A Key Technology Evaluation Case Study:
Applying a New Middleware Architecture on the
Enterprise Scale

Michael Goedicke and Uwe Zdun

Specification of Software Systems, University of Essen, Germany,
{goedicke|uzdun}@informatik.uni-essen.de

Abstract Decisions for key technologies, like middleware, for large scale
projects are hard, because the impact and relevance of key technologies
go beyond their core technological field. E.g., object-oriented middle-
ware has its core in realizing distributed object calls. But choosing a
technology and product also implies to adopt its services, tools, software
architectures, object and component paradigms, etc. Moreover, legacy
applications and several other key technologies have to be integrated.
And since no middleware product serves all requirements in the enter-
prise context, various middleware products have to be integrated, too.
Another key problem of middleware evaluation is, that often the studies
have to be performed very early in a project. In this paper we try to
tackle these problems and describe how we can communicate the out-
comes — which come from a technical viewpoint — to the management
and other non-experts in the technological field.

1 Key Technology Evaluation Case Studies

Early key technology evaluations are a case study type that we have performed
several times in different business setups for different companies. They aim at
the very early investigation of key technologies, like communication infrastruc-
ture, database management systems, or programming languages, for large-scale,
business-critical projects from a technical viewpoint. The projects were focussed
on re-engineering of large existing systems with numerous applications, though
many similar studies are performed for development projects of new software
systems. In such projects management normally wants to decide which key tech-
nologies the project will use, before the project is actually launched, in order to
estimate the savings/costs caused by the technology.

With the term “key technology” we generally refer to business-critical tech-
nologies, that drive companies to launch evaluation studies in early phases of
(large-scale) projects. With other words: technologies that lead to high costs,
if they fail to satisfy the company’s expectations. Examples of key technologies
could be communication infrastructure, database management, programming

language, operating system, etc. technologies. It heavily depends on the nature
of the project, whether one of these technologies is a key technology for the
project or not.

In this paper we will concentrate on a study, which aims at the re-organization
of the information systems of a large German enterprise with its core business in
the field of logistics. The case study is embedded in a process that includes mod-
eling the business processes, designing appropriate conceptual models, strategic
decisions for used technologies, and specification of platforms. The presented
case study had the task to identify and exemplify suitable middleware solutions
for the information system base-line architecture of the enterprise. The great
challenge of this study was, that it had to analyze key aspects of technology, be-
fore all application areas have named their actual requirements. The enterprise
was confronted with the problem that a huge number of applications were devel-
oped independently by the various departments. But these applications had to
work in concert to a certain degree in order to allow the departments to flexibly
interoperate and to exchange their respective information.

Newer key technology trends, which have become mainstream recently, like
distributed object systems, normally promise a lot, but also imply a set of risks.
Since the company had not experts in (all) the new key technology areas, it
was hard for the management to estimate which new technologies are valu-
able/necessary for the company. Therefore, a middleware evaluation study was
launched during early requirements analysis. We believe that this situation is
recurring for different key technologies in many companies of various size and in
various business fields.

1.1 Software Architectural Integration

Often departments have had the freedom for a “programming in the wild” with
no clear architectural concept for integration. This freedom helps to rapidly
develop applications from the scratch. But when the number and complexity
of applications rises, maintenance and integration of application becomes more
and more difficult. In such a diverse field, like communication infrastructure, a
lacking integration concept means not only to run into problems with integrating
communication technologies, but also in integrating the various programming
languages, object models, services, access variants to shared resources, etc. Many
organizations, like the enterprise in this case study, react by creating an external
department that should impose standards over information system development.
Often these standards tend to be loaded with severe constraints. Therefore, often
the standards are either ignored by the developers or they lead to monolithic
systems that are hard to maintain.

These problems are similar in many companies, but they are more pressing
in the enterprise context, than in small companies. There are several reasons.
I.e., the enterprise has more different applications and technologies that have to

be integrated. Applications have to be deployed to more hosts and middleware
products have to be purchased earlier. Departments that impose standards have
more likely limited personal contact to all affected developers and, therefore,
developers are less involved in key technological decisions.

From our experience, an early technological study should give guideline and
communication assistance for technological decisions to the concrete applica-
tion’s software architect rather than to make premature decisions in her/his
place. Therefore, in this paper we will try to show a way to avoid such rather
random impositions. Nevertheless, the paper comes to concrete results from man-
agerial and technological viewpoints for the integration of object-oriented mid-
dleware in a very early project phase.

1.2 Roadmap

So far we have sketched a problem field, which seems on the first glance to have
no clear solution. Management demands for a clear basis for decision and for an
architectural perspective, but the field is much too diverse to provide a simple
answer. However, simplicity and transparency of decisions are of central impor-
tance. Both the involved managers and developers have to be able to understand
the decisions and the reasonings behind them directly. The acceptance of deci-
sions relies on the solution’s ability to cover the technical realm of the application
in focus. In early evaluation studies this is very hard, because the application
specifications do not exist when the study is launched. In enterprise-scale studies
it is even harder, because a wide range of applications has to be covered.

Another problem we cannot ignore is subjectiveness. If people have to decide
for key technologies personal experiences, predilections, opinions, and prejudices
come into the decision. Our experience is that no pseudo-objective decision pro-
cess can change this as long as not enough “hard” criteria can be found.

Our approach relies on the simple idea — which is not so simple in its re-
alization — to use the right tool for a given task and then seek for technical
solution for integration of these tools. However, the goal to find a company-wide
integrated solution may cause damages that outweigh the benefits by far. In con-
trast to the concrete applications, the technological requirements for integration
are quite concrete even in early stages, because the technologies themselves are
already existing. We will see, that in this domain we face recurring problems,
like object system integration, finding of a suitable component concept, bridg-
ing between technologies, etc. It is important that these integration decisions
are performed at a detailed technological level. Otherwise the evaluation case
study bears little to no technological substance and is unlikely to be accepted
by concrete application developers.

In detail, we firstly have discussed and communicated the technological field,
the available technology types, and the available products with the stakeholders.

The outcome was a document describing all these aspects in detail and a taxon-
omy of the middleware technologies/products. Thus we have come to consensus
on all these aspects covering the objective and the subjective knowledge about
the middleware technologies/products. We have created a “common language”
for further discussion. These issues are discussed in the Sections 2 and 3.

With this “common language” we have then begun to discuss concrete appli-
cation scenarios, that the stakeholders characterize as typical for the company.
From our experience the outcome is nearly always a diverse set of technologies.
Therefore, two questions arise directly: How do we integrate the different appli-
cations build with different technologies and how do we find the best technology
from the taxonomy for a concrete application?

We provided a concrete technological concept for the integration task, which
we introduce briefly in Section 4. As a guidance for concrete application decision
we use a scenario-based process. In order to illustrate this process, we exemplify
it with the typical application scenarios, which we had used earlier throughout
the discussions. In Section 5 we present one such example of a letter distribution
center information system.

2 Middleware

At the enterprise level the expectations are high and are often beyond the func-
tionalities of existing products. At an early stage of a project it is hard to de-
termine which technologies meet the requirements of an enterprise. Software de-
velopment depends on several changing technologies. One of the most complex
technology areas — faced in today’s technology decision processes — is middleware
[3]. In the context of this paper we see a middleware as following:

A middleware extends the platform with a framework comprising components,
services, and tools for the development of distributed applications. It aims at
the integration, the effective development, and the flexible extensibility of the
business applications.

Middleware comprises several different technologies provided by different ven-
dors, which conform to a different extent to a great number of partially over-
lapping standards. Middleware abstracts from the network layer and from direct
network access. Applications access networking functionalities through a well-
defined interface of the middleware and communicate virtually on top of the
middleware among each other. The middleware implements the details of net-
work access (as illustrated in Figure 1). It provides a software layer between
operating system functionalities and applications [17]. Thus it is often seen as
an extension of the traditional notion of the platform.

Choosing a key technology, like middleware, has severe impact on the software
architecture of the enterprise’s information systems. The software architecture

Application | | Application | | Application | | Application
cof \
<g! !
E 'E' Network Network Network | !
8&' | Access Access Access !
EE X
£ %: Network :

\ ’

Figure 1. Middleware

consists of software components and the relations among them. Therefore, the
component (and object) model of the middleware has to be integrated, adapted,
and/or adopted to the component models used throughout design and imple-
mentation. Limitations of the middleware’s component model can restrict the
expression power accessible in design/implementation. But the middleware tech-
nology can also introduce new concepts and architectural means not accessible in
the used design/implementation languages. E.g., the new CORBA 3 component
model introduces a distinct component model into languages that offer none (like
C) or Orbix Filters [9] introduce interception techniques into non-interceptible
languages (such as Java).

Different middleware products (and technologies) offer a different spectrum
of services. Services are central for the usage of middleware in the enterprise.
Generally each service can also be developed by the enterprise itself (or by a
third party). But standardized services allow the applications to be developed
faster and more cost effective and they provide a higher interoperability among
applications, that need such a service. Important service areas are messaging
service, transaction service, security service, and naming (directory) service.

Even the software development processes are strongly influenced by middle-
ware technologies. E.g., a clear component/interface model enables software de-
velopment in separate teams. Therefore development with a component model
enforces another development process than the development of a monolithic
piece of software. For these reasons a positive impact of software architecture, a
suitable set of services and tools, and the ability to enforce a promising devel-
opment process are central requirements for a middleware technology. Besides
these central requirements other non-technical requirements have to be consid-
ered, like costs of licenses, education of developers and designers, vendor politics,
standards, existing education of the SW developers, designers, etc.

3 Technologies and Taxonomy

In the preceding sections we have tried to define middleware and to name im-
portant aspects when choosing a middleware for an enterprise. These aspects are
chosen in order to be able to explain the impact of middleware technology onto
distinct areas of software development. We have used these aspects to develop
together with the stakeholders in the enterprise a common framework in order to
characterize and compare different products in different categories. The specific
framework was:

— Interoperability:
e (Standardized) communication over the network,
e Support for various programming languages,
e Support for various platforms (i.e., platform independence).
e Integrated component model.
— Services:
e Messaging service,
e Transaction service,
e Security service,
e Naming (directory) service.
— Scalability.
— Performance.
— Standardization.
— Marketablility of the products.

Note, that even this quite generic evaluation framework is subjective and
company-specific. In other companies some aspects would probably more or less
prominent, probably different service areas would have been chosen as important,
etc. Every enterprise has to build its own framework and taxonomy when making
an important technological decision. For different settings other central aspects,
as for instance application deployment, have to be considered as well. In general
the enterprise’s set of important quality attributes has to be mapped onto a set
of criteria that distinguishes the technologies clearly (e.g., when deciding about
database technology the same technique may be applied).

The mapping can only be found through ongoing discussion with the stake-
holders throughout the study, since they know their business case the best.
Afterwards the enterprise can use the resulting taxonomy for their concrete ap-
plications. The reason for using a taxonomy is transportation of knowledge to
the system’s stakeholders, like management, developers, customers, etc. A mid-
dleware expert will know without building a taxonomy when to apply CORBA
and when to use an RPC approach. But with a taxonomy it is easy to com-
municate such decisions, if the taxonomy is, on the one hand, based upon the
central quality attributes of the enterprise and does, on the other hand, represent
characteristic properties of the technologies.

3.1 Middleware Technologies

After we agreed with the stakeholders in the enterprise upon the framework that
is able to express the relevant technologies and captures the important quality
attributes of the company, we decided which technologies/products had to be
investigated. These were:

— RPC Mechanisms, like: Sun RPC, OSF’s DCE.
— Distributed Object Systems (based on the RPC principle):
e CORBA - ORBs, like Orbix, Visibroker, TAO.
e DCOM,
e Enterprise Java Beans (EJB) and Java RMI,
— Application Server:
e EJB-based servers, like WebLogic, Oracle Application Server, Web-
Sphere.
e Scripted web-servers, like Vignette V/5, AOLServer, Ajuba2, WebShell,
Zope.
— Transaction Processing (TP) Monitors, like: Tuxedo, Encina.
— Message Oriented Middleware (MOM), like: MQSeries, Tibco.
— Mobile Code Systems (MCS), like: Aglets, Voyager, Telescript, Jini.

Finally we gave a two/three pages description of each technology and each prod-
uct. The descriptions consist of a brief description, an illustrating figure, and an
textual evaluation of each item of the taxonomy framework. Here, we just give a
heavily abbreviated discussion of the CORBA technology as an example of the
style of presentation (see Figure 2).

3.2 Results of the Assessments

The result of our assessments was a rather technical evaluation of the named
middleware technologies and the different products in the various technologi-
cal fields. Note, that these findings are not a generalizable view on middleware
technology, which could be converted without change to another company. In-
stead these finding are strongly influenced by the process of discussing a suitable
middleware in the realm of the actual company. The assessments reflect a lot of
objective knowledge about middleware, but also a lot of subjective aspects, such
as personal predilections, special experiences in the company, company politics,
etc.

In summary, all participants in the discussion came to the opinion, that all
technologies provide enhancements in the fields of the other technologies. TP
monitors have their strength in database connection/transaction management.
Application servers are superior in representing different business logics (like an
additional web representation). But both technologies have only limited capa-
bilities in other domains. Therefore — in the enterprise context — they should

not be used as a sole middleware solution, if a part of the application (or even
an expected future change) requires additional functionalities. Mobile code tech-
nologies can be superior to all other technologies in certain applications (e.g.,
when high configuration/customization needs on the server side are paired with
low network bandwidth), but no marketable products are existing for the enter-
prise scale with all required middleware services.

That means for these three technologies we have hard (or better: merely
objective) criteria for several applications whether they should be used or not.
But even for these technologies it is most often not obvious at the first sight if
the application benefits from one of these technologies more than from another.
With all other technologies the decision for a technology is even harder. With
other words: at the enterprise scale and under consideration of the diversity in
the middleware field, there can be no a priori decision for one specific product
that suits all application needs.

This point is a key problem of this work: How can we — as technical consul-
tants — deal with a situation, when a managerial decision requires a foundation,
but the technical field is so unwieldy or complex or entangled, that an objective
statement is merely impossible. On the other hand, the manager requires a basis
for decisions, so this statement alone is not a sufficient answer for her /him. More-
over, in any such complex decision field, we have to deal with a lot of subjective
opinions and prejudices.

RPC|CORBA|DCOM|EJB|AS|TP \MOM[MCS
Interoperability:
Network communication + |+ + + + |+ [+ [+ +
Programming language independence|- + + + -- |- |- o o
Platform independence o + + -- + |+ [+ [+ +
Integrated component model - + + + [+ |- - +
Services:
Messaging services - o - o o |- + + [+
Transaction services 0 + 0 o |0 |+ +| - -
Security services 0 o 0 - o [+ |-
Naming (directory) services 0 o 0 o o |o |- -
Scalability -- |+ - ¥ |+ I+ ¥+ o
Performance 0 + 0 - -+ o o
Standardization o + +) + o [-- |-- o
Marketability of available products |o + + 0 o |+ [++4[++ |--

Table 1. Subjective, Company-Specific Taxonomy Overview for Middleware Technolo-
gies

Therefore, we think an enterprise has to check for every application which
middleware technology or combination of technologies suits best. Throughout

the process of building a taxonomy the members of discussion get a feeling
for the technologies. An enterprise should identify a key middleware technology
as an integration base, which integrates applications using different middleware
technologies. This key technology should be the technology which is presumably
used for the most applications. E.g., some enterprises use CORBA as their key
technology, because it offers platform and language independence and a mature
component model. Others use an application server as their key technology be-
cause the majority of their applications are web-based e-commerce applications.

This outcome is obvious to the technology expert, but not for the manager.
The ideal outcome for a manager would be, that one or a very limited set of
products could be chosen. But at the enterprise scale it is not realistic that one
product (or one specific product combination) serves best for all application re-
quirements. A very detailed document describing the various properties, advan-
tages, and disadvantages of technologies/products in detail is a good backdrop
for specific discussion, but it gives a bad overview.

Therefore, we have added a rather simplistic overview table (similar to Table
1 — here we only summarize the technologies). The table is only meant as a
starting point for discussions and for making/communicating a pre-selection.
We use the following simple scale for rating of the taxonomy aspects: support
for aspect is outstanding (+ +), support for aspect is good (+), support for
aspect is available (0), support for aspect is not ready for the enterprise scale
(-), and support for aspect is not or nearly not available (- -).

Note, that the simplicity of the table is provoking. And it is intended to be
provoking, because this helps to start a discussion. E.g., an RPC user may heav-
ily object, that RPC technologies are nearly not scalable. If the RPC user can
argue for the technology and can argue that it is less work to build a bridge to
the integration base than to use the integration base itself, the concrete applica-
tion project, will probably use RPC. Afterwards, the taxonomy can be updated
according to the experiences with that project.

Such considerations heavily depend on the company and the involved devel-
opers. If a department has several RPC experts and an RPC library framework,
several of the aspects may require a quite different evaluation than in a company
that has never used RPC before.

4 Integration and Coping with Change

So far, we have discussed how to make pre-selections for middleware technologies
in very early stages of projects for single applications. One outcome was that
no single technology can serve all requirements. Therefore, we need to come
to a decision for the concrete application and we require an integration of (a)
the technologies (and their services, tools, and processes) and (b) the involved
(slightly) different paradigms. A special interest lies on the changeability at the
technology seam, since it is a hot spot of the application.

10
4.1 Key Technology Decision and Integration Base

The software architecture is the first artifact in the development of a software
system, that enables us to set priorities among competing concerns of the dif-
ferent stakeholders of the system. These concerns may be expressed in terms of
quality attributes, as in [1], like performance, security, availability, modifiability,
portability, reusability, integrateability, or testability. It is obvious that no archi-
tecture can maximize all of these quality attributes at once. The architect has to
analyze the relevant requirements in terms of quality attributes. Influences for
an architect are the architect’s experience, the technical and organizational envi-
ronment, and the stakeholders (like customer, end user, developing organization)
of the system, who can be interviewed to find relevant scenarios with methods
like SAAM [1] or [2]. The architect has to actively gather these information from
the stakeholders by interviews and circulation of the results.

Our taxonomy does not lead to a distinct recommendation for one middle-
ware solution. It just helps an architect of a concrete application to select an
appropriate middleware solution from the possible alternatives. None of them
is absolutely superior to other solutions, and unfortunately, each application
demands different quality attributes. Therefore, the architects of any software
system have to choose the appropriate solution for their application. This out-
come is very unsatisfying regarding the aim to find an integration base technol-
ogy/programming language at a very early stage of a project.

However, after understanding of the business cases for the software sys-
tems and elicitation/understanding of sufficient number of requirements (using
scenario-based techniques if appropriate, sometimes other techniques, like formal
requirement specifications, are necessary), an integration base can be identified.
A sufficing number of applications is reached when the domain experts are sure
that examples of most characteristic applications are investigated. One technol-
ogy combination is chosen as an integration base. Concrete application develop-
ers are free in their choice of a technology, but the architecture must contain an
interface, that conforms with the integration base. These interfaces are FACADES
[5] that shield the application from direct access to the internals. The interfaces
offer the application’s services to client’s based on different technologies.

Both integration base and concrete applications can be found by firstly per-
forming a pre-selection of technologies, e.g., using the taxonomy. The result is a
brief evaluation which technologies can not satisfy the requirements sufficiently.
Afterwards larger, characteristic examples are investigated and candidate archi-
tectures for the examples using the different technologies are developed. These
are evaluated for their architectural advantages/liabilities by comparison of the
solutions and development /evaluation of (expected) change scenarios using soft-
ware architecture analysis [1,8] (see Section 5 for an example).

The integration base is one kind of interface to which all applications of-
fer their service and can comprise for instance an integrating technology and
its component concept. To gain architectural flexibility in the integration base

11

and in the software architectures of the applications the decision of each used
technology should be performed stepwise on basis of change scenarios that are
found and evaluated in interviews and circulation with the stakeholders. Figure
3 illustrates the various influences (ovals) and the derived artifacts (rectangles)
in this process of finding a key technology. Dotted lines represent aspects which
are evolving in distinct studies/implementations, while solid lines indicate con-
tinuously evolving aspects.

With the presented approach we give the application developers the freedom
to develop applications with the technology that fits the application domain the
best. And we have not ignored the subjectiveness in the technological decision
process. Such ignorance makes developers feel uncomfortable and thus produces
bad results. However, the developing department has to care for building a bridge
to the integration base, if it is not available in the company already.

4.2 Object System Layer for Paradigm Integration

The open questions are, how to integrate another key technology with the in-
tegration base, how much efforts integration takes, and how much complexity
the integration adds to an application system. In this domain we can present a
quite concrete, technical solution, which relies on the component concepts from
[6] and the OBJECT SYSTEM LAYER architectural pattern [10].

We can see each subsystem as an opaque black-box, that is accessed via
a Facape component. The FAcapeE component includes a FACADE object for the
used middleware technology and wrapper objects that implement the calls of the
FacapE to the subsystem (if necessary). E.g., if we have a C legacy subsystem
that uses RPC calls, we would extract a component with one distinct interface
to the subsystem using RPC. Now we build an ApaPTER that is a second FACADE
to the subsystem and that has no other task than adaptation of calls using the
integration base technology to the RPC interface.

In summary we add to each independent subsystem a component that explic-
itly defines the component’s export interface. This interface is only way for other
systems parts to access the subsystem and it is build with the middleware tech-
nology chosen for the subsystem. A simple ADAPTER integrates the integration
base technology.

This simple approach lets us split up an existing system into self-contained
subsystems and components. Thus we can build a component-oriented structur-
ing for an existing legacy system in a piecemeal way. Therefore, our approach
also provides a clear, piecemeal way for migration to the new middleware tech-
nology. In [7] we present a larger case study of such a migration process for a
document archive system with the presented concepts.

Often paradigms of various programming languages and key technologies
have to be integrated in a single component (especially in the FACADE compo-
nent of a subsystem). Often these models have to be integrated with concepts

12

and languages that do not offer a notion of a certain paradigm at all, as the
object-oriented paradigm that is introduced into languages, like C, by middle-
ware, like CORBA, MOM, or TP monitors. For the enterprise context this in-
tegration of object/component concepts is especially important, since a large
number of different models has to be integrated with the integration base tech-
nology/language.

This problem of integrating a foreign object system into a base technol-
ogy/language can be solved by various approaches. We have documented the
general underlying solution in the OBsEcT SYSTEM LAYER architectural pattern
[10]. The solution builds or uses an object system as a language extension in the
target language and then implements the design on top of this OBJECT SYSTEM
LAYER. It provides a well-defined interface to components that are non-object-
oriented or implemented in other object systems. It makes these components
accessible through the OBjECT SYsTEM LAYER and then the components can be
treated as black-boxes. The OBJECT SYSTEM LAYER acts as a layer of indirec-
tion for applying changes centrally. There are several implementation variants of
the OBJECT SYSTEM LAYER pattern. Examples of popular OBJECT SYSTEM LAYERS
are object-oriented scripting languages, libraries implementing an object-system,
and object systems of key technologies.

Figure 4 shows the C/RPC subsystem with a CORBA integration base.
Here, we must integrate the C procedural paradigm with the object system
of CORBA. We propose to use an scripting languages, like XOTcw [11], as an
OBIECT SYSTEM LAYER to integrate with the integration base technology, because
the flexible and dynamic language means of the scripting language allow us to
easily integrate ADAPTERS/DECORATORS at the FACADE component. Rapid cus-
tomizability of the FACADE interfaces and the connection to the subsystem are
important, because the interface section of black-box components are hot spots
of distributed systems and the scripting language’s component concept allows
us to build compound components from several base language components. An
(existing) Java/RMI subsystem can integrated with the C/RPC subsystem by
giving it a similar CORBA ApAPTER to the RMI FACADE.

Note, the similarity and symmetry of the scripting language solution with
XOTcL and the Java solution. In both cases the FACADE component has the task
to serve as a component glue. This is the basic language design issue of scripting
languages, like Tcr, which is designed as a glue for C or C++ components.
Here, we re-build the same architecture in Java to have a glueing component that
shields the subsystem. This way we have a clear stepwise way to migrate existing
subsystems or subsystems build with another technology than the integration
base into the enterprise’s information system.

13

5 Distribution Center Example

In order to show how to apply the found results to concrete applications, we have
concluded our study with several illustrative examples from various application
fields of the enterprise. Here, we present one of these examples very briefly:
a middleware solution of distribution centers for letters. A distribution center
sorts letters by destinations. Various centers are connected to exchange letters
and logistic data. Each center sorts letters for other centers. Inside of a center
letters move around in standardized baskets. These baskets are sorted several
times with sorting machines which are equipped with computers that are running
non-standard operating systems. Non-standard letters have to be additionally
sorted by human operators at a special sorting place. Before and after sorting the
baskets are weight in order to control whether all letters have made it through
the sorting machine or not. The balances for weighing the baskets are special
peripheries which have to integrated into the system. Several NT and Unix
workstations collect the data from the sorting process and compare the results.
Furthermore various workstations are used for character recognition by human
operators. Central computers are Leitstand, PPS, communication systems. They
directly interact with central databases. The example can be seen in Figure 5.

First, we take a look at the requirements of the system. A middleware for the
system should be capable of integrating the various platforms and languages used
in the legacy systems. Since the system is a large, continuously working system,
legacy applications have to be integrated and the migration to the middleware
solution should be incremental. It should transparently encapsulate the special
peripheries, like the balances. An important issue is scalability. On some days
in the year (e.g., before Christmas) there is a considerable higher demand for
sending letters than in other periods of the year. The system has to be integrated
with other distribution centers and with the management’s information systems
for exchange of statistical data.

Now we map these requirements to our taxonomies’ criteria. The system
requires reliable network communication, programming language, and platform
independability. An integrated component model should integrate various ap-
plications, legacy components, and special peripherals. The system would ben-
efit from a transaction processing monitor or transaction service, because the
database connectivity has to handle a larger number of transactions. Since the
system is a very large system and should survive a long time, standardization
is important in order to be independent of vendor politics. Finally the products
must have proven a high reliability in an enterprise context, because failures in
the system can cause considerable costs and severe damage to the image of the
enterprise.

In the next step we make a pre-selection of candidate technologies. RPC ap-
proaches are not a superior solution, since their scalability properties are weak
and they are poorly standardized. DCOM suffers from very limited platform
independence and from its low-level scalability functionalities. Enterprise Java

14

Beans and RMI are not programming language independent, what makes it hard
to incorporate existing legacy applications, their performance is weaker than in
other approaches. For both DCOM and EJB/RMI it is questionable if the tech-
nologies are ready for the scale of the application. A transaction monitor alone
has a weak component concept, weak language independability, and is not stan-
dardized. Mobile code systems would be the good paradigm for this application,
because the code can move around with the baskets, each basket’s procedure can
easily be customized, mobile agents can gather statistical data locally and con-
vey it to the management department by migrating to the management places,
etc. But the current approaches do not seem to be ready for the scale of the
application.

Three middleware technologies are candidates after the results of the initial
discussion: CORBA, application servers, and MOM. Furthermore combinations
are possible. CORBA meets most of the requirements: it is platform indepen-
dent and language independent, offers an integrated component model, has high
scalability and performance, is standardized, and the products are marketable.
An application server has its weaknesses in programming language independence
and probably in performance, if the application requires client-to-client interac-
tion. In the given application example, most parts of the application are clients
and servers at the same time. E.g., a PPS computer is a client to the sorting
machines, when it gathers information, but it is a server in providing information
about PPS decisions. If not every machine is wrapped behind its own application
server, it is unclear how to cluster machines to application servers. The main
drawback for message-oriented middleware in the given application is its missing
standardization and the overhead of asynchrony, which is negative for net load
and performance. It may result in further investments in stronger hardware.

After performing a comparison on the criteria of the taxonomy, we perform a
software architecture analysis. For space reasons, here we just investigate three
scenarios as examples in Table 2 very briefly. We find the relevance of the sce-
narios by interviews with the stakeholders. We assume that a change scenario
that was often named is more likely to happen than one which is named only
seldomly.

Overall we have built a list of all scenarios in the same style. Then we have
given marks for each product in each scenario for evaluation. These were found
by a discussion of the scenario descriptions with the stakeholders. Upon these
marks we have made the concrete choice for the application. In the concrete
example a CORBA based architecture was chosen, because it deals with most of
the quality attributes better than its competitors, it is a good integration base
for integration with other applications, and it handles most relevant change
scenarios sufficiently. Nevertheless, for other applications or other enterprises
other technologies or combinations could serve better.

Scenario
tion

Descrip-

CORBA

Application Server

MOM

What happens if a
new platform is in-
troduced?

With CORBA it is
quite easy to add a
new platform sup-
port, if the platform
is supported by any
CORBA vendor, since

The change depends
on the support of the
middleware vendor of
the concrete product.
With EJB servers it
also depends on the

The change depends
on the support of
the MOM vendor of
the concrete product.
It may expensive and
exotic platforms may

the basic CORBA |availability of Java on|not be supported.

functionalities are|the platform.

quite compatible

across vendor imple-

mentations.
What happens if{lUsing CORBA the|Application server MOM products can
licensing costs of|effort to change|specific application|cause significant
a technology rise|to another vendor|parts have to be|problems in changing
dramatically (e.g.,|depends to what|re-written in order|of the vendor, since
through changes in|extent vendor specific/to change to a new|their models are heav-
vendor’s pricing|extensions/services |vendor. Programminglily vendor dependent
policy)? are used. Generally|language depend|and since there in

a change is possi-|parts normally, may|not a great variety of

ble with foreseeable
costs.

be reused since for
all prevalent lan-
guages (like Java, C,
Tcl) several similar
products are existing.

comparable products
at the market.

What happens if the
database technology|
is changed?

All three technologies offer capabilities for encapsulation of legacy
components/database wrappers. With a good design (a database ac-
cess layer) it should be easy to change the database with all tech-
nologies. However, the abstraction from client interaction logic of a
transaction monitor would serve better. Runtime means of adapta-
tion (offered by some vendors) also help to transform one database

wrapper to another.

Table 2. Change Scenario Description

15

16

6 Related Work

The presented approach deals with the decision for key technologies. Firstly, a
general overview and a subjective taxonomy are built. Then we mime example
architectures, to find relevant scenarios. Finally, we find very concrete integra-
tion base technologies and explain concrete architectural solutions of legacy inte-
gration. Despite the earliness of the study, we provide quite concrete outcomes,
without ignoring subjective experiences or company /application-specific aspects.
There are several approaches, especially in the field of software architecture, that
deal with parts of this process.

In [1] the software architecture analysis method (SAAM) is introduced. Sev-
eral case studies are presented, including a case study of the CORBA architecture
and the architecture of the web. Influences of software architecture on quality at-
tributes and stakeholders of an organization are described in great detail. Other
scenario-based architecture analysis methods are described in [2] and [8]. These
approaches concentrate on the flexibility of architecture analysis in very early
stages of software projects. This methods may be used as a part of our approach
in order to find and evaluate scenarios. Generally, these approaches rather con-
centrate on more concrete architecture and not on very early evaluations and
are, therefore, alone not suitable for an early key technology evaluation. They are
not accompanied by a clear architectural vision for object-system or paradigm
integration.

Architectural styles and patterns rather deal with last part of the process
discussed in this work. In [15,4,14,1] architectural styles and patterns are dis-
cussed. In [12] the influence of the styles imposed by middleware technologies
is investigated with the conclusion that no style serves best and, therefore, that
different application have different middleware needs. Middleware induced styles
should be made explicit in form of a style map, that can possibly be defined for-
mally by a architecture description language. The case study in this work shows
the entanglement of key technology decision and integration solutions. There-
fore, these works are an important companion to the present work. With a clear
knowledge of relevant styles and pattern it is easier to explain the integration of
the technologies, object systems, and paradigms.

Brown discusses in [3] obstacles and important issues in applying and un-
derstanding middleware systems. He identifies a set of central aspects software
managers have to adopt in order to successfully use and understand the benefits
of middleware technology. Besides the aspects covered by our approach, for ev-
ery application it has to be investigated, what the additional necessities for the
usage of the technology with a concrete application are. Additional boundaries
evolving with the usage of the technology have to be considered. Time and costs
of adapting to the technology should accompany a final decision. These issues
could be taken into concern in form of change scenarios. The approach is not as
detailed as our approach and lacks a discussion of the integration problem.

17

A set of smaller studies solely provide comparison frameworks for middle-
ware technologies (similar to our taxonomy). These approaches lack a discussion
of the broader selection process and of the integration task. Raj [13] compares
the middleware technologies CORBA, DCOM, and Java RMI very detailed at a
implementational level. On a larger example he compares the benefits/liabilities
by source code comparison. In [16] a detailed comparison of COM and CORBA
technologies for distributed computing is given in form of a decision framework.
From its intention it strongly resembles our taxonomy approach. Unfortunately,
none of the named works gives a full fledged overview and a systematic compar-
ison of all relevant middleware technologies.

Thompson [17] defines and positions middleware similarly to our work and
propose a four step based approach to select a middleware technology. First the
approach identifies the communication types within a business and between busi-
nesses. Then the underlying communication models of these types are classed
into five communication models, which are conversational, request/reply, mes-
sage passing, message queuing, and publish/subscribe. On the basis of these
models middleware technologies are identified and finally evaluated on candi-
date architectures. The general steps are similar to our approach, but we doubt
that the communication models are a detailed enough characterization of mid-
dleware technologies. Any organization of enterprise-size will most likely require
all kinds of communication models. Most current middleware technologies imple-
ment more than one communication model. For both reasons the communication
models can not serve as a good critierion for distinction. Moreover, in early stud-
ies when business requirements are not fully known, it can also be hard to find
the relevant communication types.

7 Conclusion

Key technologies, like middleware, have significant influence on the software ar-
chitecture of an information system. The software architecture, in turn, has a
severe impact on the realization of quality attributes of a company. Often evalu-
ation studies on key technologies have to performed in early stages of projects for
a large number of application. On the enterprise scale the application’s require-
ments are in most cases too diverse to let an imposed, upfront key technology
decisions over all applications seem sensible. An early study can identify the
relevant requirements/quality attributes, map them in a taxonomy to the tech-
nology’s properties, and identify an integration base. On example systems tech-
nology decisions and integration with existing system can be exemplified. With
such a partial result that leaves a lot of freedom for the application designers,
an early key technology study can make sense from the technological viewpoint.
Rather simplistic overviews of the results, like taxonomies or change scenarios,
serve as good starting points for discussion with non-experts in the technologi-
cal field, if they are clearly mappable to their concerns. The best way to achieve

18

such a mapping is an ongoing discussion with the stakeholders throughout the
study.

References

1.

2.

w

11.

12.

13.

14.

15.

16.

17.
18.

L. Bass, P. Clement, and R. Kazman. Software Architecture in Practice. Addison-
Wesley, Reading, USA, 1998.

P. Bengtsson and J. Bosch. Architecture level prediction of software maintenance.
In Proceedings of the International Conference of Software Engineering (ICSE99),
Los Angeles, USA, 1999.

A. W. Brown. Mastering the middleware muddle. IEEE Software, 16(4), 1999.

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-
orinented Software Architecture - A System of Patterns. J. Wiley and Sons Ltd.,
1996.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1994.

M. Goedicke, G. Neumann, and U. Zdun. Design and implementation constructs
for the development of flexible, component-oriented software architectures. In Pro-
ceedings of 2nd International Symposium on Generative and Component-Based
Software Engineering (GCSE’00), Erfurt, Germany, Oct 2000.

M. Goedicke and U. Zdun. Piecemeal migrating of a document archive system
with an architectural pattern language. to appear, 2000.

N. Lassing, D. Rijsenbrij, and H. van Vliet. Towards a broader view on software
architecture analysis of flexibility. In Proceedings of Asia-Pacific Software Engi-
neering Conference (APSEC), Takamatsu, Japan, December 1999.

I. T. Ltd. The orbix architecture, 1993.

. M.Goedicke, G. Neumann, and U. Zdun. Object system layer. In Proceeding of

EuroPlop 2000, Irsee, Germany, July 2000.

G. Neumann and U. Zdun. XOTcL, an object-oriented scripting language. In
Proceedings of Tcl2k: The Tth USENIX Tcl/Tk Conference, Austin, Texas, USA,
February 2000.

E. D. Nitto and D. S. Rosenblum. On the role of style in selecting middleware and
underware. In Proceedings of the ICSE’99 Workshop on Engineering Distributed
Objects, Los Angeles, USA, 1999.

G. S. Raj. A detailed comparison of CORBA, DCOM and Java/RMI.
http://www.execpc.com/ gopalan/misc/compare.html, 1998.

D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann. Patterns for Concurrent
and Distributed Objects. Pattern-Oriented Software Architecture. J. Wiley and
Sons Ltd., 2000.

M. Shaw. Some patterns for software architecture. In J. Vlissides, J. Coplien,
and N. Kerth, editors, Pattern Languages of Program Design 2, pages 271-294.
Addison-Wesley, 1996.

O. Tallman and J. B. Kain. COM versus CORBA: A decision framework. Dis-
tributed Computing, Sep-Dec 1998.

J. Thompson. Avoiding a middleware muddle. IEEFE Software, 14(6), 1997.

S. Vinoski. Corba: Integrating diverse applications within distributed heterogeneos
environments. IEEE Communications Magazine, 14(2), 1997.

19

Common Request Broker Architecture (CORBA)

Description CORBA [18] is a distributed object system with the aim to realize dis-
tribution of object communication across different machines, vendors and software
systems. Object method calls are invoked with the same principle as RPC from object
stub (placeholder or proxy at the client side for an remote object on the server) to
skeleton (interface implementation at the server side). Relevant functions are interface
definition (with an IDL), localization and activation of distributed objects, communica-
tion among client and object, and distribution transparency. These issues are handled
by object request brokers (ORBs).

application calls
procedure obj application is
by remote method called by remote| objA
objX method call ob method call

i
method: method: [method:

Imethod:

bj
method:

skeleton)| ORB handles stub skeleton)| ORB handles stub
for objx)| distribution |\ for objx for obj2 J| distibution [\ for obj2
using stub and using stub and

skeleton CORBA ./ ORB g skeleton
objects i objects
CORBA Services |\‘CORBA Facilitieg

network layer

Interoperability ORBs utilize the IIOP (internet inter-ORB protocol) in order to
connect ORBs. The protocol on the TCP layer is designed to let all ORBs use the
same protocol. The design of CORBA is generally aimed at language and platform
independence. A common IDL lets components be specified through their interface
without knowledge of internal implementation details. A disadvantage is that languages
are broken down to a common denominator (partially solved by the data type any).
The CORBA IDL is mapped to great variety of languages, like C, C++, Java, OLE,
Eiffel, Smalltalk, etc. CORBA ORB implementations exists on nearly any commonly
used platform.

Services Initially the CORBA messaging service and the event service were based
on a simple push/pull model for message exchange through event primitives. Now
the OMG specifies a more robust messaging service. Meanwhile several CORBA ORBs
have implemented their own protocols or they can be combined with professional MOM
products, like MessageQ, MQSeries, etc. The CORBA transaction service supports flat
and nested transactions. Heterogeneous ORBs and (procedural) non-ORB applications
can take part in a transaction. Some vendors even offer support for integration with
commercial transaction monitors, like Tuxedo. The CORBA security services specifi-
cation is one of the most detailed security specification existing, covering nearly every
aspect of security, like integrity, authentication, access control, etc. It is achievable in
three levels (0-2) from no to full security. Support for these services varies in different
ORB implementations. The CORBA naming service enables to search for objects using
their object name. It wraps several different traditional directory services. Some ORBs
offer a fault-tolerant naming service.

Scalability . ..

Performance ...

Standardization ...

Marketablility of the products ...

Figure 2. Technology Description: CORBA

20

Concrete Applications
Integration Base |
:I N
AV Y

Concrete Application

______________ Key Technology
] Decisions

Figure 3. Influences and Artifacts in Key Technology Decision

JRPC Subsystem 1 |- =7 7 JavaRMI S-ub;y;tea iy

RPC ~ RMI
applications applications

interface interface
adaptation adaptation

adaptations/decorations
in the scripting language

CORBA and all other
applications

Figure 4. CORBA Integration Base with Java/RMI and C/RPC Subsystem

other letter
distribution centers

sorting place
% VMS computers

transfer to other letter
distribution centers

NT or Unix
workstation

NT or Unix
workstation

databases 1 letter distribution center
Oracle Unix 1+ NT/Unix ! NT/Unix ' communication
'

VMS computers i +NT/Unix

Figure 5. Letter Distribution Center Example

