
Domain-Specifically Tailorable Languages and Software Architectures

Uwe Zdun
Institute for Computer Science
University of Essen, Germany

zdun@acm.org

Abstract

In this position paper we will motivate open issues in the
context of domain-specific tailorability of software systems,
as we have observed them in numerous projects. These is-
sues are largely unresolved in today’s software engineering
practices. However, we can identify a set of recurring forces
in this context. Different interaction and programming tech-
niques can be used to partially resolve these issues. As a vi-
sion of a solution, we argue for building task-specific and ex-
tensible languages that map well to the primitives of the do-
main. The languages should also be well integrated with the
software architecture fragments wrapped by the language el-
ements.

1 Introduction

Christopher Alexander describes his intentions for tai-
lorability in the domain of built architectures as follows [1]:

In our own time, the production of environment
has gone out of the hands of people who use the
environment. So, one of the efforts of the pattern
language was not merely to try and identify struc-
tural features which would make the environment
positive or nurturing, but also to do it in a fashion
which could be in everybody’s hands, so that the
whole thing would effectively then generate itself.

In a similar fashion, software is largely produced by people
who are experts in the domain of software engineering, but
not in the target domain of the software system. However, to
date it is widely accepted that many customization and ex-
tension requirements cannot be foreseen in upfront designs.
Therefore, in principal, it would make sense to hand those
customizations over to users of the software system.

Those users are usually not naive or novice users, but of-
ten they are highly trained domain experts. Among them,
there is a high demand for tailorability of software to their

particular tasks, but most often, once the software is written,
the applications cannot easily be changed or extended. We
think that this problem is mainly due to the lack of highly
tailorable software systems that leverage the user’s interests
and demands for domain- and task-specific changes. Ac-
tually, besides the important intent of improving the work
situation of the users, there are strong economical reasons
for more tailorable software systems as well. Programmers
who are qualified in the particular domain are often relatively
expensive, rare, and, in many cases, programming all cus-
tomizations by hand simply consumes too much times.

We argue that formal languages used in software engi-
neering, such as architecture definition languages, design
languages, and programming languages, are often impene-
trable for people who are not trained to use them. In his
essay in [4] Gabriel criticizes that computing theory is based
on a particularly inexpressive set of mathematical constructs,
which are still apparent in today’s theories and languages.
Most significant programming languages are expressively
equivalent to Fortran and assembly language. Software de-
velopment methodologies evolved under a mythical belief in
master planning. There is a hard-to-reveal assumption that
engineers, mathematicians, and computer scientists are the
only ones who will write a program or contribute to a soft-
ware system.

From this point of view, tailorable software systems
should rather concentrate on the particular domain’s tasks
and the interests of the users than try to educate them as
programmers in mainstream general-purpose programming
languages. Modern cognitive psychology indicates that peo-
ple perform better at problems that are appearing in form of
familiar words or concepts [6]. The most effective strategy
for recall and problem solution is to use memory structures
that already have been created. Thus, in a task-specifically
tailorable software system domain experts would be able and
motivated to introduce their task-specific knowledge and in-
terests. They would be able to understand the system’s tasks
more easily. Ideally the domain experts could express do-
main semantics themselves. This should ease application
development and evolution, and especially leverage accurate
and timely customizations.

1



The very idea of building languages that benefit from the
domain expert’s task-specific knowledge and interests goes
back to Martin’s vision of problem-oriented languages, back
in 1967:

We must develop languages that the scientist, the
architect, the teacher, and the layman can use with-
out being computer experts. The language for each
user must be as natural as possible to her/him. The
statistician must talk to his terminal in the lan-
guage of statistics. The civil engineer must use the
language of civil engineering. When a man learns
his profession he must learn the problem-oriented
languages to go with that profession.

There have been many interaction and programming tech-
niques, such as visual programming, programming by exam-
ple, and generative programming techniques, been proposed
as the solution since. However, three decades later, Mar-
tin’s vision is still far from being fully realized. We will ar-
gue that these interaction and programming techniques only
partly solve the underlying problem. In [10, chapter 4] vi-
sual languages, forms-based programming, programming by
example modification, programming by example, and auto-
matic program generation are compared for their capabilities
in the end-user programming domain. The analysis of these
techniques shows that all have their limitations. No single
technique can address the semantic issue of designing a task-
specific language for the relevant domains. However, any of
these techniques may prove useful in combination with such
a task-specific language.

2 Typical Forces for Tailorable Software Sys-
tems

We have investigated domain-specific tailoring, as dis-
cussed in the previous section, in different development and
maintenance projects, including a highly tailorable program-
ming language (XOTcl, see [11]), a document archive sys-
tem [8], a web object system [12], a conference management
system [14], a product-line for the Multimedia Home Plat-
form (MHP) [16], and many others. There is a set of typical
forces recurring in most application scenarios in which do-
main experts that are non-programmers have an interest in
tailoring software. Let us recapitulate the main forces in this
area:

� Often “tailors” are not novice or naive users but domain
experts. Tailorable software systems should primarily
target these users.

� The industrial reality of components is that they are of a
large-scale and have no enforced interfaces and bound-
aries [2]. That is, often it is hard to reengineer given

industrial components to software units that are com-
prehensible for domain experts.

� In contrast to the scope of many domain-specific lan-
guages and end-user tools, tailorability also has to be
available for small niches of users and niche systems.

� Domain experts usually are generally willing to transfer
domain knowledge into software systems if they can
directly see a benefit for their work, but usually they are
burdened with a lot of work. Therefore, as an important
motivation, the interfaces to tailorable software systems
should reflect their domain and interests [10].

� Tailorability is often expensive to build.

� Often users are forced to switch between many lan-
guages and interfaces.

� It is difficult to know how specific a task-specific soft-
ware system should be. Being too specific means to
limit the design space of the users, while being too gen-
eral means to get languages and interfaces that are in-
comprehensible to domain experts.

For specific problem-domains these issues are resolved.
Examples are CAD systems, spreadsheets, and multimedia
authoring tools. However, for less popular domains and
niches it is hard to find a domain-specific and flexible so-
lution that resolves the forces described above.

2.1 Interaction and Programming Technique for
Tailoring

In this section, we will summarize a few interaction and
programming techniques for resolving the forces, discussed
in the previous section, to a certain degree:

� Scripting Languages include Tcl, Python, and Perl.
Unlike most compiled languages, which make use of
code libraries written in the same language, scripting
languages are often used as glueing languages. That
is, they are used to glue together components which
may not, themselves, be written in the scripting lan-
guage. These components can implement task-specific
language extensions. Scripting languages are typically
tools for more serious users, such as web page authors,
engineers, and network administrators. However many
of them are not primarily programmers.

� Visual Programming [9] refers to systems that al-
low the user to specify a program in two-(or more)-
dimensionsional fashion. Conventional textual lan-
guages are not considered two dimensional since the
compilers or interpreters process them as long, one-
dimensional streams.

2



� Domain-Specific Languages are small, usually declara-
tive languages. In general they are particularly express-
ible in a certain problem domain. Domain-specific lan-
guages are often created in the context of domain engi-
neering projects focused on achieving reuse and relia-
bility in particular problem domains. Domain-specific
languages have been used in various domains, and aim
at higher productivity, reliability, and flexibility. Al-
though domain-specific languages are an attractive al-
ternative, often mainstream languages are preferred for
the wealth of libraries available. Often domain-specific
languages have problems with portability and long-
term support, since they tend to be research projects.
Several domain-specific languages have problems re-
garding integration with other domain-specific lan-
guages.

� GUI Builders are tools for composing graphical user in-
terfaces and automatically generating code for the GUI.
Other tasks are specified using ordinary programming
languages like C++, Java, Tcl, or Visual Basic.

� Programming by Example (or ”programming by
demonstration”) is a technique for teaching the com-
puter new behavior by demonstrating actions on con-
crete examples. The system records user actions and
generalizes a program that can be used in new exam-
ples.

� Software Tinkering refers to software systems that of-
fer a programming interface for changing the system’s
behavior. A typical example of a tinkerable software
system is Emacs. It is required to have an intimate
knowledge of the tinkering interface to master it, but
novices can create even sophisticated customizations
by trial-and-error. For instance, in Emacs one can
create sophisticated initializations without mastering
Emacs Lisp by cut & paste and guessing what certain
expressions do. Of course, tinkering by trial-and-error
is always limited in its capabilities, but it can motivate
users to learn the full languages or interfaces of the tin-
kerable system.

� Generative Programming [3] refers to systems that gen-
erate customized components to fulfill specified re-
quirements. It allows for modifications of the given
code fragments and assembly apart from given pat-
terns. Some generative programming approaches re-
quire an education as a programmer (as for instance
aspect-oriented programming), others, like web frag-
ment composition approaches, target at the domain ex-
pert user.

3 Success Factors for a Tailorable Language

The previous sections should have motivated the de-
mand of domain-experts for a task-specifically tailorable
languages. The question is: how should a task-specifically
tailorable language be designed? From benefits and liabili-
ties of the languages underlying existing interaction and pro-
gramming techniques we can deduce a set of success factors.

The domain expert’s interests lies in his domain, and only
when people have particular interest they learn a formal lan-
guage [6]. Therefore, the language should be equipped with
task-specific language elements that can be recognized by
the domain experts without knowing a programming lan-
guage. Language primitives should map to the tasks in the
domain expert’s domain. Then domain experts can under-
stand the language primitives, and they can directly express
domain semantics and manipulate programs on their own.

To avoid the problem of domain-specific languages that
they are only usable in a particular domain, and that their
language elements do not integrate well with other domain-
specific languages, a tailorable language should be extensi-
ble with new language elements. Otherwise the domain ex-
pert has to learn a new language for each particular task.
Instead, one base language should be usable for integra-
tion, and new domains should be integrated and composed
as reusable components extending the base language.

From the success of software tinkering approaches we
can learn that a tailorable language should allow novice users
to directly manipulate programs, say, with cut & paste with-
out having to learn a larger part of the underlying language.
That is for simple tasks the user should merely use the lan-
guage extensions for local changes in a hot-spot or center
that is interesting to her/him. Only for more sophisticated
tasks, such as writing new language elements, more sophis-
ticated parts of the tailorable language should have to be
learned. Thus there should be a fully incremental learning
curve and almost no prerequisites for starting to tailor a soft-
ware system.

Nevertheless, to avoid limiting expert users the language
should be a complete programming language. Since visual
programming always limits the user’s expressivity to what
can be displayed on the screen there should be a textual nota-
tion for the language, but it should also be possible to derive
other (e.g. graphical) views easily. That is, where appropri-
ate, the interaction techniques from Section 2.1 can be used
on top of the task-specific language.

To integrate with given legacy components multi-
language integration (such as component glueing) should
be supported. The tailored programs often have to used in
context of given systems. Thus the language has to be em-
beddable in such systems as well.

Another important aspect is the tight integration with the
software architecture. Each language element should map

3



to one architecture element. For instance in XOTcl [11] we
use object IDs as language elements. Such objects can, for
instance, be wrappers to legacy components [7]. Then each
method of the object wraps one function of the legacy com-
ponent. The language can dynamically be expended with
new language elements, and task-specific primitives can be
composed with these language elements. Only the required
functionality of the component framework is exposed to the
domain expert.

Another is example of integrating task-specific languages
and architectures is the pattern Generic Content Format [13].
Here, a content format is defined in a content format lan-
guage, say, by using a DTD in XML. The corresponding
information architecture reflects this content format. For
example, in XML we have a hierarchical content structure.
Thus we can build a Composite [5] structure with one class
for each XML tag supported by the DTD. The classes im-
plement a set of callback to be called upon certain events
in the lifetime of the information architecture, such as con-
struction, destruction, or updates.

4 Conclusion

In this position paper we have summarized a set of
forces in the context of tailoring software systems that are
largely unresolved by today’s mainstream software engi-
neering practices. However, in practice there is a high
demand for domain-specific tailoring of software systems.
Typical reasons for this demand are ease-of-work for domain
experts, work efficiency, rapid customization requirements,
and economic reasons. Different interaction and program-
ming techniques resolve different parts of this problem set.
However, a task-specific language that is tightly integrated
with the software architecture can be adjusted to the specifics
of a concrete software project, and is thus even feasible for
smaller projects. We have discussed our results in form of
a set of success factors that should outline a general vision
for the development of task-specific languages. In different
projects different solutions exposing these success factors
can be applied. For instance, our language implementation
XOTcl provides high tailorability by explicit language sup-
port for interpretational language extension [15]. In other
projects, such as [8, 16], a little customization language is
built on top of a given implementation language. Sometimes
different approaches are combined. For instance, our confer-
ence management system [14] uses XML as a customization
language for conference chairs, while XOTcl language re-
sources are used for flexibility in maintaining the system.

References

[1] C. Alexander. The origins of pattern theory, the future of the
theory, and the generation of a living world. IEEE Software,

September/October 1999.
[2] J. Bosch. Design and Use of Software Architectures: Adopt-

ing and Evolving a Product-Line Approach. Addison-Wesley,
2000.

[3] K. Czarnecki and U. Eisenecker. Generative Programming:
Methods, Techniques and Applications. Addison-Wesley,
1999.

[4] R. P. Gabriel. The feyerabend project: An invita-
tion to redefine computing. http://www.dreamsongs.com/
FeyerabendInvite.html, 2001.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1994.

[6] H. Gardner. The Mind’s New Science : A History of the Cog-
nitive Revolution. Basic Books, Inc. NY, 1985.

[7] M. Goedicke, G. Neumann, and U. Zdun. Design and
implementation constructs for the development of flexible,
component-oriented software architectures. In Proceed-
ings of 2nd International Symposium on Generative and
Component-Based Software Engineering (GCSE’00), Erfurt,
Germany, Oct 2000.

[8] M. Goedicke and U. Zdun. Piecemeal legacy migrating with
an architectural pattern language: A case study. Accepted for
publication in Journal of Software Maintenance: Research
and Practice, 2001.

[9] B. A. Myers. Taxonomies of visual programming and pro-
gram visualization. Journal of Visual Languages and Com-
puting, 1(1):97–123, 1990.

[10] B. Nardi. A small Matter of Programming: Perspecives on
End User Computing. 1993.

[11] G. Neumann and U. Zdun. XOTcl, an object-oriented script-
ing language. In Proceedings of Tcl2k: The 7th USENIX
Tcl/Tk Conference, Austin, Texas, USA, February 2000.

[12] G. Neumann and U. Zdun. Distributed web application devel-
opment with active web objects. In Proceedings of The 2nd
International Conference on Internet Computing (IC’2001),
Las Vegas, Nevada, USA, June 2001.

[13] O. Vogel and U. Zdun. Content conversion and generation on
the web: A pattern language. submitted, 2002.

[14] U. Zdun. Dynamically generating web application fragments
from page templates. In Proceedings of Symposium of Ap-
plied Computing (SAC 2002), Madrid, Spain, March 2002.

[15] U. Zdun. Language Support for Dynamic and Evolving Soft-
ware Architectures. PhD thesis, University of Essen, Ger-
many, January 2002.

[16] U. Zdun. Xml-based dynamic content generation and con-
version for the multimedia home platform. In Proceedings of
the Sixth International Conference on Integrated Design and
Process Technology (IDPT), Pasadena, USA, June 2002.

4


