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Abstract Software patterns have been widely promoted as a means of conveying
practical design knowledge in a reusable fashion. Several approaches for provid-
ing better implementation variants of certain patterns have been presented. These
approaches promise great advantages for flexibility, traceability, and reusability
of pattern implementations. However, there are only a few larger practical case
studies of these concepts available. In this paper we will present a case study of a
component framework for flexible processing of markup languages in the object-
oriented scripting language XOTcl. The language offers high-level means and ar-
chitectural support for component integration (“component glueing™), introspec-
tion, language dynamics, and message interception techniques. These language
constructs enable developers to extend the language with pattern implementa-
tions, and so to provide language support for certain pattern fragments. As a case
study domain we discuss an extensible and flexible framework for XML/RDF
parsing and interpretation that was developed and evolved over a period of three
years and is now in use in numerous applications.

1 Introduction

Object-oriented design with patterns and programming language support for design pat-
terns is proposed in several works. One direction proposes code generation for patterns
(see for instance [6,4]). Other approaches target on language constructs implementing
pattern parts at runtime, as in [23,22,9,19]. But virtually no larger practical case stud-
ies of systems, built with these ideas, are available that are actually used in non-trivial
applications.

In this paper we present the design and implementation of a parsing and interpre-
tation framework for the Extensible Markup Language (XML) [5] and the Resource
Description Framework (RDF) [20]. The case is well suited to demonstrate pattern im-
plementation and variation in an object-oriented scripting languages because it is of a
reasonable size, yet comprehensible, and has diverse requirements. These include high
flexibility in interpretation of markup and meta-data, on the one hand, and efficient text
parsing facilities, on the other. Parsing of XML text does not need to be highly customiz-
able, but it has to be efficient and reliable. Several fast parsers for XML exist which can



be reused as off-the-shelf components. The interpretation of the data in the web context
is highly application-dependent. It is very likely to frequently change and must provide
considerable customizability, depending on the application needs. XML and RDF have
been developed to represent data from a diversity of domains. This flexibility of the data
representation demands a high flexibility in the application frameworks as well.

An XML and RDF interpretation framework has to provide flexible means of in-
terpretation, suitable for a variety of different application contexts. Typical applications
will extract information from the XML and RDF representation, modify it, and cre-
ate (or recreate) XML and RDF markup from their internal representation. In this case
study, the required flexibility is achieved through usage of “high-level,” object-oriented
scripting in XOTcl [26] and patterns in the “hot spots” of the framework architecture.
We will discuss the new pattern implementation variants on top of XOTcl’s language
constructs briefly to illustrate how partially language supported patterns can be reused
and flexibly adapted to the application context. However, we will not focus on language
support for patterns here, but on the component-based use of such constructs.

In our case study different programming languages (here: C, Tcl, and XQOTcl) are
combined to fulfill the application requirements. We generally argue that different ex-
pression resources, such as software paradigms, programming language, markup, and
pattern languages, have to co-exist for different types of applications, and also within
larger application systems. The application developer has to choose proper expression
resources for implementing a particular task. For example, for the text parsing task, sys-
tem languages, such as C or C++, are very useful because of their efficiency. Scripting
languages are more appropriate for the semantic part of parsing (parse tree generation)
and for the task of interpretation, because they provide powerful string manipulation fa-
cilities and flexible language resources for rapid adaptability and customization. How-
ever, the two parts have to be integrated properly.

Note that the applicability of these concepts is not limited to their use in the XOTcl
language. In [34,14,12,13] we present an architectural pattern language enabling the
introduction of the core concepts of XOTcl into languages such as C, C++ or Java. In
[14,15] an industrial case study of this pattern language is presented. However, XOTcl
directly supports these concepts as language elements; therefore, in XOTcl they do not
have to be implemented and maintained by application developers.

In this paper we briefly summarize the application domain of XML and RDF text
parsing and interpretation as a motivation (readers familiar with XML and RDF may
skip this section). Then we introduce the idea of using patterns in the hot spots of
an application, together with dynamic and introspective language constructs that were
used for the pattern implementation. These language resources are reused later on. In the
remainder of the paper, several crucial excerpts from the actual design of the XML/RDF
framework are presented to demonstrate these ideas in a non-trivial case study. Finally,
we discuss the results.



2 Case Synopsis: XML and RDF Parsing

In this section, we give a brief overview of the domain of our case study: parsing and
interpreting of XML and RDF. First we briefly introduce XML and RDF. Secondly,
we discuss requirements of parsing and interpreting XML and RDF. In our experience
similar requirements for interpretational flexibility are recurring in many business ap-
plications that are based on XML (or other generic content formats).

2.1 XML and RDF

The Extensible Markup Language (XML) [5] is a simple, extensible language for struc-
turing documents and data. It is primarily designed for Internet usage. XML provides
content-oriented (“semantic”) markup of data. XML is a standardized language for the
notation of markup languages. It provides a meta-grammar for the structure of the ap-
plication documents, given in a Schema or DTD. An important property of XML is its
suitability as a language- and platform-independent intermediate data representation in
a distributed environment.

The Resource Description Framework (RDF) [20] is a formal model for describ-
ing meta-data. Its primary application domain is the description of web resources. An
RDF model [20] represents a set of RDF statements. RDF statements are used to assign
named properties to web resources and to define associations between resources. In the
RDF terminology a resource is every web element with a Uniform Resource Identifier
(URI); that is, an element addressable over the web, such as an HTML or XML docu-
ment or a part of it. An RDF data model is a directed graph with two kinds of nodes:
resources (represented by ovals) and property values (represented by rectangles). The
nodes are connected by directed arcs. These are labeled with the property names.

An RDF statement is a triple consisting of a specific resource (subject), a prop-
erty name (predicate) and a property value (object). The property name is always an
atomic name, while the property value can be a resource as well. An RDF model can
be represented in XML markup (see [20]) to provide a standardized data exchange for
RDF.

title XOTcl Homepage
http://www.xotcl.org

domain | Programming Languages

Figurel. Simple Example RDF Graph: One resource with two properties.

Figure 1 presents a simple RDF model consisting of two statements: A certain
HTML document (the subject, denoted by the URL) has the properties named title and
domain with associated values. The linearization of Figure 1 in XML is:



<?xm version="1.0"?>
<r df : RDF
xm ns: rdf ="http://ww. w3. or g/ 1999/ 02/ 22- r df - synt ax- ns#"
xm ns: wp="http://wmv. xot cl . or g/ schema/ web- page/ " >
<rdf: Description about="http://wmv. xotcl.org/">
<wp:title> XOTcl Hormepage </wp:title>
<wp: domai n> Programm ng Languages </wp: domai n>
</rdf: Description>
</ rdf : RDF>

The first line of this example states that the content of the document is XML markup.
The r df : RDF tag indicates that RDF markup follows. XML uses hamespace prefixing
to avoid name clashes between different schemata and to support reusable schemata.
The example uses two XML namespaces, denoted by the prefixes r df and wp. To obtain
the full predicate names, the prefixes can be replaced by the corresponding, unambigu-
ous schema-URI, given by xnl ns namespace declarations. A Descri pti on bundles
statements about a resource that is named by the about attribute.

To provide further structuring, RDF provides containers. They refer to a collection
of resources or literals. RDF defines three different kinds of containers, as follows:

— Bag: Unordered List, to be used when processing order does not matter. Duplicates
are permitted.

— Sequence: Ordered List, to be used when processing order does matter. Duplicates
are permitted.

— Alternative: List representing a set of alternatives for a single value of a property.

Every container must contain a statement declaring its type (r df : Bag, r df : Seq or
rdf : Al t)and a number of members. These are automatically named r df : 1, rdf : 2,
... by the parser, in their order of appearance in the XML text.

XOTcl Homepage

Programming Languages

Figure2. Bag Example: Resource with two anonymous resources. One is a bag with two mem-
bers.

In Figure 2 the earlier example is enhanced with a bag containing the authors of the
web page as resources. To serialize the bag we have to add a new property aut hor s to
the inner description of the preceding example:



<wp: aut hor s>

<r df : Bag>
<rdf:1i resource="../hone/ Neunann"/>
<rdf:li resource="../hone/Zdun"/>

</ rdf: Bag>

</ wp: aut hor s>

2.2 Parsing and Interpreting XML and RDF

In this section we will summarize a few requirements from the domain of markup pro-
cessing to demonstrate that an XML/RDF interpretation framework must provide high
extensibility and flexibility.

Parsed XML markup can be used in different data representations. For example,
XML text can be seen as an event flow with events of three types: start, pcdata, and end.
Examples for event-based APIs are the SAX API [21] or the Expat API [8]. Sometimes
such event flows are parsed into a node tree, like a DOM [32] tree. The tree can be used
for further processing.

Different data representations for parsed XML markup have specific benefits and
drawbacks, and so it makes sense to choose the most appropriate representation for
a given task. The event stream representation has the advantage of potentially high
efficiency and low memory consumption. Moreover, it is well suited for incremental
parsing. This is especially important for documents that are too large to fit into memory.
In a node tree representation, information can be accessed apart from the event stream,
random access to the data is possible, and introspection of the tree structure allows for
navigation through the tree. If we know where the targeted information is located in the
document, a tree representation can be very valuable for reducing search times.

Besides the token event stream and the parse tree, the RDF specification [20] de-
fines two special representations for RDF: a so-called triple representation and the RDF
model graph. A triple database with triples of the form (subject, predicate, object) is
well suited for several reasoning tasks over the whole model. Moreover, in contrast to
a parse tree from the XML text, triples and RDF model graphs are “canonical” repre-
sentations. That is, different XML linearizations of the same RDF statements produce
different parse trees, but triples and model graphs are the same.

3 Pattern-Based Design and I mplementation in Scripting
L anguages

In this section we will firstly motivate pattern-based design in scripting languages as a
way to find flexible and maintainable architectures, as they are required by the XML and
RDF parsing domain. Secondly, we will briefly introduce the object-oriented scripting
language XOTecl that we have used to implement the XML/RDF parser and interpreter.



3.1 Flexible and Reusable Pattern Implementations

Design patterns provide abstractions from reusable designs. They can typically be found
in the “hot spots” or centers of software architectures. A pattern describes a recurring
solution to a problemin a context balancing a set of forces. Patterns cover the problem
that expertise is hard to convey. They work by describing frequently used solutions
that have proven their inherent capability to be fitted to the environment of numerous
applications successfully.

Very often several patterns can be used on the same design problem, and several pat-
tern parts are mutually dependent. A general problem is that of composition based on
patterns. Pattern parts resemble architectural roles rather than classes; that is, architec-
tural fragments in patterns enrich the design repository of the developer with elements,
mostly of different granularity than classes. Such elements can be reused as architec-
tural roles, which are orthogonal extensions to class composition. In other words, one
class in a framework often plays various roles in several different design patterns at
once. Alexander’s original ideas on patterns [1] suggest using them in a pattern lan-
guage which defines the correlations between the patterns used; that is, no pattern is
used in isolation, but as an element of a language.

To date, there is little or no support in traditional, mainstream programming lan-
guages for implementing and using patterns. This implies several problems for the us-
age of patterns. Recurring pattern implementations cannot be reused, but have to be
programmed again for each usage. The architectural fragments in the pattern are con-
ceptual entities of the design repository, but they are split into several entities of the
implementation language, like several classes or objects. Missing introspection facili-
ties mean that patterns are neither traceable at runtime nor in the code. Many pattern
implementations in mainstream languages have considerable implementation overhead,
e.g., for unnecessary forwarding of messages and other recurring tasks (these problems
of pattern usage are discussed more deeply in [23,24]).

3.2 The Object-Oriented Scripting Language *Extended Object Tcl” (XOTcl)

In this section, we give a brief overview of the XOTcl language and its use for pattern
implementation. XOTcl [26] (pronounced exotickle) is a value-added replacement of
OTecl [33]. Both XOTcl and OTcl are object-oriented flavors of the scripting language
Tcl (Tool Command Language [27]). Tcl offers a dynamic type system with automatic
conversion, is extensible with components and is equipped with read/write introspec-
tion. In the remainder of this section we briefly describe XOTcl’s language concepts.

In XOTcl, all inter-object and inter-class relationships are fully dynamic and can be
changed at runtime. Each dynamic language functionality can be introspected. Classes
are also objects; therefore, all methods applicable for objects can be applied to class-
objects as well. Since a class is a special (managing) kind of object it is itself managed
by a special class called a “meta-class.” New user-defined meta-classes can be derived
to restrict or enhance the abilities of certain classes.



The XOTcl extensions focus on complexity, flexibility, and adaptability in object-
oriented systems. Moreover, XOTecl gives architectural support for component glueing
and the implementation of larger architectural fragments. In particular, the following
language constructs are supported:

— Dynamic Object Aggregation supports the *part-of” relationship [25]. Children are
automatically destroyed when the parent is destroyed. With introspection options
on child and parent, we can automatically retrieve the current parent and the cur-
rent list of children. The relation is completely dynamic and can be restructured
using deep copy and move operations. We will use the language construct in the
XML/RDF case study to implement a “canonical” dynamic object tree representa-
tion of the parsed XML data.

— Nested Classes reduce the interference of independently developed program struc-
tures by letting classes aggregate dependent class descriptions.

— Assertions let us provide formal and informal conditions for documenting (and
checking) program invariants.

— Per-Class/Per-Object Mixins are classes that are dynamically attached to or de-
tached from a class or object. They intercept every message to a class or to an ob-
ject and can handle the message before/after the original receiver. They are ordered
in a chain and inherit from super-classes [22].

— Per-Class/Per-Object Filters are special instance methods which are dynamically
registered or deregistered for a class hierarchy or an object. Every time an instance
of this class hierarchy or this object receives a message, the filter is invoked auto-
matically and intercepts this message. Filters are also ordered in chains and inher-
ited [23].

— Dynamic Component Loading and Wrapping allows XOTcl, Tcl, C, and C++ com-
ponents to be loaded and integrated using the same basic mechanisms, as discussed
in [11]. In this work we use the mechanism to load third-party XML parsers (im-
plemented in Tcl and C) and reusable pattern implementations from external com-
ponents dynamically at runtime.

The XOTcl language constructs are designed to help in the implementation and use
of patterns. Filters [23] and mixin classes [22,24] are interception techniques for mes-
sages. That is, messages sent to an object, a class, or a class hierarchy are intercepted
before they reach the original receiver. The interceptor can adapt the message to another
receiver, handle it directly or decorate it with arbitrary behavior before/after the origi-
nal receiver gets it. Filters are used to implement entities and concerns cutting across an
entity as a whole, whereas mixins only intercept certain message calls. Both, filters and
mixins, primarily implement extensions to an object or a class hierarchy. Mixins may
be used to compose several filters that form a semantic unit in a reusable component.
This way, concerns cutting across several instances or class hierarchies, as targeted by
aspect-oriented programming [18], can be modeled as well.

By intercepting the calls to a pattern structure, we can implement the recurring
pattern parts as separate and reusable entities. These parts can be placed in a component
and dynamically loaded at runtime. Language dynamics and introspection can be used
to adapt and change the pattern implementation to the current context. In this paper we



assume that such pattern implementations are available as components. Note that the
XOTcl distribution contains all used pattern components. They are dynamically loaded
into the framework and can be reused as if they were native XOTcl language constructs.

3.3 Approaches for Pattern Implementation

In this paper we will present a case study combining scripting languages, high-level
language constructs, and design patterns. Much other work has been done on the com-
bination of high-level language constructs and patterns, but unfortunately there are only
a few case studies showing the validity of these approaches available. We will discuss
some other approaches in this section.

A classic approach to code generation for patterns can be found in [6]. There are sev-
eral subsequent approaches, some of them with notable similarities to the filter. Bosch,
for example, uses static layer definitions [4] to intercept messages to a pattern fragment.
Besides several differences of detail, the general difference between our approach for
pattern reuse and code generation is dynamics. A pattern is not a reusable entity per se,
but a reusable design solution in a context. It therefore has to be fitted to the current
implementation and application context. (Static) code generation mechanisms offer no
language means for this customization step. Consequently, pattern reuse through code
generation seems to be rather rigid. In some sense this contradicts the idea of wholeness
often associated with patterns, because in many cases it is hard to produce a flexible and
elegant piece of design (and code) from a rigid, pre-fabricated building block.

Some approaches, such as component connectors [9], introduce additional runtime
means to represent patterns. These split the pattern, as one conceptual entity, into sev-
eral runtime entities. In contrast to the interception techniques filter and mixin class,
component connectors are not transparent for the client.

Arole (as proposed in [19]) is used to express extrinsic properties of a design entity.
In this concept a role can be dynamically taken and abandoned. The approach does not
provide an abstraction at a broader structural level, as does a per-class filter and per-
class mixin. Using roles, a pattern can be implemented as a dynamic compaosition of
its architectural fragments. That means that, by inspecting roles, patterns may be more
traceable than in an implementation scattered over classes.

Several patterns express concerns cutting across different design entities. Aspect-
oriented programming [18] targets such cross-cutting concerns. There are different ap-
proaches for implementing aspects; here, we will compare with the concepts of AspectJ
[17]. In Aspect, so-called pointcut designators let us specify certain events in the mes-
sage flow. These events are called join points. Before, after, and around advice let us
specify behavior to run when a specified join point is reached. The general idea re-
sembles the message interceptors in XOTcl. Thus most concerns in this paper may be
implemented using aspects. However, in contrast to the approach presented, AspectJ
does not allow for language extension in a component-oriented sense. In other words,
aspects cannot be dynamically introduced as language extensions. Instead, an aspect
weaver, a kind of generative compiler, is used. Hence Aspect] does not allow for dy-
namic runtime changes. Aspects are given as non-local extensions to the targeted design



units. Since the pattern examples presented in this paper require knowledge about the
extended class and runtime callstack information, it is rather unwieldy to implement
them with aspects. However, concerns cutting across several entities of the program can
be better expressed using aspects, since it may take several mixins with filters to express
one complex aspect.

4 Component Framework Design

In this section we will present several crucial excerpts from our XML/RDF component
framework design. By “crucial” we mean that these framework hot spots are critical
for reusability, flexibility, and runtime efficiency of the framework. Before we give the
design excerpts in detail, we will present an overview of the baseline architecture of the
component framework.

4.1 Baseline Architecture

Of several available XML parsers we decided to re-use the C written parser Expat [8]
and the Tcl written parser TcIXML [3]. Both can be used as Tcl components with the
same interface for parsing. In the framework presented here, an object-oriented XML
parser wraps these third-party parsers. It forms an abstraction integrating procedural
parsers implemented in other languages (here C and Tcl). Those parsers are encapsu-
lated in a distinct layer and are thus exchangeable with other implementations.

The XML information elements form an aggregation tree, in which children have
an “is part-of” relationship to their parents. These nodes represent the grammar of
XML and RDF in our framework’s information architecture. Data and attributes will
be treated as properties of nodes.

As a requirement, it should be possible to flexibly extend and change the grammar,
so that future changes of the XML/RDF specifications can be easily incorporated. Since
XML and RDF are very general data models, it is a requirement of the framework to
interpret the representation in different ways and to possibly add new interpretation
forms. A factory component for nodes abstracts object creation, thereby enabling ex-
tensible node creation. Since there are several node classes having a set of features in
common, another goal was to create the node classes automatically.

The basic architecture described applies to both the xoXML and xoRDF compo-
nents. XML, RDF, and the reused parser part are additionally structured in layers (see
Figure 3), as in the Layers architectural pattern [7]. The pattern couples similar respon-
sibilities in a distinct layer. Thus it decomposes complex aspects of the system. The
three layers of Figure 3 are the basic components of xoXML/xoRDF.

4.2 Nodes of the Parse Tree

RDF provides a relatively simple, formally defined grammar. The central problem of
the design is how to build an object-oriented structure from the RDF graph expressed
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Figure3. The xoXML and xoRDF Layers: The RDF layer specializes the sub-components of the
XML layer. Basic text parsing is handled by a procedural parser, e.g., in C or Tcl. It is wrapped
by a generic interface. Different layers are depicted in different color.

by the XML linearization. There are several options for mapping the XML elements to
a computational representation. Following the line set out in Section 2, we first create
a dynamic object aggregation tree; other representations can then be retrieved from the
tree.

To provide an XML/RDF interpretation of the node tree, we used the Interpreter pat-
tern [10]. It defines an object-oriented structure for a language grammar, along with an
Interpreter. Clients use an abstract interface for node interpretation and, thereby, abstract
node implementation details. At runtime node objects form an abstract syntax tree. Ter-
minal nodes, like literals in RDF, terminate the tree structure, while non-terminals are
able to aggregate an arbitrary number of nodes. As a consequence of the usage of the
pattern, the language represented can be exchanged and extended by object-oriented
means, since new node classes are very similar to existing ones.

Interpreter: AbstractExpression AbstractNode | metaclass . .p‘ OrderedComposite Ordered Composite:
Composite: Component Generic Tasl'<s :

A

XMLNode

erpreter: Te pressio XMLElement

Figure4. Node Tree Structure: The node tree is structured according to the Interpreter and Com-
posite pattern. The Composite implementation is loaded from a separate component.

We will use the common implementation variant of the Interpreter pattern to build
the abstract syntax tree: a Composite structure [10]. Composites arrange objects in trees
with two kinds of nodes: Leafs terminate the tree, and Composites forward registered
Composite operations to all children of the Composite. We have used XOTecl filters
to handle the recurring tasks of the Composite pattern, such as forwarding messages



through the hierarchy [23]. The pattern implementation is loaded from a pattern com-
ponent Ordered Composite that uses the dynamic object aggregation language construct
of XOTecl to handle the aggregation structure of the pattern automatically.

As shown in Figure 4, we define a class Abst r act Node with the meta-class Or -
der edConposi t e. Each meta-class inherits the ability to define classes from the most
general meta-class C ass. On Abst r act Node we define a core set of abstract opera-
tions, common to all node classes. These let us parse data, as well as starting and ending
node tags, and allow them to be printed. Methods for interpretation on concrete classes
will be registered as Composite operations. Registration is handled by the registration
methods of the Or der edConposi t e class, called addQper at i ons and addAf t er Op-
er at i ons. The pattern implementation will ensure that the Composite operations work
recursively on the tree. The XOTcl code for loading of the Composite and definition of
the abstract node class is:
package require OrderedConposite
d der edConposi te Abstract Node
Abstract Node abstract instproc parseStart {nanme attrList}

Abstract Node abstract instproc parseData {text}

Abstract Node abstract instproc parseEnd {nane}
Abstract Node abstract instproc print {}

Cl ass XM_Node -supercl ass Abstract Node

First, the Or der edConposi t e component is loaded. Then an abstract node with ab-
stract methods is defined as a general node interface. Finally, a special node class, the
general XM_Node, inherits from Abst r act Node.

4.3 XML Namespaces

XML and RDF nodes may contain namespace declarations starting with xm ns. Often
namespaces are declared within the top node, but it is also possible to declare names-
paces within inner nodes. These overlap the namespace declarations of outer nodes, and
they are only valid for the current node and its inner nodes. A direct coupling between
namespaces and connected nodes would cause the namespace objects to store unnec-
essary information. A new namespace would be difficult to add in applications with a
dynamically changing node tree. A better solution is an indirection to a namespace han-
dler; that is, each node must be connected to one responsible namespace handler. The
namespace handler knows its successor in a Chain of Responsibility [10]. If a names-
pace handler cannot resolve a namespace it delegates the task to its successor.

The Chain of Responsibility pattern is implemented as a reusable component. We
add operations to the general Namespace class for adding a namespace and for deter-
mining a namespace’s full name from the prefix, as well as two operations, sear ch-
Prefi x and sear chFul | Nane, for retrieval of a namespace object from a handler by
prefix and full name. The two retrieval operations act on a single handler. To automat-
ically act recursively on the chain, they must be registered as chained operations with
addChai nedQper ati on:

package require Chai nOf Responsibility
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Figure5. XML Namespaces: Namespaces are part-of their node and are structured in a Chain of
Responsibility

Chai nOf Responsi bil ity Nanespace

Nanespace instproc add {prefix ns} {...}
Nanespace instproc searchPrefix {prefix} {...}
Nanespace instproc searchFul | Name fnane {...}
Nanespace instproc getFull Name fnane {...}
Nanespace addChai nedOperati on searchPrefix {}
Nanespace addChai nedOper ati on searchFul | Nane {}

A chained operation returns a value indicating whether the operation was successful or
not. If not, the next namespace in the chain is tried. This way the chain is searched until
the last namespace in the chain is reached.

Namespace declarations are closely coupled to the nodes, and their lifetime is de-
termined by the surrounding node; therefore, the node aggregates its namespaces in a
Whole-Part pattern [7]. Moreover, the namespace chain is integrated in the Composite
structure of the nodes. Note that this combination of Composite and Chain of Respon-
sibility is a quite typical design for cases in which responsibilities have to be delegated
up the tree.

4.4 Wrapping the Parser Component

Different XML parsers exist that perform the same task but have no common interface.
Since applications should be portable to different components performing the same task,
direct invocations of these components should be avoided. Instead an object-oriented
interface can encapsulate the functions of the third-party parser components, as in the
Wrapper Facade pattern [30]. A Wrapper Facade provides an interface for client objects.
It forwards methods to the functions (or procedures) of the procedural (legacy) compo-
nents. The pattern Component Wrapper [34] integrates different techniques to access
foreign language and paradigm components as black-boxes. Here, Wrapper Facade is
used as a part of a Component Wrapper.

We define a Wrapper Facade XM_Par ser to incorporate the interface of TcIXML
or Expat as object-oriented methods (see Figure 6). The method conf i gur e sets the
parser configuration, cget queries a configuration option, par se invokes the parsing of
XML text, and r eset cleans up the parser. This generic interface may also be used with
other parsers, e.g., by using the Adapter pattern [10]. It is also reusable in a component-
based fashion [23]. To make the interface more generic we add three methods: st art,



end, and pcdat a. These will be called when the start or end of an XML node or XML
data is reached.

XMLParser Wrapper Facade: WrapperFacade
. Facade: Facade
Functions Peasrgte Whole-Part: Whole
configure
Wrapper Facade: Palss cget
Functions configure init > - V\'l:haz?{e-Part:
cget start
end
TCIXML or Expat pcdata
A
RDFParser | | | |
Facade: init
ConcreteFacade gy > ...
parse

Figure6. Parser Design: The reused parser is wrapped behind an object-oriented interface. It
forms a Facade to the sub-system for clients.

As another role of the parser, we define a Facade [10] for the xoXML and xoRDF
sub-system. Facades unify the interfaces of a sub-system into one interface. They thus
ease access to the sub-system, because client objects have to access a smaller number
of interfaces and are more strongly decoupled from the sub-system’s implementation
details.

As another architectural role, the parser has to serve as a central access point for the
namespace chain introduced previously, and for the Node Factory presented in the next
section. The parser aggregates both of these roles as parts in a Whole-Part structure.

4.5 Node Object Factory

Node creation is a hot spot of the framework; that is, variation requirements can be
foreseen in these spots. Let us consider a collective change for all node creations, such
as introducing the Flyweight pattern [10] for sharing literal nodes. In XOTcl Flyweights
are reusable in a component-based way; for one creation process only three lines of
additional code are necessary to load and use the Flyweight component. Integration
of the Flyweight into the creation processes of every single literal node class would
represent a significant implementation overhead. Node creations may well be scattered
throughout the code, and would have to be searched to introduce collective changes.
Furthermore, these creations are often located in code of clients of the node classes.
A strong coupling between client code and node classes would exist, making all future
changes problematic. Since changes in node creations are foreseeable, e.g., in situations
where the XML/RDF specifications change, control of all creation processes from a
central point is a superior solution.

Factory patterns, like Abstract Factory and Factory Method [10], provide us with a
central access point to creations of related or dependent objects (called products). To
create a node factory, we firstly create the Abstract Factory with a method get Node. It
returns a newly created node:



Cl ass Abstract NodeFact ory
Abstract NodeFactory abstract instproc get Node {keyC obj Nane}

Now we concretize the factory with a simple node factory, whose function is to
create every requested node.

Cl ass NodeFactory -superclass Abstract NodeFactory
NodeFact ory instproc get Node {keyd obj Nane} {

.réiurn [ $keyC create $obj Nane]
}

4.6 Node Class Factory

One major benefit of using the Interpreter pattern lies in the similarities between node
classes. New node classes can be added rapidly. A trivial way of adding similar classes
is to copy the classes’ code and change it slightly. Since changes must be propagated
throughout the code, changeability may suffer, because for each change all dependent
places in the code have to be searched and updated. Replicated parts of the code are an
implementation overhead, and so this solution is inelegant and error-prone. Using code
generation or putting recurring parts into superclasses minimizes these problems. But
the object creational problems sketched in the previous section also occur with class
creation.

Central control of the adaptation of newly created classes to the application con-
text and domain let the programmer implement changes on several classes at once. As
XOTcl supports meta-classes and dynamics in class-structures, a solution similar to the
Abstract Factory pattern can be provided in a meta-class. Each XOTecl class is a runtime
object; therefore, there are the same benefits and liabilities as for ordinary object Facto-
ries. Our main concerns for applying the pattern for class creation purposes is that the
node class configuration tends to change, as the architecture evolves and new require-
ments for the parsing framework emerge. During the Class Factory’s creation process
we can introduce interdependent constraints, such as the possible compositions of RDF
nodes, in a central place. In XOTcl a meta-class is defined by specifying the most gen-
eral meta-class Cl ass as superclass. Afterwards we create a class for the XML element
type dynamically:

Cl ass XM_NodeCl assFactory -superclass Cl ass
XM_NodeCd assFactory create XM.El enent -superclass XM-Node

For the RDF node tree we specialize the Class Factory, because RDF nodes define
the constraints of nodes they may nest in or be attributed to at creation time. We add
these initializations to the cr eat e method of the node class object.

Cl ass RDFNodeC assFactory -superclass XM_-NodeC assFact ory

RDFNodeCl assFactory proc create args {

set nane [next] ;# create the class

;# performinitializations
}

Subsequently, all types of RDF nodes are defined in a loop. All classes are automatically
placed at the right point in the class hierarchy, and all initializations are performed
during creation. The loop creates the hierarchy in Figure 7:



foreach {name sc content attributeList} {

RDFTag RDFNode RDF {}

RDFBag RDFCont ai ner NodeCl ass Bag {1 D}

RDFSeq RDFCont ai ner NodeC ass Seq {1 D}

RDFAI t RDFCont ai ner NodeCl ass Al t {1 D

RDFPr operty RDFNode " {bagl D | D resource parseType}
RDFMenber RDFPr operty li {resource parseType}
RDFDescr i pti on RDFResource Description {ID bagl D about type

about Each about EachPref i x}

RDFNodeCl assFactory create $nane -superclass $sc \
-content $content -attributeList $attributeList \

It is quite common for XML interpretation frameworks to have constraints for node
nesting and node attributes, because usually the information architecture reflects the
XML structure. The pattern Generic Content Format [31] describes such structural
interdependencies in the area of web engineering architectures. Composite and Leaf
classes represent each information element type used in the XML documents. As busi-
ness requirements, standards, or other interpretation requirements change, both, the
XML structure and the class hierarchy have to be changed accordingly. These forces can
be observed for our RDF framework as well; here, the changes are mainly introduced
by the changing RDF standard and the interpretation requirements of our applications.

In our framework, changes of the class hierarchy and its constraints can be rapidly
performed in the central place provided by the Class Factory. Introspection options can
be used to find out these interdependencies at runtime.

AbstractNode

A

XMLNode
attributes
pcdata

A

XMLElement XML Layer

RDFNode RDF Layer
RDFTag RDFResource RDFProperty

XML Node Class
Factory Product

A

| RDFDescription || RDFContainerNodeClass | |RDFMember|

1 ]

[ roFatt | [ RoFBag] [RDFSEq |

RDF Node Class
Factory Products

Figure7. Node Class Hierarchy: RDF node classes are specialized, but through their generic
superclasses they form a dynamic node tree.



4.7 Generic Interpretation with Visitors

In our implementation of the XML/RDF processor we have chosen to provide both
an event stream model and a tree structure model. In a first step, the RDF structure is
parsed from the event stream into a node object tree. The event stream can be used by
applications, if required. Next the tree is interpreted according to the application domain
and context. One implementation option would be to insert the interpretation code into
the node classes. This is a bad choice when different or multiple interpretations of the
node tree are needed. As another drawback, interpretations cannot be changed without
making changes to every node class. Parsing cannot be adapted without checking all
dependencies against interpretation code.

An interpretation facility is required for abstracting implementation details of the
node tree and for supporting several different interpretation forms. The Visitor pattern
[10] provides such a facility. Visitors perform operations on all parts of an object struc-
ture separated from the object classes. An abstract Visitor declares an interface that can
be attached to a given object structure. Concrete Visitors are used for visiting each el-
ement of the structure. The elements implement accept operations that take a Visitor
as an argument and return themselves in the concrete implementations to the concrete
Visitor. The concrete Visitor performs the interpretation task on the concrete element.

V[dscilaoré:AbslractVisitor NodeTreeVisitor AbstractNode Visitor: Element
(Abstract)Facade Visit accept
visitEnd acceptEnd
interpreteNodeTree
Visitor: ConcreteVisitor TripleVisitor XMLNode Visitor:
acade: ConcreteElement
(Concrete)Facade accept

acceptEnd

1

PrintVisitor

Visitor: ConcreteVisitor

visit
interpreteNodeTree

acade:
(Concrete)Facade

Figure8. Node Tree Visitor: Interpretations tasks are decomposed from the node tree. Cus-
tomized visitors can be added by sub-classing.

In the case of the XML/RDF parser the nodes are used as elements for the Visitor.
So we attach a new architectural role to the abstract node class. It becomes a Visitor’s
abstract element, while the concrete nodes become concrete elements. We use inter-
pretation to reconstruct the start and end of a node by adding two operations to the
abstract node’s definition. In conventional implementations both operations would have
to propagate accept calls to their children. Here, this is handled automatically by the
Composite pattern implementation:
Abstract Node abstract instproc accept {visitor}
Abstract Node abstract instproc acceptEnd {visitor}

Abstract Node addQperati ons {accept accept}
Abst ract Node addAfter Operations {accept accept End}



Now, accept is a Composite operation; that is, before the operation accept is per-
formed on the node, an accept call is performed on each child. accept End is per-
formed on the child after the return from the parent operation. Both concrete operations
on XM_Node merely call the appropriate Visitor with a self-reference as argument:
XM.Node i nstproc accept {visitor} {

$visitor visit [self]

l(NLNode instproc acceptEnd {visitor} {

) $visitor visitEnd [self]

These operations can be specialized to more sophisticated accept handling in sub-
classes. An abstract Visitor is defined with operations for visiting, and an operation
starting the interpretation of a node tree. vi si t End is not defined as abstract but as an
empty method, because it may remain unspecified in concrete Visitors:

Cl ass NodeTreeVisitor
NodeTreeVi sitor abstract instproc visit obj Name
NodeTreeVi sitor instproc visitEnd objNarme {;}
NodeTreeVi sitor abstract instproc interpretNodeTree n

Shown below is the implementation of a simple Pri nt Vi si t or, using only the
node’s pri nt operation. Each node prints its content to the standard output. Calling the
Visitor’si nt er pr et NodeTr ee operation on the top node outputs the whole hierarchy.

Class PrintVisitor -superclass NodeTreeVisitor
PrintVisitor instproc visit objName {

puts [$obj Nane print]
}

PrintVisitor instproc interpretNodeTree node {
$node accept [self]

}

The xoXML/xoRDF framework contains several Visitors for different interpretation
tasks, including one for building up an RDF triple database from the node tree, Visitors
for recreation of XML/RDF text from the nodes, and Visitors for pretty-printing of the
object tree. These features can be found in the XOTcl distribution. Since they are, from
an architectural point of view, similar to the Visitor presented above, we do not discuss
them in detail here.

4.8 Framework Overview

Figure 9 shows the different components and data representations in the xoXML/xoRDF
framework. Arrows indicate the data flows between components, and conversion be-
tween data representations. XML/RDF text can be processed by different parsers that
are wrapped by the object-oriented parser components. An intermediate object tree
representation is created, on which interpretations are performed. Each individual inter-
pretation is implemented as a Visitor. In many applications we provide domain-specific
Visitors that extract the required information.

With the same Visitor architecture we can also derive other representation of the
information contained in the object tree. In our framework, we have implemented a
Visitor for creating RDF triples. Another component recreates XML and RDF text from
the object tree.
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Figure9. Components and Data Representations in the xoXML/xoRDF Framework: From the
XML/RDF text either an object aggregation tree or a triple database or both is produced.

5 Speed Comparison

In this section we discuss the speed penalties of using high-level XOTcl language con-
structs, such as patterns and object-oriented scripting, relative to C- and Java-based
single-purpose implementations. We provide speed comparisons with the W3C ref-
erence implementation SIRPAC [29] 1.14. SiRPAC uses an external parser: we used
IBM’s XML4J [16] version 3.0.1 in the Xerces-J [2] variant. In addition, we compared
with the pure C implementation HTRdf [28]. All speed comparisons were performed
on an Intel Pentium 111 500 Mhz single processor machine running RedHat Linux 6.1
with 128 MB RAM. The version of XOTcl and the xoXML/xoRDF components used
was 0.84.

For each setup we tested each test case 20 times, and used the best result achieved
(note that the average results were almost identical; therefore we omit those figures
here for space reasons). Finally, we summed the results and calculated the percentage
difference between each sum and the figure for HTRdf, as the fastest implementation in
the test.

For the comparisons we used example RDF files from the SiRPAC distribution and
from the W3C site. For all tests we measured the overall time for instantiating the
parser, reading the file and parsing the text. Since xoXML/xoRDF offers different se-
tups, we provide figures for different combinations of parser and created representa-
tion. For xoXML/xoRDF the most common variant is to create the object aggregation
tree representation with the Expat C Parser. As discussed above, xoXML/xoRDF gen-
erates the triples via an object tree representation. Our measurements contain figures
for the tree and triple generation. Finally we performed both tests with the Tcl-only
parser TcIXML as parser back-end. TcIXML has a similar interface to Expat and can
be plugged into the system by specifying a single configuration parameter.

Even though a comparison of such results is quite hard and subjective, the perfor-
mance measurements (summarized in Table 1) are very encouraging for the scripting
approach with patterns. In all cases the implementation in the scripting language is sub-
stantially faster than SiRPAC, despite all high level constructs, patterns and indirections.
Even the Tcl-only, but platform-independent, parser and triple generation from the tree
still operate at a useful performance level. Of course, the scripting implementation is



Filename/Description SiRPAC/|HTRdf/ |[xoRDF/  |xoRDF/ [xoRDF/  |xoRDF/
Xerces-J |Expat  |Expat Expat |TcIXML |TcIXML
(Java) |(pure C)|(only tree)|(tree & |(only tree)|(tree &

triples) triples)

exanpl el. rdf 273 ms |17ms |28 ms 44 ms |44 ms 57 ms

Nested Description

exanpl e2. r df 284 ms |27 ms |27 ms 49 ms |40 ms 63 ms

Two Descriptions

exanpl e3. rdf 274 ms |23 ms |28 ms 43 ms |40 ms 56 ms

Bag & aboutEach

exanpl e4. r df 282ms |[19ms |26 ms 42 ms [35ms 51 ms

Resource Property

pi cs. rdf 366 ms |116 ms |67 ms 165 ms |81 ms 180 ms

2 BaglIDs & aboutEachs

dc. rdf 1183 ms {131 ms {215 ms |363 ms |277 ms  |429 ms

Larger Dublin Core Example

Sum: Whole Test Suite 2389 ms|316 ms (363 ms 662 ms |473 ms (779 ms

Comparison to HTRdf (in %)|+656 % |0 % +15 % +109 %|+49 % +149 %

Table 1. Speed Comparison: Different xoXML/xoRDF Setups Compared to the HTRdf/Expat C
Implementation and the SiRPAC/Xerces-J Java Implementation

slower than an efficient, pure C implementation. xoRDF is, as expected, 0.14-1.46 times
slower than HTRdf in our tests, but HTRdf only builds triples.

The performance comparison indicates that the xoXML and xoRDF implementation
can be used in practical applications, when considerable control and customization is
needed. Nevertheless, the speed comparisons are still unsatisfactory if the task is merely
to create triples. Since we argue for the component reuse aspect, we can provide a
wrapper for HTRdf (or another C implementation), enabling HTRdf to directly create
triples. In this case, construction of the object tree representation is skipped.

6 Conclusion

In this paper we have presented an extensible design of an XML/RDF parser and in-
terpreter framework. The case is non-trivial, yet of a comprehensible size. The design
presented has evolved over three years and, during this time period, we had to cope
with diverse new requirements, such as higher performance demands, less memory
consumption, simplification of interfaces, and changes in the RDF standard (and its
interpretation). The use of patterns and high-level constructs in crucial parts of the de-
sign has allowed us to easily adapt the design to new, unexpected situations. Despite
considerable new requirements, the original design core is still stable.

Flexible glueing of components, combined with the Component Wrapper pattern,
has given us the opportunity to reuse existing parser implementations in a manner trans-
parent to the object-oriented implementation. The high level language constructs of



XOTcl, such as filters, mixins, and dynamic object aggregations provide flexible means
of adapting and supporting higher-level design constructs, say, certain design patterns,
roles, or Whole-Part structures. Several examples have demonstrated how patterns and
high-level constructs interact, and how this interaction produces pattern variations. For
example, we have discussed the language-supported Composite pattern and the Ordered
Composite variant. Variants often can be derived by runtime language means. The idea
of the Class Factory came from combining that of the Abstract Factory pattern and the
class object and dynamic classes language constructs of XOTcl.

Our approach does not force developers to use XOTcl as the implementation lan-
guage of the whole system, since components can be integrated with little effort in any
C or C++ program. Moreover, the concepts can be introduced into almost any proce-
dural and object-oriented language with the pattern language from [34,14,12,13]. Thus,
the ideas can be used independently of the concrete XOTcl implementation, and the
case study discussed here can be seen as an example of a usage of this pattern language
with XQOTcl. To a certain extent, other implementation languages, such as AspectJ, can
be used. Our experiments with AspectJ and other Java-based AOP approaches indicate
that current implementations have similar liabilities as our approach in respect to speed
penalties, but, as generative approaches, they do not allow for runtime changes. XOTcl
is completely implemented in C and heavily optimized for runtime performance. There-
fore, we believe, future implementations of dynamic message interception techniques
in Java or C++ will have similar consequences as using XOTecl together with C or C++
components.

The benefits of our approach are only useful for applications requiring high flexibil-
ity and component glueing. There are also some drawbacks in the approach discussed.
Scripting languages are slower than system programming languages, such as C or C++,
because of dynamic conversions and method lookup. We can minimize these problems
by using C components wherever high flexibility is not required. If the tasks performed
in the scripting language are not even required by the application, however, the perfor-
mance penalty becomes significant. For example, if an application only needs a triple
representation of an RDF structure, the creation of an intermediate object tree is unnec-
essary.

It may be hard for application developers, not used to the scripting language, to
understand the “new” language. Similarly, the patterns and their relations have to be
understood and cannot simply be used “out-of-the-box,” but they require usage experi-
ence and knowledge of possible implementation variants. In our experience, usage ex-
perience and understanding of patterns is especially relevant to inexperienced program-
mers who want to extend the framework (as for instance observed in student projects).
Here, our approach helps novices to trace the patterns as design units in the code. How-
ever, for modifications and customizations of the design, the intent, the effects on qual-
ity attributes, and the structure of the used patterns have to be fully understood. The
component-oriented structuring hides the patterns from users writing applications that
only use the framework; therefore, for merely using the framework its internal design
has not to be fully understood but only the component interfaces. If the pattern language
from [34,14,12,13] is used instead of XOTcl, the implementations of the wrapping and
indirection mechanisms have to be maintained by the development organization.



In general, our case study shows that the choice of the expression resources used
for programming, such as programming languages, patterns, paradigms, etc., has to
deal with conflicting forces. These can be at least partially resolved by a glueing ap-
proach. We have introduced component glueing as a wrapping technique for combining
several languages and paradigms properly. Note that some of the glued components
were XOTcl components for implementing recurring pattern variants. Thus the compo-
nent glueing concept has allowed us to extend XOTcl with the concerns implemented in
pattern components. These components implement a variant of the pattern that can be
further customized to the application context by different dynamic language resources.
The patterns have extended the XOTcl language dynamically with new language ele-
ments that are as well elements of the design repository. The loaded language element,
implementing the pattern variant, uses the standard XOTecl syntax, and it is dynamic,
introspectible, and traceable as a runtime entity of the language like all other XOTcl
language elements.

XOTecl and the XML/RDF components are freely available from:
http://ww. xotcl.org.
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