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Abstract Although dynamic programming environments are in wideagrase,
only basic runtime composition mechanisms are covered 8syte modeling
languages. Thus, it is common in real-world developmenjegte that dynamic
compositions are not modeled formally and are consequédratigd to use, for
example together with the model-driven paradigm where &mmodels are es-
sential to generate source code. In this paper, we propoap@wach based on
model transformations between the valid structural anébiehal runtime states
that a system can have. We use UML 2.0 class and activity atiag)for specify-
ing the structural and behavioral model states and providigla 2.0 meta-model
extension for describing the valid model transformatioasieen corresponding
model states.

1 Introduction

Each software composition mechanism defines the possitdirigj time(s) for the soft-
ware elements it composes. The binding time is the pointie tivhere the decision for
a composition of particular software elements is made. Eptasnof binding times in-
clude development time, source instantiation time, sotgase time, build time, pack-
aging time, installation time, start-up time, and exeautime (runtime) [11].

Many different approaches exist to model software commosstthat affect bind-
ing times before runtime. Examples for such approaches btk tlass or component
diagrams [21,23] and most architecture description laggedsee, e.g., [12,2]). Some
modeling languages also allow to specify runtime reconéiians of components to
a certain degree (see, e.g., [1,22]), but not beyond thé tdwehanging the relation-
ships of component or class instances. The specificatioffedte resulting from more
sophisticated runtime composition mechanisms is onlysghaaddressed in contem-
porary modeling languages.

At present, static programming languages such as Java, &@+43# are still more
prevalent than dynamic languages, such as CLOS, Perl, Rykby, Smalltalk, or
Tcl. However, together, the dynamic programming languabese a substantial user
base and are applied in a widespread application spectrurthéekmore, some of the

! Not all dynamic composition mechanisms are directly remlias language features of pro-
gramming languages — some are based on frameworks andWmtbus use the more generic
termdynamic programming environmeriislow.



more static languages, like Java and C#, increasinglydoe dynamic language fea-
tures such as limited forms of class reloading or reflectiormddition, aspect-oriented
software composition frameworks [10] add language corsirthat allow to produce

similar effects to those of dynamic composition mechanidrasthermore, recent ap-
proaches also propose dynamic AOP features (see, e.d])[4,2

Given the broad use and increasing importance of dynamigosition mecha-
nisms, it is obvious that modeling support for them is edaéfr the engineering,
understanding, and maintenance of corresponding softsyatems. In case a software
development project follows the model-driven paradigni @r@he software factory ap-
proach [7], we even require a formal specification of the eetige composition mech-
anisms. Such a formal definition is mandatory since it is iagilnle to generate source
code from modeling level artifacts without a formal represeion of model elements.
Current modeling approaches, however, support dynamiaacd composition only to
a minor degree. The UML 2.0, for example, does not supporspieeification of run-
time changes of most UML modeling elements. For instanca class diagram it is not
possible to model changing inheritance relations or theéhiction of a new method to
a class definition at runtime.

In this paper, we present an approach to model structurabahdvioral system
changes that result from the use of dynamic composition ar@sms. In particular, our
approach is based on model transformations [3]. Because IShhe de-facto standard
modeling language for software systems, we exemplify ogra@gch by providing a
UML meta-model extension (see [23]).

The remainder of this paper is structured as follows. In iBac2 we give a high-
level introduction to our approach before we provide a detdespecification of Model
Transformation Diagrams in Section 3. Subsequently, 8eectipresents an example
for the use of Model Transformation Diagrams. In Section 5digeuss related work
before we conclude the paper and give an outlook on futuré& woBection 6.

2 Motivation and Approach Synopsis

In essence, this paper aims to provide a well-defined andlyaj®plicable modeling
approach to enable the systematic specification of dynahainges in the structure of
software systems as well as resulting changes in systenvioeH&om our experiences,
it is equally important to model structural and behaviotzieges, as they most often
appear together and they represent two essential viewseitifgpcomprehend, and
maintain software systems.

Since the UML is by far the most important modeling languagthe area of soft-
ware engineering, we chose to define an extension to the UBlstandard to realize
our approach. However, the general approach does not depetice UML and may
also be realized with any other modeling language.

We especially aim to model a specific subset of the dynamigoaition features
that can be found in dynamic object-oriented programmingrenments: changes to
structural object-oriented features of classes or compisnand the behavior changes
that result from them. Here the term “structural featurdates to:



— the methods of a class,

— the fields of a class,

— the relationships of classes, such as superclass (gerati@h) relationships, de-
pendencies (e.g. to an interface), associations, commusitand aggregations,

— the relationships (e.g. the instance-of relationship)lats of an instance, and

— the classes and objects defined in a system.

In addition, there are many other features that may be stibjedynamic com-
position, such as non-object-oriented structural feateeg. procedures in procedu-
ral dynamic languages), data that is evaluated as code imigomic languages [9],
or cross-cutting in aspect-oriented environments [10priEthough these composition
features might possibly be modeled with our approach, is dlniicle we focus on the
object-oriented features.

To further motivate our approach, let us consider a typigadainic compaosition
task that we also use as an example in Section 4. A storagéaiteeabstracts a number
of persistent storages, such as different databases. ®bptbe made persistent using
different persistence strategies that, in turn, must bdigored with a storage to which
they write the data. Any object can be made persistent osigahat any time. In a static
programming environment we would need to instrument alis#a that can potentially
be made persistent. After that, we could turn persistencanzhoff at runtime. In a
dynamic programming environment, however, we can perfdrenrtecessary changes
at runtime. For instance, we can configure the storage dysaiyivith the persistence
strategy, and then add the persistence class as a type bjegdt®(or classes) that should
be made persistent. Unfortunately, these dynamic classgelsacannot be modeled in
most modeling languages.

Moreover, changing the class of an object usually has careseggs for other struc-
tural elements. For example, fields that belong to the “old%g might get removed
from instances, while other fields might be added. The bemafithe methods of the
affected class changes as well. For instance, in the exaatyoiee two different per-
sistence strategies, e.g. eager persistence and lazgtpars, introduce new activities,
and these activities are different for the two strategiegaif, switching between these
behaviors cannot be modeled in most modeling languagethdtarore, class changes
might also have constraints. For instance, a persisterategy must be associated with
a storage (e.g. a flat file storage or a database), otherwisgsit not be used for an ob-
ject.

Similar concerns appear for all dynamic composition fegdguisted above. Such
features are, however, not well supported in contemporaodeting languages.
Though, a static “snapshot” of the dynamic programming remrent at a partic-
ular point in time can well be modeled using modeling langsalike the UML. Our
concept is thus to extend modeling languages so that legpkbiots of a system can be
modeled to describe the valid states of a dynamic softwastesy. To specify snapshot
states of static system structures, we use UML class diagend variants of class
diagrams, such as component diagranmi$ML activity diagrams are used to model
system behavior and dynamic system facets.

2 Please note that we allow the structure diagrams to comatance specifications.



To describe changes in a system’s structure or behavior wenaslel transforma-
tions. Our approach introduces a new type of UML diagrameciWlodel Transfor-
mation Diagram(MTD). In essence, an MTD is a special type of state machiaehE
MTD state includes a diagram that defines a valid structureetiavior specification
of the system under consideration. The MTD also defines tsiple changes of the
system’s structure or behavior as transformations of thdeh@nd excludes changes
that are not allowed. The details of MTD diagrams are defingté following section.

3 Model Transformation Diagrams
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Figure 1. UML Meta-Model Extension for Model Transformation Diagram

In this section, we describe our meta-model extension tdUkk. 2.0 standard.
We introduce a new type of model callétbdel Transformation DiagrartMTD). To
define MTDs formally, we specify the new packagedelTransformationsFigure 1



shows the meta-model for MTDs that constitutes the base huddke ModelTrans-
formations package. Names of abstract classes are primtedic letters, as customary
in UML. Relevant UML2 classes from other packages are inetlioh the figure (the
“from” clause indicates the corresponding source packagdlee UML2 superstructure
specification [23]).

NODE TYPE NOTATION Explanation & Reference
Model ) mtd name Each Model Transformation State Machine is
ranstormation surrounded by a rectangular frame aroun
T f 1 hd'ddeht If'h d
H the diagram. The compartment in the upper
State Machine left corner contains the three letter token "mtd"
and optionally the name of the state machine.
Frame d optionally th f th hi
See ModelTransformationStateMachine from
ModelTransformations.
Each Structural Model State is surrounded by
Structural Model cd name ) a rectangular frame. The compartment in the
State upper left corner contains the token “cd"
and optionally the name of the contained
ClassName mode

- Each Structural Model State includes an UML2
variable a class diagram or a variant of a class diagram,
variable b such as a component diagram.

See StructuralModelState from Model-
Transformations and Class from Kernel.

method x

method y
i Each Behavioral Model State is surrounded
Behavioral Model ad name by a rectangular frame. The compartment in
ate the upper left corner contains the token "ad"

and OPtionaIIy the name of the contained

model.
i Each Behavioral Model State includes an
%© UML2 avtivity diagram or a variant of an
activity diagram.

See BehavioralModelState from Model-
Transformations and Activity from
FundamentalActivities.

A Model State Use refers to a Model State.
Model State Use £ The compartment in the upper left corner
mre contains the token "mref". The rectangular
name frame contains the name of the model state
it refers to.
See ModelStateUse from ModelTrans-
formations.

Figure 2. Basic notation elements for Model Transformation State hitaes

The graphical notation of our model transformation diagsassimilar to UML2
interaction overview diagrams (cf. Figure 2), however, €D semantics differ sig-
nificantly. The UML2 interaction overview diagrams are aiaat of activity diagrams
and describe the flow of control between different nodes, eah of these nodes is
itself either an Interaction or an InteractionUse. In UMLRlateraction is defined as a
unit of behavior that focuses on the exchange of informabietween different model
elements. Interactions are modeled using different typesagrams, for example se-
guence diagrams or communication diagrams. An Interadsen on the other hand,
refers to an Interaction. For details on interaction ovemwiiagrams see [23].

In contrast to that, our Model Transformation Diagrams ax@@ant of state ma-
chines. Model transformation diagrams describe changéiseo$tructural and behav-
ioral specification of a software system. These changes adeied through transitions



between different diagrams. Therefore, model transfoionatliagrams may include
two different types of states: eastructural model stateefers to an UML2 class di-
agram, and each MTDbehavior model stateefers to an UML2 activity diagram (see
Figure 2).

As shown in Figure 1 the corresponding meta-model clas$as;t8ralModelState
and BehavioralModelState, inherit from an abstract MotitSclass, which is itself a
State. A StructuralModelState aggregates elements ofpies{Class and InstanceSpec-
ification, whereas a BehavioralModelState aggregateseziesiof the type Activity.
Variants of the respective diagram types, such as compdaegriams which specialize
class diagrams, can thus also be contained in ModelStates.

In UML2, all elements of state machines that can have transitare derived from
the Vertex class. In addition to ordinary states, UML2 defipseudo states (see the
classes PseudoState and PseudoStateKind), such as foriajoin, choice, etc., as a
subtype of Vertex. The UM2 FinalState class is a subtypee$tiate class. All Vertexes
can be connected via Transitions (for additional detailstate machines see [23]).

For the definition of MTDs we derive one more class from VeriExis additional
class is called ModelStateUse. Instances of ModelStatédge no state themselves,
so the class is directly derived from Vertex. A ModelStateWsfers to a ModelState,
i.e. a ModelStateUse is purely a reference. It is used ascelptdder for the referred
ModelState, which contains either a structural model ftatadeled as a class diagram)
or a behavioral model state (modeled as an activity diagram)

The ModelTransformationStateMachine is a state machiae ¢bntains MTDs.
Like any other state machine it contains Vertexes and Tiiansi which may be orga-
nized in Regions (see Figure 1). For the purposes of our Madesformations pack-
age, we need to constrain the ModelTransformationStatbMacso that it can only
have vertexes of the types ModelState, ModelStateUselStata, or PseudoState. That
is, ordinary states must not be used in MTDs. The correspgn@CL constraint is
given below:

cont ext Model Transformati onSt at eMachi ne
inv: self.region->forAll(r | r.subvertex->forAll (v |
v. ocl | skKi ndOF (Model St ate) or v.ocl | ski ndOf ( Mbdel St at eUse)
or v.ocllsKindO(Final State) or v.ocllsKi ndOf (Pseudostate)))

The main transition type used in MTDs aransform transitionsTransform tran-
sitions express that the source model state of the transgitransformed to the target
model state of the transition. Thus, transform transitigpscally connect ModelStates
and ModelStateUses. A transition from one model state tth@noneans that the struc-
ture or behavior of a certain system aspect is transformeda@fter the transition the
system structure or behavior conforms to the state spedifjetthe transition’s target.
A transform transition from an empty source model state wmtlaer target model state
means that the model elements contained in the target asgladdhe system during
the transformation.

To define transform transitions we extend the Transitios<hith the stereotype
<«transforms (see Figure 3). In principle, all transitions in MTDs arenséorm transi-
tions. There are, however, some exceptions: most Pseude$iad FinalStates have no
transform semantics, and are thus connected through oydiaasitions. For instance,



Package ModelTransformations

«metaclass»

«stereotype» — Transition

transform (from BehaviorStateMachines)

«metaclass»

«stereotype» — P Class
isKindOf (from Kernel)

«metaclass»
«stereotype» | pgml InstanceSpecification
allinstances (from Kernel)

Figure 3. Stereotype Definitions for Model Transformation Diagrams

the “initial” PseudoState defines the starting point of aaiarState Machine. There-
fore, the transition from the “initial” PseudoState to a neated model state involves
no transformations between model states. The following @Ghstraint thus defines
that all Transitions in a Model Transformation State Maehivhich are not connected
to PseudoState or FinalState vertexes, must be typed veathtthnsforms stereotype:

cont ext Mbdel Tr ansfor mati onSt at eMachi ne
inv: self.region->forAll(r | r.subvertex->forAll (v |
v.incom ng->forAll (t1l: Transition]|
if (not v.ocllsKindO(Final State)) and
(not v.ocllsKi ndOf (PseudoState)) then

transform baseTransition->exists(t2: Transition| t2 = t1))
and
v.out goi ng->forAll (t1: Transition]|
if (not v.ocllsKi ndO(PseudoState)) then
transform baseTransition->exists(t2: Transition|] t2 = t1))

))

As mentioned above, PseudoStates cannot have transfamsitivas. There are,
however, a few exceptions to this generic constraint. Ateption cases are shown
in Figure 4. The following OCL constraint defines that Psesidtes cannot be typed
by the <transforms stereotype, except for the outgoing connections of “joffdrk”,
“junction”, and “choice” PseudoStates:

cont ext Mbdel Transf ormati onSt at eMachi ne
inv: self.region->forAll(r | r.subvertex->forAll (v |
if v.ocllsKindO (PseudoState) then
v.out going->forAll (t1: Transition]|
if not (v.kind = #oin or v.kind = #fork or
v. kind = #junction or v.kind = #choi ce)
t hen not transform baseTransition->exists(t2: Transition|
t2 =t1))
and
v.incom ng->forAll (tl: Transition]|
not transform baseTransition->exists(t2: Transition]|
t2 =t1)))



NODE TYPE NOTATION Explanation & Reference

Transform Transition The transform transition is typed with the
«transform» stereotype. Transform
transitions connect ModelStates and
«transform» ModelStateUses of the same kind. In some
% cases they can also be used with
PseudoStates (see cases below).
See Transition from BehaviorStateMachines
and the stereotype «transform» from
ModelTransformations.

P The outgoing transitions of “join" PseudoStates
Join T_r_ansform «transform» can be typed by the «transform» stereotype.
Transition See OCL constraints on ModelTransformation-

StateMachine.
«transform» The outgoing transitions of "fork" PseudoStates
Fork 'I_'r_ansform can be typed by the «transform» stereotype.
Transition «transform» See OCL constraints on ModelTransformation-
StateMachine.

«transform» The outgoing transitions of “junction”

%UnCtiS[)_n Transform PseudoStates can be typed by the «transform»
ransition stereotype.
ansitio «transform» See OCL constraints on ModelTransformation-

StateMachine.

. The outgoing transitions of "choice"
Choice Transform «transform» PseudoStates can be typed by the «transform»

iti stereotype.
Transition «transform>» > See OCL constraints on ModelTransformation-

StateMachine.

Figure 4. Transform Transitions in Model Transformation Diagrams

Furthermore, to ensure that FinalStates never have in@prtiransforms transi-
tions we specify the OCL constraint shown below (remembat HinalState is1ot a
PseudoState and has no outgoing transitions, see [23]):

cont ext Mbdel Tr ansfor mati onSt at eMachi ne
inv: self.region->forAll(r | r.subvertex->forAll (v |
if v.ocllsKindO(Final State) then
v.incom ng->forAll (tl: Transition]|
not transform baseTransition->exists(t2: Transition|
t2 =t1)))

All model states used within the same Model TransformatitaieSMachine must
be of the same kind because it is not sensible to describenafdranation from an
activity diagram to a class diagram, or vice versa. Thush @dodel Transformation
State Machine contains either structural model stateslmnberal model states but not
both. This is expressed by the following OCL constraints:

cont ext Mbdel Transf ormati onSt at eMachi ne
inv: self.region->forAll(rl1 | rl. subvertex->forAl (vl |
v1. ocl | sKi ndOF (St ruct ur al Model St ate) or
(vl. ocl I sKi ndOF ( Mbdel St at eUse) and
vl.refersTo. ocl | skKindOf (Structural Model State))
i mplies
self.region->forAll (r2 | r2.subvertex->forAl (v2 |
(v2.ocl I sKi ndOF (Model State) inplies
v2. ocl | sKi ndOf (St ruct ural Mbdel State)) and



(v2.ocl I sKi ndOF (Mbdel St at eUse) i npli es
v2.refersTo. ocl | sKindOf (Structural Model State))))))

inv: self.region->forAll(rl1 | rl. subvertex->forAl (vl |
v1. ocl | skKi ndOf ( Behavi or al Model St ate) or
(vl. ocl I sKi ndOr ( Mbdel St at eUse) and
vl.refersTo. ocl | sKi ndOFf (Behavi or al Model St ate))
i mplies
self.region->forAll(r2 | r2.subvertex->forAl (v2 |
(v2.ocl I sKindOF (Model State) inplies
v2. ocl | sKi ndOf ( Behavi or al Mbdel State)) and
(v2.ocl I sKi ndOF (Model St at eUse) i nplies
v2.refersTo. ocl | skKi ndOf (Behavi oral Model State))))))

Finally, we define two more stereotypes for Class and Ingt8pecification from
the Kernel package that can be used in structural modekdfsde also Figure 3):

— If a Class is typed by theisKindOf> stereotype, it matches all classes that
(directly or transitively) provide the type of the class ttha labeled with the
«isKindOf> stereotype.

— If an InstanceSpecification is typed by tkallinstances- stereotype, it matches
all objects which are (direct or indirect) instances of thess that is labeled with
the <alllnstances- stereotype.

The «isKindOf> and <allinstances- stereotypes are mainly defined for conve-
nience reasons, to allow for a compact specification of sirattransitions (see also
Section 4). These placeholder stereotypes especially stasgions where a Struc-
turalModelState contains a class diagram that includesoomeore class hierarchies.
The use of these stereotypes, however, is optional to gdiesrivill D models.

4 Example: Dynamic Composition of Persistence Strategiend
Storages

In this section, we illustrate the use of MTDs via a number yfiamic composition
functionalities of the scripting language XOTcl [17]. XdTga dynamic language that
supports dynamics in class relationships, superclassae$hips, and mixin classes.
Mixin classes [16] can be dynamically composed with anyothass or object. A mixin
class serves as a composition unit for a number of mixin noth& mixin class is dy-
namically registered for an object or class ame@ssage interceptowhich means that
mixin classes intercept the method calls to the respedctinget object. Mixin classes
are typically used as small building blocks to extend giviesses [15]. These language
functionalities are hard to model using standard UML diagg&ecause the correspond-
ing dynamic changes in structure and behavior of the systemat be captured.

As an example to demonstrate the use of MTDs, we considenthangic compo-
sition of persistence strategies for objects in XOTcl. THeTX! library provides the
classSt or age as an abstract interface for a number of storage classesharclass
Per si st ence provides an abstract interface for two persistence stiedegager and
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StorageGDBM StorageSDBM StorageMySQL StorageFile StorageMem
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Figure 5. Classes implementing storages and persistence strategies

lazy persistence. The respective classes are shown ingFiguf an XOTcl object has

a type relationship to one of thRer si st ence classes, the object is persisted to one of
the storages defined by tBeor age class. This can happen eagerly, i.e. all changes are
immediately written to the storage, or lazily, i.e. the effef all changes is written to
the storage when the application closes down.

In our example, we now model the dynamic structural compsitthat are valid
for the composition of persistence strategies. First ofvedl can make all instances of a
particular class persistent. In XOTcl, two dynamic languatgments can be used here:
we can either add Rer si st ence class as superclass for the class whose instances
should be made persistent, or we can addesi st ence class as a per-class mixin to
the corresponding class. Figure 6 models these two singtioan MTD. The simple
model state in the upper left corner shows a class diagratmtiatches all instances
(indicated by thexallinstances> stereotype, see Section 3) of the typpass (note that
d ass is the type of all classes in the XOTcl object system). Thahistransformations
can potentially be applied for all classes defined in XOTcl.

The other two model states depicted in Figure 6 show statesfmtemations that
can be applied to each XOTcl class. They show the possiblebications vari-
ants ofPer si st ence classes and instances @fass. To include all subclasses of
Per si st ence we add the stereotypeisKindOfs (see Section 3). This means any
subclass ofer si st ence can be composed with all instances@fass, and XOTcl
classes may either have a superclass relationship or dasrmixin relationship to a
respectivePer si st ence class.

Similar to the example described above, individual objeatsbe dynamically com-
posed with anyPer si st ence subclass. The most general class in the XOTcl object
system is the clas®j ect . Thus, to make an instance of thej ect class or an in-
stance of a subclass @bj ect persistent, @er si st ence class is either added as a
class of the respective instance, dtaa si st ence class is added as a per-object mixin
to the corresponding instance. Both transformations apéctil in Figure 7.

Finally, once a class or an object is made persistent, we amndigure a persistent
storage, so that the persistence strategy knows to whichgedt can write the data
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Figure 7. All possible compositions of the Persistence class and@bjstances
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Figure 8. Possible compositions of the Persistence and Storagesslass

(see also Figure 5). There are two mutual exclusive altastbut it is mandatory to
select one of these alternatives. Figure 8 shows the twanvarmodeled via an MTD:

— The St or age is defined as per-class mixin for tiRer si st ence class, meaning
that all persistence data is written to the same storage.

— The St or age class is defined as per-object mixin fBer si st ence instances,
meaning that the storage for each persistent instance figooed individually.

After we have defined the different structural transformmasi, we describe the cor-
responding model transformations of the behavioral moties. Figure 9 shows an
empty activity diagram as an initial state. This initialtst@an either be transformed
to a behavioral model state that introduces the eager pemsis strategy or to a model
state that introduces the lazy persistence strategy. Tlielhstates in Figure 9 are given
as ModelStateUse references. The detailed behavioral Irstaides for eager and lazy
persistence that these ModelStateUse states refer to@mamsh Figure 10.

5 Related work

The majority of existing architecture description langesg@ADL) focus a static view
on configurations [14]. Only a few ADLSs, such as Rapide [1@p®ort both static and
dynamic views on the architecture, but do not support (dyiopstructure or behav-
ior modification. The C2 ADL [13] can be seen as an exceptiarabse it allows for
arbitrary modifications of the component and connector goméition. Similar to our
approach, it uses a language for architecture modificatiatbed AML). In contrast to
MTDs, AML does not specify transformation paths, but a setgErations for insertion,
removal, and rewiring of elements in an architecture atimet

Allen, Douence, and Garlan provide an extension to the gchire description
language Wright [1]. This approach is closely related to BIIfDs because it uses
architectural snapshots to model static configurationd special events triggering re-
configuration between these snapshots. The general ideadelrdynamics is thus
similar to the class diagram snapshots that we use in our MTDs
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Figure 10. Detailed behavioral model states for eager and lazy persist




In addition to the above mentioned approaches, there arardeuof other ap-
proaches for modeling dynamics of software architecture$5] a recent survey of
techniques for architectural reconfiguration is presenféhile ADLs are often based
on process algebras, other techniques used for specifyaigtectural reconfiguration
are graph rewriting rules, graph transformation, and lofione of the surveyed ap-
proaches, however, is based on model transformationsH&eapproach presented in
our paper.

A commonality of the approaches mentioned so far is thatfiheys on the addition
and removal of components and connectors at runtime ongt ffeans that, in contrast
to our MTDs, those other approaches do not model other dyneamposition mech-
anisms. Moreover, corresponding changes in the behaviwodkl state which can be
specified in MTDs via activity diagram snapshots, cannot beefed using the above
mentioned approaches.

Czarnecki and Antkiewicz propose an alternative way to rhedgants of behav-
ioral models [6] that is comparable to our transformatiohba&havioral model states.
The work described in [6] does, however, not cover the otfements of MTDs yet.
In particular, Czarnecki and Antkiewicz use feature modelslescribe the possible
variants of UML activity diagrams. Here a model is descrilvé a model template,
which specifies the possible composition of a system’s featdurthermore, they use
a special-purpose tool to instantiate the model template fa feature configuration.
Using the MTDs presented in this paper, we can use modefftranations to add fea-
tures in a similar fashion. In cases where many featurestodaglcombined, the MTDs
might get more complex than feature models. On the other haossible transforma-
tions of the models are not directly visible in feature madel

Our approach is based on the concept of model transformaiRecently, the
research field of model-driven software development [19 heought up a number
of approaches for model transformations, mainly based orlLUhbdels (see, e.g.,
[3,18,24,7]). Our work extends these approaches with aemnfor representing dy-
namic software compositions and with an extension of the Uitéindard for depicting
structural and behavioral transformations suitable fessthdynamic software compo-
sitions. As our general approach does not depend on a spexitieling language (as
the UML for example), the transformation syntax and seneariti those other model
transformation approaches could be extended, followirrgapproach, to also support
dynamic software composition. We have chosen the UML to giié&our approach
because it is the de-facto standard for software systemeingd

Dynamic aspect-oriented approaches (see, e.g., [4,20:8}jde an implementa-
tion of dynamic aspect-oriented transformations. Howewerdeling dynamic aspects
is not yet in focus of the aspect-oriented community. Ouraagh can potentially be
used to provide models for transformations implemented ymyachic aspect-oriented
approaches. However, in this paper, we have only focusedantelimg object-oriented
language features.



6 Conclusion

In this paper, we have presented an approach to model staliahd behavioral compo-
sitions in dynamic programming environments — with a sgdoizaus on object-oriented
language features. Even though dynamic composition mésarare in widespread
use, most contemporary modeling languages provide ol 6t even no support to
specify dynamic compositions. Our paper describes antimtapproach to resolve this
problem. We use structural and behavioral snapshots oftaraythat are given as class
and activity diagrams. These snapshots are interconnestegl model transformations.

To be able to apply our approach in model-driven developmeatintroduced a
formal meta-model extension to the UML. We chose the UML siit¢s a standardized
modeling language that is in widespread use. Our generabapp, however, is not
depending on the UML. As a part of our future work, we plan tealep a model-driven
tool-set for dynamic languages. So far our main focus wastietsiral evolution of
dynamic object-oriented composition mechanisms. We mdarther extend our work
in two directions: first, we want to introduce a pointcut laage for model states to
provide modeling support for (dynamic) AOP. Second, we déVelop an approach to
specify constraints on system states, e.g. via forbiddethatsiates.
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