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Abstract. Component-orientation is an emerging paradigm that
promises components that are usable as prefabricated black-boxes.
But components have the problem that they should be changeable and
flexibly adaptable to a huge number of different application contexts
and to changing requirements. We will argue, that sole parameteriza-
tion — as the key variation technique of components — is not suitable
to cope with all required change scenarios. A proper integration with
multiple other paradigms, such as object-orientation, the usage of a
scripting language as a flexible component glue, and the exploitation of
high-level interception techniques can make components be easier (ex)-
changeable and adaptable. These techniques can be applied without
interfering with the component’s internals.

1 Introduction

The task of a software engineering project is to map a model of the real world
(existing or invented) onto a computational system. The complexity and diversity
of concrete real world systems can be overwhelming. This is no complexity in the
algorithmic sense, but an complexity of an overwhelming amount of details and of
particularities in the universe of discourse. By developing a model we reduce this
complexity by finding and extracting commonalities. The key instruments of mod-
eling are abstraction and partitioning. Analyses of commonalities let us understand
the common elements of a targeted system. The aim of any analysis of commonal-
ities is to group related members of a family, regardless whether the members are
components, objects, modules, functions, etc.

Orthogonal to the task of modeling the commonalities (where details are re-
moved) is the task of engineering variability. It makes absolutely no sense to create
abstractions to understand a family as a whole, if we do not introduce proper means
for variation in the family members [3]. Finding commonalities in software eases

*Accepted for publication in: Proceedings of Second International Symposium on Generative
and Component-Based Software Engineering (GCSE’2000), Erfurt, Germany, Oct 9-12, 2000.



understanding and reduces the need for changes, while finding proper variabilities
enables us to use the software at all, because we have to re-adapt the found abstrac-
tions to the concreteness of the modeled real world situation. Commonality and
variability are competing concerns and its hard to find a proper balance between
them by approaches that (a) model the real world from the scratch and then (b) try
to reuse the common aspects in such upfront design models. The forces in the steps
(a) and (b) can normally not be well integrated. We rather propose in this work to
model only the interfaces and keep them variable. Techniques for “programmable
interfaces” let us flexibly glue the application parts together.

There are recurring ways for finding good abstractions and partitionings. “Good”
means that they provide a tenable amount of commonalities to let us understand
the problem and produce long-lasting software, but still enable us to easily intro-
duce (expected and unexpected) changes. Such patterns of organizing abstraction
around commonalities and variations are popularly called “paradigms”. In software
engineering a paradigm is a set of rules for abstraction, partitioning, and model-
ing of a system. E.g., the object-oriented paradigm structures the design/program
around the data, but focuses on behavior [23]. It allows us to introduce variations
in data structures/connections and algorithm details. Each paradigm has a key
commonality and variation.

If we implement a system, we have to deal with a broad variety of paradigms.
Coplien [3] discusses the need for multi-paradigms. In fact nearly any good real
world software system is designed and implemented using multiple paradigms, sim-
ply because nearly no complex real situation exists, that can be described with
one paradigm sufficiently. E.g., in nearly every large C++ program a mixture of
object-oriented, procedural, template, and various outboard paradigms exists. Here,
outboard paradigm [3] means a paradigm that is not supported by the programming
language itself, but by a used technology, like the relational paradigm adopted from
a relational database.

In the focus of this paper are language constructs and concepts for design and im-
plementation that overcome current problems of the component- and object-oriented
paradigms and their integration. Firstly, we will discuss these paradigms and their
current integration problems. Afterwards we present some language concepts of the
language XOTcL: Firstly we will discuss concepts which can be mapped manually
to current mainstream languages, then we will present some interception techniques
that are missing in current mainstream languages. Finally we will generalize our
approach and compare to related work.

2 Combination of Component- and Object-Oriented Paradigm

2.1 Component-Oriented Paradigm

The very idea of component-based development is to increase productivity of build-
ing software systems, by assembling prefabricated, widely-used components. Com-
ponents are self-contained, parameterizable building blocks with explicit interfaces.
Component-based development aims at the replaceability of components and the
transferability of components to a different context, thus enabling component reuse.

The idea of the component-oriented key abstraction is not new. E.g., in many
large C systems self-contained components (or modules) that can be accessed via



an explicit API can be found. Component-based development, as it is proposed
today, mainly adds interface definition languages or other means to enforce that all
component accesses conform to the component interface, platform and/or language
independence, support for distribution, and accompanying services.

Current component approaches, such as component frameworks in scripting lan-
guages, like Tcl [19], or the component models of popular middleware approaches,
such as CORBA, Java Beans, or DCOM, induce mainly a black-box component ap-
proach. Unfortunately often there are several factors for development organizations
that drive them not to adopt the component-based approach for components devel-
oped by a third-party or even by a different in-house development team. Often used
arguments are, that internals of a black-box component can not be changed, there-
fore, reaction on business process changes can become more difficult. Generally, bugs
in the component are harder to fixr, because it is hard to build a work-around for a
bug, that is not located in your own code. The organization relies on the ability and
will of the component developer to fix the bug. Moreover, using black-boxes often
means that the development team looses expertise on component’s domain.

These factors can be observed in many real world applications and they apply
not only for black-boxes, but also (to a smaller degree) to components with avail-
able source code. The component abstraction seeks for building blocks that can be
produced and maintained separately from the systems they are used in. Variations
have to be treated separately and are mainly introduced by means of parameteri-
zation. The key problem of component-based software engineering is: On the one
hand, components aim at extracting the commonalities to a level, where we can use
them as prefabricated building blocks. On the other hand it is hard to maintain and
to cope with changes in a piece of software without access to internals. Since pa-
rameters are the main variation technique of black-box components, the changeable
parameters have to be foreseen by the component developer. But in reality often
the requirement changes are not foreseeable at component development time.

2.2 Object-Orientation and Components

Object-orientation is a paradigm sharing properties with component-based ap-
proaches. Many component-based approaches are implemented using objects.
Object-orientation arranges structures around the commonalities of data, but fo-
cuses on behavior. Traditional object-oriented programming and design maps
entities of the modeled real world to a single programming language/design con-
struct: the class. Object oriented design expresses computational artifacts through
a mapping onto several classes and their relationships. In most object-oriented
approaches, these relationships are association/aggregation (most often both are
expressed through the same language construct), and inheritance or extension.

Object-orientation promises separation of the involved orthogonal concerns
through encapsulation and class inheritance. The abstraction into general parts
with inheritance or delegation in object-based system should help us to concen-
trate on common and special properties at different times. These abstractions also
promise to gain modularity and to anticipate changes by designing general modules,
that can be specialized in different ways and that support incremental extensions.

These promises were only partially achieved by traditional object-oriented ap-
proaches. Studies of the amount of reuse gained through object-orientation indicate



that reuse is much smaller than expected in its early promises. E.g., Ousterhout [19]
points out on basis of empirical evidence that the reuse of components — as they are
used in scripting languages — is by far higher, than the reuse gained solely by object-
orientation. We believe a main reason for this divergence is that large object-oriented
frameworks tend to require an intimate knowledge of the framework’s internals.

The component-oriented key abstraction of consequently exploiting parameteri-
zable black-boxes is more suitable for reuse. But when taking a closer look at the
success factors of scripting languages, one can observe that they combine the com-
ponents with a highly-flexible glue language. Object-orientation especially helps us
to understand structural complexity and to make it explicit by architectural means.
These architectural means can be extremely valuable in complex design situation
in the glue language (see [18]), because a relatively small glueing application can
become very expressible and complex through the number of involved components.
And object-oriented language constructs can also be valuable in the internal de-
sign of the self-contained components. QOur approach relies on the two-level con-
cept of scripting languages, like Tcl. We distinguish into reusable, self-contained
components, mostly written in a system language, and a high-level, object-oriented
scripting language that combines these components flexibly.

Complex design problems are a focus of object-oriented approaches, but a weak
point of component combination with a scripting language, like Tcl. Object-oriented
design patterns capture the practically successful solutions of the field of object-
orientation. Our research on language support for design pattern, as for instance in
[14], has shown that pattern variations cannot be described solely through parame-
terization. Reusable pattern implementation variants have to be fitted to the current
context, especially when patterns are used in the hot spots [20] of software systems.
These parts of the application — where an elegant and sufficient solution requires
variabilities beyond pure parameterizations — are the parts that are hard to cover
with the component-oriented abstraction, since its key variability is parameteriza-
tion. The combination of the two paradigms with high-level design/implementation
language functionalities lets the object-oriented constructs cover the weak points of
the black-box component approach and vice versa.

3 Components and Component Configuration in XOTcL

Extended Object Tcl (XOTcL) [18] (pronounced ezotickle) is an object-oriented
extension of the language TcL. Scripting languages gain flexibility through language
support for dynamic extensibility, read/write introspection, and automatic type con-
version. The inherent property of scripting languages such as Tcr is that they are
designed as two-level languages, consisting of components written in efficient and
statically typed languages, like C or C++-, and of scripts for component glueing.

Our assumption is that just “glueing” is not enough. XOTcrL enhances TcL
with language constructs giving architectural support, better implementation vari-
ants, and language support for design patterns, and explicit support for composi-
tion/decomposition. All object-oriented constructs are fully introspectable and all
relationships are dynamically changeable. XOTcL offers a set of basic constructs,
which are singular objects, classes, meta-classes, nested classes, and language sup-
port for dynamic aggregation structures. Furthermore, it offers two message inter-
ception techniques per-object mizin and filter, to support changes, adaptations, and



decorations of message calls.

In XOTcL a component is seen as any assembly of several structures, like ob-
jects, classes, procedures, functions, etc., to a self-contained entity. Components
are conveniently packed into packages that can be loaded dynamically. A compo-
nent can also consist of a C or C++ extension of TcL. Each component has to
declare its name and optional version information with TcL’s package provide with
the following syntax:

package provide componentName ?version?

The system automatically builds up a component database. With package require
an XOTcL program can load a component dynamically with a name and optional
version restrictions at arbitrary times. package require has nearly the same syntax:

package require componentName ?version?

Components expose an explicit interface that can be used by other programs with-
out interfering with the components internals. But still we have to integrate the
components with the application and make the component internals adaptable and
dynamically fit-able to a changing application context.

3.1 Component Wrapping

Component wrappers can wrap black-box components written in various languages
and structured with multiple paradigms. The component wrappers are object-
oriented Wrapper Facades [21] that shield the components from direct access (see
Figure 1). Note, that often a set of interacting component wrappers has to be used
to wrap a complex component properly. Above the component wrapper layer a set
of implementation objects define the hot spots of the design. All objects (including
the component wrappers) can exploit the dynamic and introspective language func-
tionalities of XOTcrL. Since a black-box component is never accessed directly, but
always with the indirection of the component wrapper, we gain a central place, that
is a proxy or placeholder for a component. The component wrapper is a white-box
for the development team of the application. Here, changes can be applied centrally
and adaptations can be introduced without affecting the components’ internals.
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Figure 1. Integration of Components and Objects through Component Wrappers

Generally each component wrapper is implemented with an abstract interface
and a concrete component wrapper implementation (see Figure 2). Clients use the
components as Strategies [4] to make components easily exchangeable by providing
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Figure 2. Class-Based Component Wrapper Interface

a new concrete component wrapper and by dynamically changing to a new Strat-
egy. The concrete component wrappers forward the received messages as Wrapper
Facades [21] to the components that implement the functionality. At the connection
between client and component wrapper we can easily enhance the functionality of
the component with Decorators [4]. At the connection between component wrapper
and component we can use Adapters [4], e.g. to perform interface adaptations.

3.2 Export/Import Component Configuration

The implementation of the component’s functionality (e.g. in C or C++) is inte-
grated into XOTcL with Tcl commands (see Figure 3). A component explicitly
defines its export by explicitly defining a set of Tcl commands (function names
with argument lists). These commands can be mapped onto one (or more) wrapper
objects, that configure the component usage and adapt the Tcl Commands to an
object-oriented interface. The component wrapper explicitly declares which of the
exported methods are the import of this component usage. This way the compo-
nent’s client defines the required interface that an implementing component has to
conform to. The component implementation can be replaced by any other implemen-
tation that conforms to the required interface. Finally, the actual implementation
objects, which are using the component, call the methods of the component wrapper.
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Figure 3. Three-Level Component Configuration with Explicit Export/Import

The implementation objects can be used to build an application or a new com-
ponent. If a new component is built from existing components, it can export an



interface through a component wrapper consisting of XOTcL methods. But, since
any Tcl program can be embedded in a C program, a new component can also export
C functions (which can be used by any C program).

The component concept relies at runtime on the concept of component configura-
tion [5]. The first configuration step maps a C library component with an interface
design into the scripting language. Then this functionality is imported and adapted
by the component wrapper. Finally, the implementation objects use the adapted
import in their application framework. Each configuration step allows us to actual-
ize the configurations with different implementations that conform to the interfaces.
The integration of C components is presented in the upper half of Figure 3.

The general technique of applying an Object System Layer to a base language
and to implement the components with an object-oriented implementation is pre-
sented below. This technique is used in various languages and applications and is
documented as the Object System Layer design pattern [12].

Component configuration — as used in this work — is the runtime technique of
combining components. In XOTcL each component configuration can be changed
dynamically at arbitrary times. The component import interfaces can be dynami-
cally fitted to the new context. In order to keep track with this runtime flexibility an
important functionality of the XOTcr language is introspection. It allows us to query
the import interface for method names, argument list, and method implementations.
The currently configured components can be queried to trace the components, their
configuration, and the used interfaces at runtime. Runtime inspection tools can be
written with a few lines of code.

4 Interception Techniques for Flexible Component Wrapping

The techniques discussed so far can (mainly) be implemented in any object-oriented
design/programming language. The only difference of using XOTct is that XOTcL
language supports the discussed component concept already, i.e., it offers dynamic
package loading mechanisms, language support for dynamic aggregation, dynamics
and introspection in all language constructs, etc. In other languages we have to pro-
gram the concept implementations by hand. But implementing flexible component
wrappers solely with class constructs has several disadvantages:

e Transparency: The client should use the abstract interface without knowledge
of concrete implementation details. The component wrapper should not appear
to be scattered over several implementation objects.

e Concerns that cross-cut the component wrapper hierarchy: Often a complex
class hierarchy is necessary to implement component wrappers sufficiently.
E.g., most widget sets offer widgets as C or C++ components. In order to
compose compound widgets out of simpler widgets, we may need object hier-
archies as in the Composite pattern [4]. Concerns that are of a broad structural
size and that cross-cut the hierarchy, such as painting of the whole compound
widget, conventionally have to be programmed by hand.

o Object-specific component wrapper extensions or adaptations: Often adapta-
tions have not to be performed for all objects of a certain component wrapper



type, but only for one object. We should be able to object-specifically en-
hance components, without sacrificing the transparency. The intrinsic compo-
nent wrapper implementation and the implementation of extension /adaptation
parts should remain decomposed.

o Coupling of Component and Wrapper: Component and component wrapper
should appear as one runtime entity to clients, but they should be decomposed
in the implementation.

e Dynamics in Component Loading: Components should be dynamically load-
able, replaceable, and removable.

e Runtime Traceability: Components are loaded (possibly dynamically) into the
system. To know which components are already loaded, the connections be-
tween wrapper and component should be traceable at runtime.

In this section we will briefly explain two interception techniques of XOTcrL, that
overcome these problems by flexible adaptation of the component wrapper calls
to the concrete implementation. Both are transparent for the client. The per-
object mixin implements concerns that are object-specific extensions, while the filter
implements concerns that cross-cut class hierarchies. Filters and per-object mixins
form runtime traceable entities with the intercepted objects at runtime, but are
decomposed in the implementation.

4.1 Per-Object Mixins for Object-Specific Component Wrapper Exten-
sions

A per-object mixin [13] is a language construct, that enhances a single object with a
class that is object-specifically mixed into the precedence order of an object in front
of the precedence order implied by the class hierarchy. Through object-specific,
transparent, and dynamic interception of the messages that should reach the object,
object-specific pattern variants [15] and object-specific roles [13] can be implemented
conveniently. Per-object mixins allow us to handle orthogonal aspects not only
through multiple inheritance, but since they are themselves classes and use class
inheritance, they co-exist with the object’s heritage order.
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Figure 4. Request Logging/Access Control with Per-Object Mixins

In Figure 4 we can see an example of a per-object mixin. An abstract class
Request has two subclasses, one handling HTTP requests and one for FTP requests.
The class definitions may look like:



Class Request ;# Abstract class definition

Request abstract instproc open {} ;# Abstract method
Class HTTP -superclass Request ;# HTTP class definition
HTTP instproc open {} { ;# Method definition
e ;# Method forwards to HTTP component
}
Class FTP -superclass Request ;# FTP class definition

HTTP and FTP objects are Wrapper Facades [21] to components that implement the
actual requests as black-boxes. Orthogonal to the tasks of a requests are the tasks of
request logging, which can operate on both mentioned request types. In many cases
only certain specified request objects should be logged, as in the example httpl.

We do not want to interfere with the internals of the components that implement
the requests in order to gain request logging. Therefore, a solution with single or
multiple inheritance would not suffice, because it would either make all requests
logged or create unnecessary intersection classes [13], like LoggedHttpRequest and
LoggedFtpRequest. A solution with a reference from a logging object, as in the
Decorator pattern [4], would require the client to maintain a reference to the perhaps
volatile logging object and, therefore, it would be not transparent to the client. A
solution with a reference to a logging object, as in the Strategy pattern [4], would not
be transparent to the request object and unnecessarily interfere with the internals
of the component wrapper. Both solutions suffer from the fact that — from the
viewpoint of the client — one conceptual entity is split up into two runtime entities.

The solution with the per-object mixin, as in Figure 4, does not suffer from any
of these problems. It attaches the role of being a logged request and an access control
mechanism as a second orthogonal aspect object-specifically to the request object,
either in Decorator or Strategy style (as required). The access control mechanism
is actually performed in an imported component, while the rather simple task of
logging is handled by the mixin class. The per-object mixin is transparent to client
and request object. The logged request appears as one conceptual entity to the
client. There is only one object httpl that can be accessed and it always has the
same intrinsic class HTTP. But still logging and request tasks are decomposed into
different classes and can be dynamically connected/disconnected. Per-object mixins
can be attached in chains and specialized through inheritance. The per-object mixin
solution may look like:

HTTP httpl ;# Instantiation of httpl object

Class LoggedReq ;# Logged request class definition
LoggedReq instproc open {} {

# logging implementation

next

}
Class AccessControl
httpl mixin {AccessControl LoggedReq} ;# Mixin registration

LoggedReq and AccessControl are ordinary classes of XOTcrL. As an example method,
we define a method open for LoggedReq that logs all open calls and forwards the
message afterwards with the next language primitive to the next mixin or the actual
method implementation. We dynamically register the mixin classes for httpi.



4.2 Filters for Cross-Cutting of Class Hierarchies

A second interception technique, called filter [14], is able to operate on a class hi-
erarchy, instead of a single object (as the per-object mixins). A filter is a special
instance method registered for a class C'. Every time an object of class C or one of
its sub-classes receives a message, the filter is invoked automatically. A prominent
concern for usage of filters is to implement larger artifacts of the modeled world,
like object-oriented design patterns, as instantiable entities of the programming lan-
guage. In [14] we show how to express such concerns through a meta-class with a
filter. The filter operates on all classes derived from the meta-class. Filters can be
defined once and can then be registered dynamically. One can introspect the filters
that are registered for a class. All filter invocations are transparent for clients.

As an example for filters, we present the implementation of a Composite pattern
[4] variant in a reusable component. The context of the composite pattern is to
build up an object tree structure and to derive a set of classes from an abstract
component type. E.g., a composite widget component Canvas can aggregate other
widgets. This way we can build up compound widgets. All widgets confirm to the
same abstract widget component interface. A recurring problem of such structures
is that leaf object, like button widgets, are not allowed to aggregate other objects.
The solution to the problem in a purely class-based environment is, that only ag-
gregating composite objects contain an aggregation relationship. Leaf objects, like
buttons in the widget component example, have no children. An intrinsic property
of composite hierarchies is that certain operations on the root component, as in the
widget example a painting of the compound widget, have to be propagated through
the object tree. Composite objects forward these operations to all their children,
while leaf objects only execute the operation, but do not forward.

There are several problems that can be identified with the class-based imple-
mentation of the pattern. Concerns that cross-cut the composite hierarchy, like the
forwarding of messages or the life-time responsibility of the whole for its parts (in
the widget example: if a top-level widget is destroyed, all the constituent compo-
nents have to be destroyed), are not expressed properly, since their semantics are
not handled automatically. There is a certain implementation overhead, e.g. due
to unnecessary forwarding of messages. The pattern as a conceptual entity of our
design is neither traceable in the program code nor at runtime, but it is scattered
across several implementation constructs. This variant of pattern implementation
can hardly be reused, when the implementation language lacks proper (dynamic)
means to fit a general variant implementation to a new context.

The implementation with a filter, a meta-class, and dynamic object aggregation,
as in Figure 5, does not suffer from these problems. The filter is stored in a dy-
namically loadable component that contains a meta-class with a filter. The filter
implements the reusable pattern implementation variant. Classes, like the widget
component, that are superclasses of composite types are of the Composite meta-class
type. Automatically they get the filter registered. The filter acts on the whole com-
posite hierarchy and implements the concerns that cross-cut the hierarchy. Here,
the forwarding of composite messages on a set of registered operations, like paint, is
such a concern. The filter in the meta-class is transparent to clients. The compound
widget appears as every other ordinary widget. The dynamic object aggregation
language construct automatically handles the aggregation issues, like assurance of
the tree structure and the life time responsibility of wholes for their parts.
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The class definition of the Composite meta-class firstly has to define the meta-
class. The composite filter is an ordinary instance method that determines the called
method with an introspection option. It calls the message on all children with a loop
and then on the current object. The component may look like:

package provide Composite 0.8

Class Composite -superclass Class ;# Meta-class definition
Composite instproc compositeFilter args { ;# Composite filter method

set r [[self] info calledproc] ;# Determine called operation

foreach child [[self] info children] { ;# Loop over all children objects
eval $child $r $args ;# Forward message to children

}

return [next] ;# Call message on ‘self’-object

We can load the Composite implementation from a component with package
require. Afterwards we define the class hierarchy. WidgetComponent is defined by the
meta-class Composite and automatically handles the forwarding of messages for all
sub-classes transparently.

package require Composite

Composite WidgetComponent -superclass WidgetInterface
Class Button -superclass WidgetComponent
Class Canvas -superclass WidgetComponent

5 Components for Development of Flexible Software Archi-
tectures

The outcome of software development is a piece of software, a sustainable intellectual
structure, which manifests the results of the design. Often it is handed over from the
development team to the maintainers. The ability to modify or to understand the
software especially for a person that was not involved in the development details,
depends on the software architecture.

There are several properties that we expect from a “good” software architecture:
It should be flexible, evolvable, understandable, predictable and maintainable. We



expect the architectures to offer a significant amount of code reuse to speed up
the development process and to achieve more reliable software systems. Certainly,
the systems should be highly efficient. In summary we can make the following
assessments on the architectural impact of the approach discussed in this paper:

e Heterogeneous, Multi-Paradigm Black-Box Components: Black-box compo-
nents from various languages, like Tcl, XOTcr, C, or C++, are reused. The
components are implemented with the most suitable paradigms. Unfortunately
flexibility and evolvability of our software architectures suffer from our inabil-
ity to change or react on problems of the components internals. In this paper
we have discussed two approaches — scripting and high-level object-orientation
— to overcome these problems.

o Object-Oriented Scripting Language as a Component Glue: Scripting lan-
guages combine components flexibly, by means of a highly flexible, introspec-
tive, and dynamic glueing language. But scripting languages are not very suit-
able to express the complexity of large application frameworks (see [18, 14]).
Their original language design aims at smaller applications, partly because of
runtime efficiency. However, time critical parts can always be put into com-
ponents written in more efficient languages, like C. Still complex scripting
applications, like several compound widgets in TK, were very slow in the early
days of Tcl/TK. But nowadays CPU speed allows us to build very complex
scripting applications without a reasonable speed penalty.

In contrast, the combination with object-orientation gives us architectural sup-
port for composition/decomposition. The hot spots of the application, which
are expectable changing parts, are kept in the high-level object-oriented lan-
guage with its dynamic and introspective language means. Design experience
of the object-oriented community with complexity of applications and with in-
troducing flexibility in framework hot spots, helps us to make the component
wrappers easily (ex-)changeable and evolvable.

o Component Wrappers: Object-oriented component wrappers integrate the
components into the scripting language (if necessary). With the set of com-
ponent wrappers a component’s client explicitly defines its import from the
component. In turn, the component explicitly defines its export through the
Tcl wrapper. In a three-level process of configuration we actualize the inter-
faces with concrete implementations. These can be exchanged against other
implementations transparently, what leverages evolvability and flexibility of
our architectures. The implied indirection fosters understandability, since
we can understand components and clients independently. The component
wrappers are introspectable white-boxes to the application. Often changes in
the component wrapper — without interference with the component’s internals
— are sufficient to cope with new requirements for a component.

o Interception Techniques: Object-oriented interception techniques, like filters
and per-object mixins, enable us to deal with concerns that are hard to express
with current object-oriented constructs. They are especially valuable on the
component wrapper, since they allow us to transparently and dynamically
introduce multiple views onto a component implementation (at runtime).

To back up the results in this work we have provided two case studies of systems
build with the techniques described in this paper. In [16] we describe our web



server implementation in XOTcL. We have compared efficiency with the pure C-
based Apache web server. In the worst case our implementation was 25% slower
than Apache, in some cases, our implementation was faster. In [17] we present
a high-level framework for XML/RDF text parsing and interpretation. Again we
have performed speed comparisons with implementations in Java and C. The Java
based implementation was 2-4 times slower than our implementation in the scripting
language (using off-the shelf C components), the pure C implementation was only
1.5-3.5 times faster than the scripting implementation.

6 Related Work

In [22] the (mainly black-box) component models of current standards, like CORBA,
COM, or Java Beans are discussed. These approaches offer the benefits of black-box
component reuse, but have problems, when the internals of a component have to
be changed or adapted. Currently none offers an integrated concept for component
reuse and adaptation, that solves all the problems raised in this paper, but all
approaches have extension in this direction.

Java Beans implement limited dynamic loading and reflection abilities, but not all
interesting data can be introspected (e.g., the important information on caller/callee
of a call can not be retrieved automatically). Java Beans offer a distinct component
model. But Java Beans offer only the Java Native Interface for integration of com-
ponents written in other programming languages. Java does not support powerful
language means for configuration/adaptation of components.

In [7] an interception system for COM objects that can intercept object instan-
tiations and inter-object calls is presented. COM is a binary object model and the
approach relies on direct manipulation of the function pointers that call the meth-
ods. In contrast to the approaches in this paper the approach is a very low-level
approach and does not support suitable introspection mechanisms.

Orbix filters [8] (and similar techniques in other ORBs) implement limited inter-
ception abilities. They do only operate on distributed method calls and do not offer
sophisticated introspection techniques. A more general form of such abstractions
of the message passing mechanisms in distributed systems are composition filters
[1]. Abstract communication types are used as first-class objects that represent
abstractions over the interaction of objects. They encapsulate and enforce invari-
ant behavior in object communications, can achieve the reduction of complexity of
object interactions, and can achieve reuseability of object interaction forms.

The new CORBA 3.0 standard specifies a component model that is based in part
on the Java EJB component concepts, but goes beyond that, by providing the com-
ponent model to work with various languages. The new CORBA standard includes
a scripting language specification, which is a framework to integrate scripting lan-
guages with a CORBA mapping. Interestingly, the goals for primary applications of
the scripting language specification are the same issues, for which we have given ar-
chitectural language support in this work, i.e., customizations of components, legacy
wrapping, a service-based callback architecture, and flexible component glueing. It
is likely that XOTcL and the techniques discussed in this work would ease it to reach
these goals (though the specification is still in an early state).

A role, as in [11], is used to express the combination with extrinsic properties



that can be dynamically taken/abandoned. The approach does not define a compre-
hensive read/write introspection mechanism. It does not provide an abstraction at
a broader structural size, as the filter that applies a role on a whole class hierarchy.

Aspect-oriented programming [10] is a programming technique for decomposing
concerns into aspects, that have to be coordinated with other concerns across com-
ponent boundaries. Aspects cross-cut component boundaries, while components are
characterized by being cleanly encapsulated. An “aspect weaver” (a kind of a com-
piler) weaves components and aspects together. The approach does only introduce
limited (dynamic) changeability through re-weaving, but it can express concerns
that cross-cut several components properly. In contrast to our approach, aspect-
orientation is not inherently a black-box approach, but requires knowledge of the
component’s internals to build useful aspects.

Meta-object protocols, as in [9], divide a system into meta-level and base-level.
Meta-level objects impose behavior over base-level objects. Generally meta-object
protocols are low-level, but powerful; they can achieve reflection, dynamics, and
transparency. Our approach provides meta-classes with similar abilities, but most
often the interceptors are more powerful, easier composable, and provide more in-
trospection facilities.

Bosch proposes in [2] a component adaption technique based on layers, which is
similar to the presented interceptors: it is also transparent, composable and reusable,
but it is not introspective, not dynamic and a pure black-box approach. Layers are
given in delegating compiler objects, that are statically defined before compilation
time. This approach can be hardly used for expressing runtime dynamics in compo-
nent composition, since changes in layer definitions require recompilations.

Subject-oriented programming models [6] offer different views for a client onto
a concern. Classes can be composed with composition rules. In contrast to com-
position with interceptors, it does not provide introspective and dynamical runtime
composition, but only by a tool called subject compositor. Subject-orientation (and
subsequent approaches) address composition of system parts with extensions and
multiple views, thus it helps to overcome some of the problems of (descriptive)
component composition. Central runtime problems of combining components, like
adapting components without interference with component internals at different
granularities, component introspection/runtime traceability, or dynamic component
loading/unloading are nearly not addressed.

7 Conclusion

We have addressed the issue that software architectures should be build with reusable
(off-the-shelf) black-box components, but should also exploit the characteristics of
white-box object-oriented frameworks regarding evolvability and flexibility. We have
presented a practical approach that integrates such black-boxes, written in several
languages. An object-oriented scripting language serves as a component glue with
explicit export/import interfaces and as a central place to introduce changes into the
hot spots of the architecture. To overcome several problems of object-orientation,
the language offers interception techniques, that are valuable for component com-
position and adaptation. All presented techniques can be used in various other
languages through explicit programming by hand. Nevertheless, (runtime) language



support for introspection, dynamics, component composition/decomposition, and
interception techniques is useful, since it leads to shorter, more elegant, and less
error-prone solutions. Since XOTcr is itself a C library it can be embedded in any
C or C++ application as a distinct component glueing language.

XOTcL can be downloaded from http://www.xotcl.org.
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