook injector has run again.
In operational mode the system is compiled without running the hook injector; thus operation
logging is automatically removed from the system.

Providing hooks means to add invocations into given code, for instance, at the beginning andDiscussion
end of each traced operation. These hooks invoke some instance that is responsible for inter-
preting them at runtime (when the operation containing the hook is invoked). This instance
can be of any custom type, but usually it is a generic hook interpretation mechanisms, such as
a   or an observer [GHJV94].

This hook interpretation mechanisms needs to find out which method of which object was
called with which parameters. The hook can provide this information as an  .

A   only provides static message indirection. Note that in dynamic languages
limited dynamics are possible: we can dynamically inject new invocations for instance into
a method body and use this modified method then. However, frequent changes are hard to
implement this way, as we may have to delete old indirection hooks, before we can add new
ones. Thus we would have to parse the method body again for each change, and recognize the
indirection hooks in this code.

For both, static and dynamic variants, it is in general simpler to apply   always
on “clean” code without injected hooks, as finding existing hooks in the code (from previous
hook injections) is tedious. This has the disadvantage that the   must be applied
after each change of the code or the injected hooks.

A   can use a    or   to find the relevant
places for hook injection in the program text. It adds a high-level API for specifying the
insertion spots, for instance, using rules in regular expression style.

The   pattern can be very efficient in certain cases where a dynamic 
 is relatively inefficient, for instance, if an indirection condition can be statically
pre-evaluated. The pattern also avoids the potential problem of   to require
another style of calling methods. However, often an additional parser and/or compiler is re-
quired. Dynamics are usually not provided (or very limited). It depends on the application
case whether it is more work to implement a   or a  . Devel-
opers must be careful that manipulations performed by a   do not interfere with
verifications performed by a compiler or virtual machine.

Message Interceptor

You are using an   and want to trace, modify, or adapt some program behavior.Context

Controlling the message flow in an   can be done either with Problem
 or  . These patterns provide only low-level support for tracing,
modifying, or adapting of message invocations; that is, these tasks have to be hard-coded
into the   or hook implementations. This solution does not provide dy-
namic composition, extensibility, refinement, or reuse of message traces. How to express
dynamic message traces, modifications, or adaptations as first-class entities of the -

 ?

Consider you want to write a dynamic trace tool for messages. A user can specify in a GUIProblem
Details which operations should be traced and from then on these should be logged in a logging text

area. At runtime, operations to be logged can be added and removed with immediate effect.
This should work for any operation passing the  .

Using a   would not work here because it cannot dynamically add and remove
hooks. When injecting  , to a certain extent the trace operations can be reused.
However, you have to bloat the code of all operations in your   with 
 invocations. Both solutions are only for handling specific messages, whereas the
problem scenario potentially requires all messages in the system.

Thus an unnecessary high number of injected hooks or   is used. Logically only
one behavior for all messages is required. The developer of the trace tool should be able to
handle the concern “tracing messages” as one reusable (and refineable) entity.

Solving the problem with a   would mean that you simply have to check in
the dispatch operation of the   for the respective method names. But here we
face the problem that we require some mechanism to change the   behavior
at runtime so that it traces the operations dynamically, as specified by the user in the GUI.

Therefore: Let   be invoked for standardized invocation events ob-Solution
servable in an  , such as “before” a method invocation, “after” a method
invocation, or “instead-of” invoking a method. This can be done with a callback mech-
anism built into the  . The callback mechanism can be triggered either
by a   or the hooks of a  . Optionally a  
can specify conditions to be evaluated when the invocation event happens, and it is only
executed, if the condition is true. Let the   be dynamically composed
with the invoked classes/objects and operations.

Indirection Layer

Message Redirector
Object

Client

Client Layer

Interceptor 1

2) before invocation:
 "Object aMethod"

1) invoke "Object aMethod"

4) invoke aMethod

Interceptor 2

3) before invocation:
 "Object aMethod"

5) after invocation:
 "Object aMethod"

Two   are registered as “before interceptors” and are thus
invoked before the actually invoked method. One of these  
is also registered as an “after interceptor.” Thus it is also invoked after the method
invocation returns.

Consider again implementing a dynamic message trace tool. If a   is sup-Example
ported in the system and it allows for registering  , we can add the inter-
ceptor object for each operation name selected in the GUI by the user:
Interceptor traceInterceptor = getInterceptorObject("traceInterceptor");

traceInterceptor.removeFromAllClasses();

String[] classMethodNames = getClassMethodsFromGUI();

for (int i = 0; i < classMethodNames.length; i+=2) {

InterceptorList il =

messageRedirector.getInterceptorList(classMethodNames[i], classMethodNames[i+1]);

il.setInterceptor(traceInterceptor);

}

In the example the traceInterceptor is first removed from all interceptor lists and then added
to all specified classes’ methods. Thus these methods are intercepted by the traceInterceptor
whenever they are called. The traceInterceptor is an ordinary object which implements the
before, after, and/or instead-of behavior in respective methods.

A   needs to be invoked by the method invocation mechanism of the -Discussion
 . This can be done by one of the message indirection patterns,  -
 or  :

• A   checks before and after it invokes a method for registered 
. If there are some, it invokes them appropriately.

• A   can simply add invocations to   into the code. But
if the   are invoked directly by the hooks, the message interception
cannot be composed dynamically. Thus a better solution is to let each hook call a central
registry instance and let this registry check for  . Note that this
registry can be implemented with a   that is solely used for handling
 .

There are different typical types of  :

• A “before”   forwards the invocation to the original receiver, after it
has handled it.

• An “after”   is executed after the original receiver and can handle the
result before it is passed back to the invoker.

• An “instead-of”   handles the message instead of the original re-
ceiver.

Somewhere the information has to be stored which methods are intercepted (for which event).
If there is access to the relevant entities, this information can be stored within the objects (or
classes) of the operations to be intercepted. It can also be stored by a central registry (e.g.
implemented in the  ).

Consider a system with n interceptors. If always all messages would be intercepted, each
invocation would result in n + 1 invocations. This is a considerable performance overhead
for interception. It is avoided by executing   conditionally. That is, a

  is only invoked, if specific conditions are true. A typical condition is that
the message interceptor is only applied for operations with a specific name of a specific class.
In some systems, the developer can specify a condition expression to be evaluated before the
  is invoked.

Also, to avoid recursive interceptions (causing a performance decrease and the problem of
endless loops), invocations to interceptors should not be intercepted (by the same interceptor).

The   itself can be implemented using many different programming lan-
guage abstractions, such as objects, classes, or methods. M  can also be
provided as new constructs that are not supported natively by the used programming language.
The later alternative has the disadvantage that either the language has to be extended or a
pre-compiler has to be written that translates the new constructs into the native language code.

In a   we often need information to discriminate calls. I 
can be used to find out the relevant per-invocation information. I  are
useful to obtain the system’s structures and dependencies.

A   provides controlling behavior for messages. It is transparent for caller
and callee. M  can be attached and detached dynamically. However, apply-
ing a   costs performance. For implementing a   access
to an indirection mechanism is required.

Some variants of this pattern are already documented, including distributed interceptors [SSRB00],
before/after interceptors [GZ02], and invocation interceptors [VKZ02].

Introspection Option

You want to extract architectural structures as trace information from a software system.Context

Many architectural structures and dependencies of a software system are needed while itProblem
runs (either by an external tool, by the software system itself, or both). These structures
and dependencies include dynamic structures (that can change at runtime) as well as
static structures (that are defined at compile time and do not change at runtime). But
in most programming languages there is no integrated and extensible way to obtain this
information at runtime. How to gather and provide such information?

Consider obtaining structures and dependencies of a software system written in Java. Struc-Problem
Details tures and dependencies of a software system are all those information pieces that do not change

for each invocation.

The distinction between dynamic and static structures depends on the programming language
used. For instance, in Java the instance list of a class is a dynamic architectural structure,
whereas information, such as class structure, operation names, and signatures, are static ar-
chitectural structures. In other languages all this information represents dynamic architectural
structures.

Static structure information could be added to a given program as special metadata fields. The
programmer would have to add the same information twice to the code, once as a programming
language construct and once for documenting the trace information. But to maintain the same

information in parallel by hand is tedious and a waste of memory.

When trace information should be collect, in hand-built solutions, we often have to live with
naming conventions (and their violation), such as using special getter/setter methods. Where
possible, this should be avoided.

Therefore: Offer   for each interesting architectural element of theSolution
 . This can be done because all messages that are creating or changing
structures or dependencies have to pass the  . Provide a simple exten-
sion API for adding new, domain-specific  . I  are
implemented within the  , not the application logic layer. It should be
possible for application logic objects to provide new  .

Indirection Layer

Message Redirector

Object 1

Object 2

Object 3Client 2

Client 1

Client Layer

1) invoke "Object3 info methods"

4) return method list

5) return method list

3) get method list

2) invoke "Object3 info methods"

The methods   is queried by a client. First, the info method
has to be dispatched for Object3. Each   object implements the
  interface; thus, it can be queried for its method list.

Consider again obtaining structure and dependency information in Java. At runtime Java usesExample
its virtual machine as an indirection layer for its bytecode. The Java reflection API implements
some   for the class structures. These are extracted from the state of the
virtual machine. For instance, the following code obtains the class of object o and iterates over
the methods of this class:
Class c = o.getClass();

Method[] theMethods = c.getMethods();

for (int i = 0; i < theMethods.length; i++) {

String methodString = theMethods[i].getName();

...

}

A limitation of this reflection API is that it cannot be extended with new structures. To resolve
this problem we can use a specific operation for bundling all  . This
operation is defined on a superclass for all   objects. It uses a string-based
interface for providing the  :

String[] info(String optionName) {

if (optionName.equals("methods")) {

return infoMethods();

} else if (optionName.equals("variables")) {

return infoVars();

...

Sub-classes (e.g. in the application logic) can overload this operation and provide new -
 . If the sub-class operation is not able to resolve an  , it
invokes the info operation of its superclass.

I  are conceptually coupled with the structures they represent. For in-Discussion
stance, one can ask the system which classes it consists of, a class which methods it contains,
and a method which parameters it has. Therefore,   should be added as
operations to the classes of the   representing a particular structure.

If it is not possible to change a structure that should offer  , a 
 (together with   or  ) can be used to intercept in-
vocations to   and handle them on its own. The   is
then used to simulate the introspective behavior.

I  are always offering introspective information at runtime. Still they can
be given for static structures and dynamic structures. In case of dynamic structures, it has to be
ensured that the   reflects the current state of the architecture. This can be
done by calculating the   on-the-fly. Or the   is cached
in the  . Then we have to invalidate the respective   in the
cache when the dynamic architecture element changes.

I  are bound to structures and thus should not be used for per-invocation
information. These can be extracted with an   which are created per method
invocation.

The reflection pattern [Bus96] implements a variant of   that uses a special
meta-object type for the introspective information.

I  provide one unified API for querying structural information. This in-
formation is extracted from the  , and thus, it has to be maintained only once.
However, providing such information statically (e.g. as metadata), instead of dynamic lookup,
is usually faster. This problem can be avoided by caching   after the first
lookup.

Invocation Context

You want to extract invocation information, such as which method has called which otherContext
method, as trace information from a software system.

Invocation information are useful for building call graphs and evaluating metrics auto-Problem
matically at runtime. They are also important for object-oriented adaptations that rely
on message exchanges: the invoked method requires the information which entity has
invoked it. The invoking method should not have to provide the invocation information
as a parameter, because this solution is cumbersome and may result in interface incom-
patibilities. How to obtain the invocation information from inside of an invoked method
or a wrapper method without changing its interface?

Consider you have added hooks for logging getter and setter operations with a  .Problem
Details The hook operations need to find out the original operation’s name (into which the hook is

placed) and the invoked object’s ID.

Typical information for an operation invocation, relevant as trace information, are the called
and calling object’s ID, the called and calling method name, and the called and calling class
name.

Such invocation information should not be provided as  . I
 are bound to the structures of the system. In contrast, invocation information is typical
per-invocation information, meaning that it changes from invocation to invocation. Asking a
structure, such as an object, directly for the current invocation is not a good design, as multiple
invocations can be executed by the object at the same time.

In most programming languages invocation information are not accessible. A simple solution
is to let the invoking operation pass the invocation information as an additional parameter.
However, this solution does not work (well), if the implementation of the invoking operation
should not be changed and/or interface incompatibilities of trace methods should be avoided
(e.g. because they are used from third-party code).

Therefore: Provide access to the the current  , an object (or other struc-Solution
ture) that contains at least information to identify the calling and called method, object,
and class. In a distributed context location information for caller and callee are also
required. I  usually maintain a callstack of runtime invocations, includ-
ing information like caller, called object, invocation parameters, invoked method scope,
and other per-call information. That means, in the context of an   the
  essentially is the top-level callstack entry.

Indirection Layer

Message Redirector

Call Stack

Object

Client

Client Layer

2) push callstack entry

Log Interceptor3) before invocation:
 "Object aMethod"1) invoke "Object aMethod"

4) get invocation
 context

5) log

6) invoke aMethod

7) pop callstack entry

A   is invoked before the actual operation. It requires the -
  for logging. The   pushes a callstack entry for
each invocation. From the callstack we can obtain the current  .
The callstack entry is popped when the invocation is done.

Consider again obtaining the   for hook operations that are logging getterExample
and setter methods. The hook operations require the name of the invoked method, as well as
the object ID. Both can be provided by the  :
void logSetMethod (String hookType) {

InvocationContext ic = getCurrentInvocationContext();

Object obj = ic.getObject();

Method method = ic.getMethod();

String[] params = ic.getParameters();

...

The operation getCurrentInvocationContext gets the top-level entry from the 
’ callstack. The InvocationContext object contains all relevant invocation information.

Note that in this example the hook operation logSetMethod has no callstack entry, as it was
not dispatched, but invoked directly. If traces, hooks, or   are added to the
callstack, we have to overstep their entries to get the originally invoked  .

Providing access to   usually means to provide a convenient API for ac-Discussion
cessing the  ’ callstack information. Note that in a distributed context, the
callstack is running in a remote process. Thus the   is usually passed across
the network.

Unfortunately, many existing  , such as closed virtual machines, do not al-
low for open access to the callstack information. In such cases, a   or 
 can be used for maintaining an additional callstack. This has the liability that all
invocations must be additionally sent through this indirection mechanism. Intermediate indi-
rections, such as wrappers, proxies [GHJV94], or a middleware’s client proxy [VKZ02] and
invoker [VKZ02], can also be used to maintain an additional callstack. These solutions have
the liability that   of invocations that bypass these indirections are lost.

The   can be given in form of a set of methods on the entity providing the
 , one method for each information provided. Or an  
object can be built that contains the whole information. The later alternative has the advantage
that the object can be passed easily to other methods, but this variant consumes more memory
for the additional   objects. Another variant is to put  
objects directly onto the callstack and reference these objects. This variant requires access to
the callstack implementation.

In a wrapper or   that intercepts an invocation before it reaches the callee,
information about the caller and the originally called scope are of interest (and should be
provided as  ).

I  are especially useful together with indirection techniques. However, if
the callstack information cannot be automatically extracted from existing  ,
we have to restructure the system to provide an additional indirection. This costs memory and
performance (but if it is used for pure analysis purposes it can be turned off in operational
mode).

The remote variant of this pattern is also documented in [VKZ02, VSW02].

Metadata Tags

You want to add some information to the trace information that can automatically be extractedContext
from the existing documents, such as the source code.

In a software development context, sometimes some of the relevant information neces-Problem
sary to produce trace information cannot be expressed with the given implementation or
design languages’ language resources. In other contexts (like reengineering) additional
information might be required to produce some trace information. If such information
is maintained in external documents, documentation is likely to be forgotten. But often
there’s no proper language resource or the system cannot be changed. How to add some
trace information to an existing system?

Consider documenting the intent of a class, that is, a textual description of the requirementsProblem
Details it fulfills. In many formal programming (and design) languages there is no proper language

resource for this task. But without it we cannot automatically trace which classes realizes
which informal requirements. The class documentation should be extensible. For instance,
you also might want to document the authors of a class and the version number.

If more than one representation of some knowledge about a system exists, consistency of these
representations has to be ensured. In the daily business, however, consistency often suffers
from time pressure, tight budgets, changes in development teams, differing discipline of devel-
opers, and many other problems. For a developer it is usually easier to add a documentation
directly to the design or program code than to remember to update a separate documentation
(see the self documentation principle [Mey97]).

Details are – in contrast to abstractions – volatile. Because details are going to change, they
should not be tangled with abstractions, but put where they will create the least amount of
friction [HT99].

Separate documentations are usually not accessible at runtime. The running system cannot
provide the information about its realization to its clients. For instance, it would be useful, if a
documented version number of a class could be used for runtime version checks.

Therefore: Provide a standard notation for embedding   in code or formalSolution
design documents. Use a language entity that can be distinguished from the other lan-
guage entities to contain the  . In these   provide additional ar-
chitectural knowledge and documentation. Typically,   contain hierarchical
key/value lists.

Parser

Metadata Interpreter

Client 4) parse document

2) turn on metadata
 parsing
3) parse document

Source Document

...
class DocumentedClass
...
@ class DocumentedClass {
 {intent "Just a test"}
 {version "0.1"}
}
...

Metadata Runtime Representation

1) parse metadata

5) build up

7) query

6) query metadata

A client invokes a metadata interpreter that parses the relevant document(s). The
parser builds up a metadata runtime representation that is used for subsequent
queries by the client.

Consider again documenting intent (and author and version) for Java classes. A simple solutionExample
is to embed a special comment notation in the code. As it is a comment, the Java compiler and
virtual machine ignore these tags. But a special interpreter can scan the comments for 
 and interpret them accordingly. This can be done using the patterns  
or   . Note that in some cases   should also be exposed
at runtime. In such cases, they should not be embedded in comments, but provided with a
special special metadata interface. In languages that are extensible with new commands, such
as Smalltalk, Tcl, or Lisp, or when using a  , we can add a new command
which is simply ignored by the standard interpretation, and builds up a metadata context, when
activated.

Typically   are described as hierarchical key/value lists; for instance with XML:
<class name="DocumentedClass">

<intent> Just a test </intent>

<version> 0.1 </version>

</class>

Such formats can easily be structured and extended. In the programming language context
often we do not name each tag, as in the XML example above, but use simply brackets, for
starting and ending each tag, e.g.:

@ class DocumentedClass {

{intent "Just a test"}

{version "0.1"}

}

The standard language interpreter or compiler does ignore the  , but special inter-Discussion
pretations for extracting trace information can use them. Some entity in an  
understands these  , whereas the standard   can also ignore the
 .

Note that   can be embedded in the program that they document, but in some
scenarions they can better be stored in a separate file. For example, in the reengineering con-
text, where we usually cannot change the given system, we can only provide  
in a separate file. Also, when   are used for providing configuration options they
are stored in a separate file, because not each installation of the system should have the same
configuration.

Usually, at least, we want to be able to name the architectural element which is described
by a  , and give a list of key/value pairs. More sophisticated metadata schemes
provide additional structuring and dependencies of metadata. Especially, hierarchies of list
elements are often used, as for instance nested brackets or nested markup (as possible with
XML). Optionally we can provide a name for each metadata element.

Self documentation of the architecture and relevant (missing)   can be em-
bedded in existing documents. However, adding   in existing documents means
that those documents become more complex and less readable for human beings. M

 also enable us to put abstractions in code, details in metadata [HT99].

Partial Interpreter

You want to extract some trace information from the code or other (formal) source documents.Context

A complete parser for the source document’s language does not exist, it is too expensive, itProblem
has bugs, or it is complicated to extract the relevant information from the created parser’s
outputs. The relevant information to be interpreted is only a (small) sub-set of the source
document’s language, and thus, the complexity of the whole language should be avoided
in the subsequent interpretation. How to access the trace information in source docu-
ments in a simple and extensible way?

In many scenarios only a few language elements are of interest to create a certain architectureProblem
Details view, all others can be ignored. Consider, for instance, we want to find all classes and inheri-

tance relationships in a C++ program. Then we have to get rid of all other information, such
as method bodies.

In such cases, writing a complete parser for the source document’s language is simply too
much work. If we are able to reuse an existing, full-fledged parser for the language, we are only
interested in a small subset of its outputs. Using a   which builds up a full
parse tree from the source document might be overkill in terms of memory and performance.

Therefore: Provide a   for the source documents language, an inter-Solution
preter that only understands the specific language elements required for the program-
ming task. Typically a   uses an event-based parsing model, and it
interprets the language elements in the order as they appear in the source documents.
This can be achieved by using a very simple parser that only raises the respective parsing
events, or by selecting specific parsing events from a full-fledged parser’s outputs. The
language sub-set (i.e. interpretation rules) for selective parsing or interpretation can be
defined in a  .

ParserClient

Partial Interpreter

Source Document

4) read in

6) query

3) parse

5b) ignore parsing
 event

5b) interpret parsing
 event

5a) parsing events

XOR

1) register interpretation rules
2) interpret

The client registers the rules for parsing and starts the interpretation. The 
 retrieves the parsing events and interprets only those parsing events
that were registered before. Clients can use the interpreter’s runtime state to query
the trace information.

Consider again writing a   for the C++ language that should find all classesExample
in a file. We build a simple parser that is only able to extract C++ statement beginnings and

endings. In a simple   we register the symbol “class” to interpret class
statements. All other statements are ignored. Then the C++ file is parsed sequentially, and the
  ignores all other statements.

There are some other statements that cannot be ignored because class statements can nest in
them, as for instance the C++ namespace statement. Thus we also register “namespace” in the
 . The interpretation of namespace simply invokes the  
recursively with the contents of the namespace statement. Thus we find the namespace classes
as well. Also the class statement’s body has to be interpreted recursively in order to find inner
classes. For classes we also have to evaluate the statement’s contents to find out the superclass
relationship in C++.

An important part of a   is the underlying parser. There are the followingDiscussion
variants:

• Build a partial parser: If there is no existing parser, we can provide a very simple parser
that only understands the very basic syntax of the language. It is enough, if it is able
to find the beginning and the end of a statement and can read the statements one after
another. Then we apply this parser to the source document. It only parses the specified
language’s subset, and ignores all other statements. For known statements, it also parses
the statement’s arguments to gather the relevant trace information. For nested statements,
the parser can be applied recursively.

• Modify an existing parser: If there is an existing parser, we can possibly modify it
to produce a suitable output. Consider a full    can be used and its
implementation can be modified, but either the output is too complex or certain elements
should not be parsed. For instance, in interpreted languages we can reuse the language’s
parser, but certain invocations should not be executed, such as starting the event loop (of
a server). Then we write a   by modifying the    in
such a way that it ignores all irrelevant or harmful invocations. It then produces a partial
output with only the required language subset.

• Generate Events from Existing Parser: If there is an existing parser, but we cannot
change it, we can let it do it’s work and then change the outputs:

– If the parser is an event-based parser, we can send all parsing events to the 
 and let it ignore the irrelevant events.

– A   ’s tree can be visited using a visitor [GHJV94]. The
visitor sends parsing events to the  , but only for selected nodes.

A typical implementation of a   uses a  : in a 
 we provide a set of interpretation rules, one for each interesting statement type.
The rules’ actions are called whenever the corresponding statement occurs in the program
text. All statements that are not registered in the   are ignored. The rules’
actions are used to build up a runtime representation of the relevant trace information. The
interpretation rules registered for the   define the subset of the language that
the   understands. The rules’ actions are responsible from extracting the
information from the system. In other words, here we use the  ’ “little”
language to build a partial version of the original language.

I  can be provided for querying the runtime state of a  .

In interpreted languages it might be beneficial to (re-)use the original language interpreter. To
build a   we do not let it evaluate the source document as is, but a only
specific parts of it that comply to the interpretation rules. For instance, in the class example
above, we would create all the classes at runtime as empty classes. The nice side-effect of this
is that we can then use the interpreter’s   to find out the classes’ names,
superclass relationships, etc., without having to write further interpretation code.

The   does neither add complexity to the system nor influence performance
or memory consumption. For conceptually similar languages the pattern is relatively language-
independent, as often a common set of parsing events can be defined. However, the pattern is
only applicable if runtime information is not relevant for trace information extraction. Dy-
namic structures, such as call graphs or object structures, cannot be analyzed.

Known Uses

In this section we discuss some known uses of the pattern language. We rather concentrate on
a few interesting technology projections than discussing all known uses; there are simply too
many.

Generative Aspect Languages: AspectJ

Aspect-oriented programming copes with tangled code fragments which logically belong to
one single module (a concern) but cannot be cleanly modularized by the programming lan-
guage abstractions. Such code is called crosscutting code. Currently, the most common
way to implement aspects are generative environments, such as AspectJ [KHH+01], HyperJ
[TOHS99], D [Lop97], ComposeJ [W+02], or JAC [PSDF01]. These achieve modulariza-
tion of crosscutting code by new language constructs for expressing aspects. In this section,
we briefly discuss how the pattern language is applied in AspectJ. In [Zdu04] we discuss the
application of the pattern language in other aspect composition frameworks in depth.

These solutions follow a similar sequence. We will use the example of AspectJ for illustration.
The aspects, as well as the points where to apply them (called “joinpoints”), are described
in an extended language consisting of a set of additional instruction. This aspect language is
added to the code written in the base language. To apply the aspects we require some trace
information. First, we need the additional statements written in the aspect language. But we
also require the class and method structure, as well as the spots where invocations are sent or
received.

A    parses the program text and uses an interpretation command set to
interpret these  . During this interpretation a   injects hooks at
the respective joinpoints. The aspect language code is replaced by base language primitives
(or byte-code instructions of the virtual machine).

At runtime of the woven program, the aspect language is implemented as an  .
The hooks call their implementations in this  . Hooks together with respective
implementations are a static form of  .

Usually the adaptation defined in the aspect (in AspectJ called “advice”) is only applied when
certain conditions are true. These conditions are in AspectJ expressed with “pointcuts.” In
these conditions,   information about the current message flow can be used.
Limited   are offered for instance via the Java Reflection API; these are
directly usable in the advice.

In AspectJ the original class implementation can also be extended with so-called introductions.
In a generative environment such introductions can also be implemented by injecting hooks
into the respective classes using a  .

XOTcl Component Wrapping and Self-Documentation

XOTcl [NZ00] is an object-oriented scripting language that uses the pattern language in various
ways, mainly for self documentation, extraction of architecture views, and wrapping. XOTcl
is especially designed for component gluing [GNZ00a] (e.g. of legacy component written in
other languages). The pattern implementations in XOTcl are also reusable tools to analyze
glued component frameworks.

Each object in XOTcl is internally realized as a Tcl command that is registered with XOTcl’s
 . The   implements an  . Thus every
call to an XOTcl object passes this dynamic invocation mechanism before it reaches the actual
implementation. The implementation of an object can be written in XOTcl itself, but it can
also be a component wrapper [GZ02] for a component written for instance in C or C++. Trace
information can be extracted with various mechanisms:

• There are   for each architectural element known to the interpreter.

• The current   can be queried.

• There are two  . Mixin classes intercept specific calls to specific
objects or classes. Filters are methods intercepting all calls to specific objects or classes.

• Tcl provides a variable and command trace mechanism for implementing  -
.

For self-documentation XOTcl provides   that can be embedded in the program
code. These   can be attached to any architectural element (class, object, package,
relationship, constraint, etc.) and describe the architectural element with structured key/value
pairs lists. A command “@” is used to denote  . It is simply ignored in the standard
interpretation. There are two special interpretations possible: the   can be turned
on at runtime, and a   can be used that only parses the “@” tag plus the
described architectural elements (mainly used for automatic documentation of XOTcl code).

Meta-Object Protocols: CLOS

Meta-object protocols [KdRB91] are   that provide many hooks to influence
the behavior of objects in the application logic. A meta-object imposes behavior over the
objects in its control; that is, meta-objects control the behavior of CLOS itself. For instance,

the CLOS meta-object protocols enables several ways to optimize or customize the message
dispatch mechanisms and creation and destruction of objects.

A kind of   with   is also supported. CLOS offers mul-
timethods as a generic and extensible message dispatch abstraction. These multimethods take
the complete   of a method into account for dispatching, instead of just the
this pointer as in Smalltalk, C++, or Java. Multimethods are specializations of a generic
function. When this function is called, it determines which of its multimethods apply and calls
them in the appropriate order. The :before methods are called before the primary method is
called, and the :aftermethods are called afterwards. An :aroundmethod runs in place of the
actual execution it operates over. All these methods are so-called multimethods.

Reengineering with Rigi

Rigi [MOTU93] is a tool for program understanding and reengineering that consists of two
major parts: the core components and a user interface. Rigi’s core components comprise a C
parser for trace information extraction as well as selection, organization, representation and
measurement components. In early versions, trace information was extracted using a 
  for imperative languages such as C and Cobol. It is also possible to interpret
structured documentation in Latex.

The full    had its problems in a reengineering project for a very large sys-
tems called SQL/DS [WTMS95] (because the abstract syntax trees required several hundred
megabytes of storage); therefore, the    was replaced by a  -
 in later versions (that produced a database with around two megabytes for SQL/DS).
Such amounts of data require a project repository because scanning the information and calcu-
lating measurements takes considerable time.

The user interface is based on a Tcl/Tk scripting interface: here, the Tcl interpreter is used
as an   to support configuration and extension of the reengineering environ-
ment, especially custom graph layouts, metrics and analysis, and subsystem decomposition
[TWSM94]. Tcl commands and the procedural   variant of Tcl can be used
to provide a dynamic interface for domain-dependent changes that sits between the GUI and
the graph editor. Such domain-specific scripts that are triggered as callbacks by the extraction
tool are a form of   for customization of the analysis and layout processes.

In the SQL/DS project [WTMS95] a very simple heuristic for deriving   was used:
product-naming conventions, like the prefix ARI, were used to modularize the system.

Moose Reengineering Environment

Moose [DLT00] is a language-independent reverse engineering framework that mainly extracts
trace information for tools based on Moose (CodeCrawler, Gaudi, Supremo). As Moose is a
pure analysis tool, the patterns that require modification of existing source documents are not
used.

Moose is written in VisualWorks Smalltalk, and, for extracting trace information from Smalltalk
code, the VisualWorks parser’s output can be interpreted with a   . This
information can be combined with   derived via the Smalltalk meta-model

(i.e. an   is used). Moose provides import interfaces for integrating other
source languages (Java, C++, Cobol) via two architecture description formats (containing
 ), namely CDIF and XMI. Conversion are done using the   
of the SNiff+ parser tool. Internally, a Smalltalk-based generic format is used.

Other Known Uses

In this section we discuss a few technologies that use some our patterns in different way than
the use in the technology projections above.

In languages like Java some   can be derived using the Reflection API;
however, some interesting information are not exposed.

Many IDEs add   to the source code with  . They often use 
 , mostly to achieve syntax highlighting and architectural views. Source Nav-
igator [DOPR03] is an IDE that uses an interesting variant of   to achieve a
multi-language mapping: the   first uses an ordinary   
to generate a parse tree which is then transformed into an internal architecture description for-
mat that is mapped to each supported language. The architecture description format is then
partially interpreted for architecture highlighting.

Automatic documentation tools such as JavaDoc or AutoDoc often use special comment -
 . P  extract the embedded metadata. The .NET runtime allows you
to add   in form of custom attributes to the code.

A profiler (a program that calculates a call graph and the amount of time spent in each oper-
ation) needs to inject hooks into a program to gather the profile information. Typically this is
done with a   during the compilation process. It injects hooks to build an -
  for all operation invocations. Some runtime structures are added to the program
that are filled during program execution (and most often written into a profile file that can be
evaluated later on). The inserted hooks can call  . A profiler can also be built
with  . Note that due to the indirection the profiled times are higher the
a non-profiled execution; thus a profiler is mostly used for optimizing the call structure and
finding performance problems.

Conclusion

In this paper, we have presented a pattern language of structure and dependency tracing in
software systems. The patterns provide a technical infrastructure for tools, languages, language
extensions, and frameworks in many different software engineering fields. The patterns are
actually used in numerous projects. Note that the individual patterns are often used in other
contexts than structure and dependency tracing, extraction, and modification as well. The
pattern language contains tightly coupled pattern; however, still many other closely related
patterns are to be mined or documented.

Acknowledgments

Thanks to Markus Voelter for his great comments on the pattern language. Many thanks to
Steve Berczuk for his attention as a EuroPLoP 2003 shepherd and his detailed and constructive
comments. Finally, thanks to the participants of the EuroPLoP 2003 writers’ workshop who
provided valuable feedback.

References

[Ber96] S. P. Berczuk. Organizational multiplexing: Patterns for processing satellite
telemetry with distributed teams. In J.M. Vlissides, J.O. Coplien, and N.L. Kerth,
editors, Pattern Languages of Program Design 2. Addison-Wesley, 1996.

[BMR+96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-
orinented Software Architecture - A System of Patterns. J. Wiley and Sons Ltd.,
1996.

[Bus96] F. Buschmann. Reflection. In J.M. Vlissides, J.O. Coplien, and N.L. Kerth, edi-
tors, Pattern Languages of Program Design 2, pages 271–294. Addison-Wesley,
1996.

[DLT00] S. Ducasse, M. Lanza, and S. Tichelaar. Moose: an extensible language-
independent environment for reengineering object-oriented systems. In Pro-
ceedings of the International Symposium on Constructing Software Engineering
Tools (COSET 2000), Limerik, Ireland, Jun 2000.

[DOPR03] M. DeJong, E. Odenweiller, S. Polk, and I. Roxborough. The source navigator
IDE. http://sourcenav.sourceforge.net/, 2003.

[GHJV94] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1994.

[GMSM00] J. Garcia-Martin and M. Sutil-Martin. Virtual machines and abstract compilers
- towards a compiler pattern language. In Proceeding of EuroPlop 2000, Irsee,
Germany, July 2000.

[GNZ00a] M. Goedicke, G. Neumann, and U. Zdun. Design and implementation constructs
for the development of flexible, component-oriented software architectures. In
Proceedings of 2nd International Symposium on Generative and Component-
Based Software Engineering (GCSE’00), Erfurt, Germany, Oct 2000.

[GNZ00b] M. Goedicke, G. Neumann, and U. Zdun. Object system layer. In Proceeding of
EuroPlop 2000, Irsee, Germany, July 2000.

[GNZ01] M. Goedicke, G. Neumann, and U. Zdun. Message redirector. In Proceeding of
EuroPlop 2001, Irsee, Germany, July 2001.

[GZ02] M. Goedicke and U. Zdun. Piecemeal legacy migrating with an architectural
pattern language: A case study. Journal of Software Maintenance and Evolution:
Research and Practice, 14(1):1–30, 2002.

[HT99] A. Hunt and D. Thomas. The Pragmatic Programmer: From Journeyman to
Master. Addison-Wesley, 1999.

[KdRB91] G. Kiczales, J. des Rivieres, and D.G. Bobrow. The Art of the Metaobject Pro-
tocol. MIT Press, 1991.

[KHH+01] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold.
Getting started with AspectJ. Communications of the ACM, October 2001.

[KLM+97] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J. M. Loingtier,
and J. Irwin. Aspect-oriented programming. In Proceedings of ECOOP’97,
Finnland, June 1997. LCNS 1241, Springer-Verlag.

[Lop97] C. V. Lopes. D: A Language Framework for Distributed Programming. PhD
thesis, College of Computer Science, Northeastern University, Dec 1997.

[Mey97] B. Meyer. Object-Oriented Software Construction. Prentice Hall, 2nd edition,
1997.

[MOTU93] H. A. Müller, M. A. Orgun, S. R. Tilley, and J. S. Uhl. A reverse engineering ap-
proach to subsystem structure identification. Journal of Software Maintenance:
Research and Practice, 5(4):181–204, 1993.

[NZ00] G. Neumann and U. Zdun. Xotcl, an object-oriented scripting language. In
Proceedings of Tcl2k: The 7th USENIX Tcl/Tk Conference, Austin, Texas, USA,
February 2000.

[PSDF01] R. Pawlak, L. Seinturier, L. Duchien, and G. Florin. JAC: a flexible framework
for AOP in Java. In Reflection 2001: Meta-level Architectures and Separation of
Crosscutting Concerns, Kyoto, Japan, Sep 2001.

[SSRB00] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann. Patterns for Concurrent
and Distributed Objects. Pattern-Oriented Software Architecture. J. Wiley and
Sons Ltd., 2000.

[TOHS99] P. Tarr, H. Ossher, W. Harrison, and S. Sutton. N degrees of separation: Multi-
dimensional separation of concerns. In Proceedings of the 21st International
Conference on Software Engineering (ICSE ’99), Los Angeles, CA, USA, May
1999.

[TWSM94] S. R. Tilley, K. Wong, M.-A. D. Storey, and H. A. Müller. Programmable reverse
engineering. International Journal of Software Engineering and Knowledge En-
gineering, pages 501–520, Dec 1994.

[VKZ02] M. Voelter, M. Kircher, and U. Zdun. Object-oriented remoting: A pattern lan-
guage. In Proceeding of The First Nordic Conference on Pattern Languages of
Programs (VikingPLoP 2002), Denmark, Sep 2002.

[VSW02] M. Völter, A. Schmid, and E. Wolff. Server Component Patterns – Component
Infrastructures illustrated with EJB. J. Wiley and Sons Ltd., 2002.

[W+02] H. Wichman et al. ComposeJ Homepage, 2002. http://trese.cs.utwente.nl/
prototypes/composeJ/.

[W3C00] W3C. Document object model. http://www.w3.org/DOM/, 2000.

[WTMS95] K. Wong, S. R. Tilley, H. A. Müller, and M.-A. D. Storey. Structural redocu-
mentation: A case study. IEEE Software, pages 46–54, Jan 1995.

[Zdu04] U. Zdun. A pattern language for the design of aspect languages and aspect
composition frameworks. Draft; accepted for publication in IEE Proceedings
Software, special issue on Unanticipated Software Evolution, 2004.

