
Modeling Composition in Dynamic Programming
Environments with Model Transformations

Uwe Zdun, Mark Strembeck

Institute of Information Systems, New Media Lab
Vienna University of Economics and BA, Austria

{uwe.zdun|mark.strembeck}@wu-wien.ac.at

Abstract Although dynamic programming environments are in widespread use,
only basic runtime composition mechanisms are covered by today’s modeling
languages. Thus, it is common in real-world development projects that dynamic
compositions are not modeled formally and are consequentlyhard to use, for
example together with the model-driven paradigm where formal models are es-
sential to generate source code. In this paper, we propose anapproach based on
model transformations between the valid structural and behavioral runtime states
that a system can have. We use UML 2.0 class and activity diagrams for specify-
ing the structural and behavioral model states and provide aUML 2.0 meta-model
extension for describing the valid model transformations between corresponding
model states.

1 Introduction

Each software composition mechanism defines the possible binding time(s) for the soft-
ware elements it composes. The binding time is the point in time where the decision for
a composition of particular software elements is made. Examples of binding times in-
clude development time, source instantiation time, sourcereuse time, build time, pack-
aging time, installation time, start-up time, and execution time (runtime) [11].

Many different approaches exist to model software compositions that affect bind-
ing times before runtime. Examples for such approaches are UML class or component
diagrams [21,23] and most architecture description languages (see, e.g., [12,2]). Some
modeling languages also allow to specify runtime reconfigurations of components to
a certain degree (see, e.g., [1,22]), but not beyond the level of changing the relation-
ships of component or class instances. The specification of effects resulting from more
sophisticated runtime composition mechanisms is only sparsely addressed in contem-
porary modeling languages.

At present, static programming languages such as Java, C++,or C# are still more
prevalent than dynamic languages, such as CLOS, Perl, Python, Ruby, Smalltalk, or
Tcl. However, together, the dynamic programming languages1 have a substantial user
base and are applied in a widespread application spectrum. Furthermore, some of the

1 Not all dynamic composition mechanisms are directly realized as language features of pro-
gramming languages – some are based on frameworks and tools.We thus use the more generic
termdynamic programming environmentsbelow.

more static languages, like Java and C#, increasingly introduce dynamic language fea-
tures such as limited forms of class reloading or reflection.In addition, aspect-oriented
software composition frameworks [10] add language constructs that allow to produce
similar effects to those of dynamic composition mechanisms. Furthermore, recent ap-
proaches also propose dynamic AOP features (see, e.g., [4,20]).

Given the broad use and increasing importance of dynamic composition mecha-
nisms, it is obvious that modeling support for them is essential for the engineering,
understanding, and maintenance of corresponding softwaresystems. In case a software
development project follows the model-driven paradigm [19] or the software factory ap-
proach [7], we even require a formal specification of the respective composition mech-
anisms. Such a formal definition is mandatory since it is impossible to generate source
code from modeling level artifacts without a formal representation of model elements.
Current modeling approaches, however, support dynamic software composition only to
a minor degree. The UML 2.0, for example, does not support thespecification of run-
time changes of most UML modeling elements. For instance, ina class diagram it is not
possible to model changing inheritance relations or the introduction of a new method to
a class definition at runtime.

In this paper, we present an approach to model structural andbehavioral system
changes that result from the use of dynamic composition mechanisms. In particular, our
approach is based on model transformations [3]. Because UMLis the de-facto standard
modeling language for software systems, we exemplify our approach by providing a
UML meta-model extension (see [23]).

The remainder of this paper is structured as follows. In Section 2 we give a high-
level introduction to our approach before we provide a detailed specification of Model
Transformation Diagrams in Section 3. Subsequently, Section 4 presents an example
for the use of Model Transformation Diagrams. In Section 5 wediscuss related work
before we conclude the paper and give an outlook on future work in Section 6.

2 Motivation and Approach Synopsis

In essence, this paper aims to provide a well-defined and widely applicable modeling
approach to enable the systematic specification of dynamic changes in the structure of
software systems as well as resulting changes in system behavior. From our experiences,
it is equally important to model structural and behavioral changes, as they most often
appear together and they represent two essential views to specify, comprehend, and
maintain software systems.

Since the UML is by far the most important modeling language in the area of soft-
ware engineering, we chose to define an extension to the UML 2.0 standard to realize
our approach. However, the general approach does not dependon the UML and may
also be realized with any other modeling language.

We especially aim to model a specific subset of the dynamic composition features
that can be found in dynamic object-oriented programming environments: changes to
structural object-oriented features of classes or components, and the behavior changes
that result from them. Here the term “structural feature” relates to:

– the methods of a class,
– the fields of a class,
– the relationships of classes, such as superclass (generalization) relationships, de-

pendencies (e.g. to an interface), associations, compositions, and aggregations,
– the relationships (e.g. the instance-of relationship) andslots of an instance, and
– the classes and objects defined in a system.

In addition, there are many other features that may be subject to dynamic com-
position, such as non-object-oriented structural features (e.g. procedures in procedu-
ral dynamic languages), data that is evaluated as code in homoiconic languages [9],
or cross-cutting in aspect-oriented environments [10]. Even though these composition
features might possibly be modeled with our approach, in this article we focus on the
object-oriented features.

To further motivate our approach, let us consider a typical dynamic composition
task that we also use as an example in Section 4. A storage interface abstracts a number
of persistent storages, such as different databases. Objects can be made persistent using
different persistence strategies that, in turn, must be configured with a storage to which
they write the data. Any object can be made persistent or transient at any time. In a static
programming environment we would need to instrument all classes that can potentially
be made persistent. After that, we could turn persistence onand off at runtime. In a
dynamic programming environment, however, we can perform the necessary changes
at runtime. For instance, we can configure the storage dynamically with the persistence
strategy, and then add the persistence class as a type to all objects (or classes) that should
be made persistent. Unfortunately, these dynamic class changes cannot be modeled in
most modeling languages.

Moreover, changing the class of an object usually has consequences for other struc-
tural elements. For example, fields that belong to the “old” class might get removed
from instances, while other fields might be added. The behavior of the methods of the
affected class changes as well. For instance, in the exampleabove two different per-
sistence strategies, e.g. eager persistence and lazy persistence, introduce new activities,
and these activities are different for the two strategies. Again, switching between these
behaviors cannot be modeled in most modeling languages. Furthermore, class changes
might also have constraints. For instance, a persistence strategy must be associated with
a storage (e.g. a flat file storage or a database), otherwise itmust not be used for an ob-
ject.

Similar concerns appear for all dynamic composition features listed above. Such
features are, however, not well supported in contemporary modeling languages.
Though, a static “snapshot” of the dynamic programming environment at a partic-
ular point in time can well be modeled using modeling languages like the UML. Our
concept is thus to extend modeling languages so that legal snapshots of a system can be
modeled to describe the valid states of a dynamic software system. To specify snapshot
states of static system structures, we use UML class diagrams and variants of class
diagrams, such as component diagrams2. UML activity diagrams are used to model
system behavior and dynamic system facets.

2 Please note that we allow the structure diagrams to contain instance specifications.

To describe changes in a system’s structure or behavior we use model transforma-
tions. Our approach introduces a new type of UML diagram called Model Transfor-
mation Diagram(MTD). In essence, an MTD is a special type of state machine. Each
MTD state includes a diagram that defines a valid structure orbehavior specification
of the system under consideration. The MTD also defines the possible changes of the
system’s structure or behavior as transformations of the model, and excludes changes
that are not allowed. The details of MTD diagrams are defined in the following section.

3 Model Transformation Diagrams

Package ModelTransformations

State
(from BehaviorStateMachines)

Vertex
(from BehaviorStateMachines)

ModelTransformationStateMachine

Region
(from BehaviorStateMachines)

+stateMachine 0..1

+region1.. *

0..1

* +subvertex

+container

Transition
(from BehaviorStateMachines)

+source

+outgoing1
*

+target

+incoming1
*

+container

0..1

* +transition

FinalState
(from BehaviorStateMachines)PseudoState

(from BehaviorStateMachines)

kind: PseudoStateKind

«enumeration»
PseudoStateKind

(from BehaviorStateMachines)

initial
deepHistory
shallowHistory
join
fork
junction
choice
entryPoint
exitPoint
terminate

StateMachine
(from BehaviorStateMachines)

StructuralModelState

ModelState

BehavioralModelState

ModelStateUse

Action
(from BasicActions)

+argument

0..1

*

+refersTo

1*

0..1

* +class

Class
(from Kernel)

0..1

* +activity

Activity
(from FundamentalActivities)

InstanceSpecification
(from Kernel)

0..1

* +instance

Figure 1. UML Meta-Model Extension for Model Transformation Diagrams

In this section, we describe our meta-model extension to theUML 2.0 standard.
We introduce a new type of model calledModel Transformation Diagram(MTD). To
define MTDs formally, we specify the new packageModelTransformations. Figure 1

shows the meta-model for MTDs that constitutes the base model of the ModelTrans-
formations package. Names of abstract classes are printed in italic letters, as customary
in UML. Relevant UML2 classes from other packages are included in the figure (the
“from” clause indicates the corresponding source package in the UML2 superstructure
specification [23]).

mtd name

name

NODE TYPE NOTATION Explanation & Reference

Model
Transformation
State Machine
Frame

Each Model Transformation State Machine is
surrounded by a rectangular frame around
the diagram. The compartment in the upper
left corner contains the three letter token "mtd"
and optionally the name of the state machine.
See ModelTransformationStateMachine from
ModelTransformations.

Structural Model
State

Each Structural Model State is surrounded by
a rectangular frame. The compartment in the
upper left corner contains the token "cd"
and optionally the name of the contained
model.
Each Structural Model State includes an UML2
class diagram or a variant of a class diagram,
such as a component diagram.
See StructuralModelState from Model-
Transformations and Class from Kernel.

Behavioral Model
State

cd

ClassName

variable a
variable b

method x
method y

Each Behavioral Model State is surrounded
by a rectangular frame. The compartment in
the upper left corner contains the token "ad"
and optionally the name of the contained
model.
Each Behavioral Model State includes an
UML2 avtivity diagram or a variant of an
activity diagram.
See BehavioralModelState from Model-
Transformations and Activity from
FundamentalActivities.

ad name

ActivityName

Model State Use A Model State Use refers to a Model State.
The compartment in the upper left corner
contains the token "mref". The rectangular
frame contains the name of the model state
it refers to.
See ModelStateUse from ModelTrans-
formations.

mref
name

Figure 2. Basic notation elements for Model Transformation State Machines

The graphical notation of our model transformation diagrams is similar to UML2
interaction overview diagrams (cf. Figure 2), however, theMTD semantics differ sig-
nificantly. The UML2 interaction overview diagrams are a variant of activity diagrams
and describe the flow of control between different nodes, andeach of these nodes is
itself either an Interaction or an InteractionUse. In UML2 an Interaction is defined as a
unit of behavior that focuses on the exchange of informationbetween different model
elements. Interactions are modeled using different types of diagrams, for example se-
quence diagrams or communication diagrams. An InteractionUse, on the other hand,
refers to an Interaction. For details on interaction overview diagrams see [23].

In contrast to that, our Model Transformation Diagrams are avariant of state ma-
chines. Model transformation diagrams describe changes ofthe structural and behav-
ioral specification of a software system. These changes are modeled through transitions

between different diagrams. Therefore, model transformation diagrams may include
two different types of states: eachstructural model staterefers to an UML2 class di-
agram, and each MTDbehavior model staterefers to an UML2 activity diagram (see
Figure 2).

As shown in Figure 1 the corresponding meta-model classes, StructuralModelState
and BehavioralModelState, inherit from an abstract ModelState class, which is itself a
State. A StructuralModelState aggregates elements of the types Class and InstanceSpec-
ification, whereas a BehavioralModelState aggregates elements of the type Activity.
Variants of the respective diagram types, such as componentdiagrams which specialize
class diagrams, can thus also be contained in ModelStates.

In UML2, all elements of state machines that can have transitions are derived from
the Vertex class. In addition to ordinary states, UML2 defines pseudo states (see the
classes PseudoState and PseudoStateKind), such as initial, fork, join, choice, etc., as a
subtype of Vertex. The UM2 FinalState class is a subtype of the State class. All Vertexes
can be connected via Transitions (for additional details onstate machines see [23]).

For the definition of MTDs we derive one more class from Vertex. This additional
class is called ModelStateUse. Instances of ModelStateUsehave no state themselves,
so the class is directly derived from Vertex. A ModelStateUse refers to a ModelState,
i.e. a ModelStateUse is purely a reference. It is used as a placeholder for the referred
ModelState, which contains either a structural model state(modeled as a class diagram)
or a behavioral model state (modeled as an activity diagram).

The ModelTransformationStateMachine is a state machine that contains MTDs.
Like any other state machine it contains Vertexes and Transitions, which may be orga-
nized in Regions (see Figure 1). For the purposes of our ModelTransformations pack-
age, we need to constrain the ModelTransformationStateMachine so that it can only
have vertexes of the types ModelState, ModelStateUse, FinalState, or PseudoState. That
is, ordinary states must not be used in MTDs. The corresponding OCL constraint is
given below:

context ModelTransformationStateMachine
inv: self.region->forAll(r | r.subvertex->forAll(v |

v.oclIsKindOf(ModelState) or v.oclIsKindOf(ModelStateUse)
or v.oclIsKindOf(FinalState) or v.oclIsKindOf(Pseudostate)))

The main transition type used in MTDs aretransform transitions. Transform tran-
sitions express that the source model state of the transition is transformed to the target
model state of the transition. Thus, transform transitionstypically connect ModelStates
and ModelStateUses. A transition from one model state to another means that the struc-
ture or behavior of a certain system aspect is transformed sothat after the transition the
system structure or behavior conforms to the state specifiedby the transition’s target.
A transform transition from an empty source model state to another target model state
means that the model elements contained in the target are added to the system during
the transformation.

To define transform transitions we extend the Transition class with the stereotype
≪transform≫ (see Figure 3). In principle, all transitions in MTDs are transform transi-
tions. There are, however, some exceptions: most PseudoStates and FinalStates have no
transform semantics, and are thus connected through ordinary transitions. For instance,

«metaclass»
Transition

(from BehaviorStateMachines)

«stereotype»
transform

Package ModelTransformations

«metaclass»
Class

(from Kernel)

«stereotype»
isKindOf

«stereotype»
allInstances

«metaclass»
InstanceSpecification

(from Kernel)

Figure 3. Stereotype Definitions for Model Transformation Diagrams

the “initial” PseudoState defines the starting point of a certain State Machine. There-
fore, the transition from the “initial” PseudoState to a connected model state involves
no transformations between model states. The following OCLconstraint thus defines
that all Transitions in a Model Transformation State Machine which are not connected
to PseudoState or FinalState vertexes, must be typed with the≪transform≫ stereotype:

context ModelTransformationStateMachine
inv: self.region->forAll(r | r.subvertex->forAll(v |

v.incoming->forAll(t1:Transition|
if (not v.oclIsKindOf(FinalState)) and

(not v.oclIsKindOf(PseudoState)) then
transform.baseTransition->exists(t2:Transition| t2 = t1))

and
v.outgoing->forAll(t1:Transition|
if (not v.oclIsKindOf(PseudoState)) then
transform.baseTransition->exists(t2:Transition| t2 = t1))

))

As mentioned above, PseudoStates cannot have transform transitions. There are,
however, a few exceptions to this generic constraint. All exception cases are shown
in Figure 4. The following OCL constraint defines that PseudoStates cannot be typed
by the≪transform≫ stereotype, except for the outgoing connections of “join”,“fork”,
“junction”, and “choice” PseudoStates:

context ModelTransformationStateMachine
inv: self.region->forAll(r | r.subvertex->forAll(v |

if v.oclIsKindOf(PseudoState) then
v.outgoing->forAll(t1:Transition|

if not (v.kind = #join or v.kind = #fork or
v.kind = #junction or v.kind = #choice)

then not transform.baseTransition->exists(t2:Transition|
t2 = t1))

and
v.incoming->forAll(t1:Transition|

not transform.baseTransition->exists(t2:Transition|
t2 = t1)))

The outgoing transitions of "junction"
PseudoStates can be typed by the «transform»
stereotype.
See OCL constraints on ModelTransformation-
StateMachine.

The outgoing transitions of "fork" PseudoStates
can be typed by the «transform» stereotype.
See OCL constraints on ModelTransformation-
StateMachine.

NODE TYPE NOTATION

Transform Transition

«transform»

The transform transition is typed with the
«transform» stereotype. Transform
transitions connect ModelStates and
ModelStateUses of the same kind. In some
cases they can also be used with
PseudoStates (see cases below).
See Transition from BehaviorStateMachines
and the stereotype «transform» from
ModelTransformations.

Explanation & Reference

«transform»Join Transform
Transition

The outgoing transitions of "join" PseudoStates
can be typed by the «transform» stereotype.
See OCL constraints on ModelTransformation-
StateMachine.

«transform»Fork Transform
Transition «transform»

«transform»Junction Transform
Transition «transform»

«transform»Choice Transform
Transition «transform»

The outgoing transitions of "choice"
PseudoStates can be typed by the «transform»
stereotype.
See OCL constraints on ModelTransformation-
StateMachine.

Figure 4. Transform Transitions in Model Transformation Diagrams

Furthermore, to ensure that FinalStates never have incoming ≪transform≫ transi-
tions we specify the OCL constraint shown below (remember that FinalState isnot a
PseudoState and has no outgoing transitions, see [23]):

context ModelTransformationStateMachine
inv: self.region->forAll(r | r.subvertex->forAll(v |

if v.oclIsKindOf(FinalState) then
v.incoming->forAll(t1:Transition|

not transform.baseTransition->exists(t2:Transition|
t2 = t1)))

All model states used within the same Model Transformation State Machine must
be of the same kind because it is not sensible to describe a transformation from an
activity diagram to a class diagram, or vice versa. Thus, each Model Transformation
State Machine contains either structural model states or behavioral model states but not
both. This is expressed by the following OCL constraints:

context ModelTransformationStateMachine
inv: self.region->forAll(r1 | r1.subvertex->forAll(v1 |

v1.oclIsKindOf(StructuralModelState) or
(v1.oclIsKindOf(ModelStateUse) and
v1.refersTo.oclIsKindOf(StructuralModelState))

implies
self.region->forAll(r2 | r2.subvertex->forAll(v2 |

(v2.oclIsKindOf(ModelState) implies
v2.oclIsKindOf(StructuralModelState)) and

(v2.oclIsKindOf(ModelStateUse) implies
v2.refersTo.oclIsKindOf(StructuralModelState))))))

inv: self.region->forAll(r1 | r1.subvertex->forAll(v1 |
v1.oclIsKindOf(BehavioralModelState) or
(v1.oclIsKindOf(ModelStateUse) and
v1.refersTo.oclIsKindOf(BehavioralModelState))

implies
self.region->forAll(r2 | r2.subvertex->forAll(v2 |

(v2.oclIsKindOf(ModelState) implies
v2.oclIsKindOf(BehavioralModelState)) and

(v2.oclIsKindOf(ModelStateUse) implies
v2.refersTo.oclIsKindOf(BehavioralModelState))))))

Finally, we define two more stereotypes for Class and InstanceSpecification from
the Kernel package that can be used in structural model states (see also Figure 3):

– If a Class is typed by the≪isKindOf≫ stereotype, it matches all classes that
(directly or transitively) provide the type of the class that is labeled with the
≪isKindOf≫ stereotype.

– If an InstanceSpecification is typed by the≪allInstances≫ stereotype, it matches
all objects which are (direct or indirect) instances of the class that is labeled with
the≪allInstances≫ stereotype.

The ≪isKindOf≫ and ≪allInstances≫ stereotypes are mainly defined for conve-
nience reasons, to allow for a compact specification of structural transitions (see also
Section 4). These placeholder stereotypes especially easesituations where a Struc-
turalModelState contains a class diagram that includes oneor more class hierarchies.
The use of these stereotypes, however, is optional to get smaller MTD models.

4 Example: Dynamic Composition of Persistence Strategies and
Storages

In this section, we illustrate the use of MTDs via a number of dynamic composition
functionalities of the scripting language XOTcl [17]. XOTcl is a dynamic language that
supports dynamics in class relationships, superclass relationships, and mixin classes.
Mixin classes [16] can be dynamically composed with any other class or object. A mixin
class serves as a composition unit for a number of mixin methods. A mixin class is dy-
namically registered for an object or class as amessage interceptor, which means that
mixin classes intercept the method calls to the respective target object. Mixin classes
are typically used as small building blocks to extend given classes [15]. These language
functionalities are hard to model using standard UML diagrams because the correspond-
ing dynamic changes in structure and behavior of the system cannot be captured.

As an example to demonstrate the use of MTDs, we consider the dynamic compo-
sition of persistence strategies for objects in XOTcl. The XOTcl library provides the
classStorage as an abstract interface for a number of storage classes, andthe class
Persistence provides an abstract interface for two persistence strategies: eager and

StorageGDBM StorageSDBM StorageMySQL StorageFile StorageMem

PersistenceEager PersistenceLazy

Storage

Persistence

Figure 5. Classes implementing storages and persistence strategies

lazy persistence. The respective classes are shown in Figure 5. If an XOTcl object has
a type relationship to one of thePersistence classes, the object is persisted to one of
the storages defined by theStorage class. This can happen eagerly, i.e. all changes are
immediately written to the storage, or lazily, i.e. the effect of all changes is written to
the storage when the application closes down.

In our example, we now model the dynamic structural compositions that are valid
for the composition of persistence strategies. First of all, we can make all instances of a
particular class persistent. In XOTcl, two dynamic language elements can be used here:
we can either add aPersistence class as superclass for the class whose instances
should be made persistent, or we can add aPersistence class as a per-class mixin to
the corresponding class. Figure 6 models these two situations in an MTD. The simple
model state in the upper left corner shows a class diagram that matches all instances
(indicated by the≪allInstances≫ stereotype, see Section 3) of the typeClass (note that
Class is the type of all classes in the XOTcl object system). That is, the transformations
can potentially be applied for all classes defined in XOTcl.

The other two model states depicted in Figure 6 show state transformations that
can be applied to each XOTcl class. They show the possible combinations vari-
ants ofPersistence classes and instances ofClass. To include all subclasses of
Persistence we add the stereotype≪isKindOf≫ (see Section 3). This means any
subclass ofPersistence can be composed with all instances ofClass, and XOTcl
classes may either have a superclass relationship or a per-class mixin relationship to a
respectivePersistence class.

Similar to the example described above, individual objectscan be dynamically com-
posed with anyPersistence subclass. The most general class in the XOTcl object
system is the classObject. Thus, to make an instance of theObject class or an in-
stance of a subclass ofObject persistent, aPersistence class is either added as a
class of the respective instance, or aPersistence class is added as a per-object mixin
to the corresponding instance. Both transformations are depicted in Figure 7.

Finally, once a class or an object is made persistent, we mustconfigure a persistent
storage, so that the persistence strategy knows to which storage it can write the data

mtd Persistence Class

cd

«perClassMixin»

cd

cd «transform»

«transform»

«transform» «transform»

«allInstances»
:Class

«isKindOf»
Persistence

«isKindOf»
Persistence

«allInstances»
:Class

«allInstances»
:Class

Figure 6. All possible compositions of the Persistence class and instances of Class

mtd Persistence Object

cd

cd

cd «transform»

«transform»

«transform» «transform»

«allInstances»
:Object

«allInstances»
:Object

«allInstances»
:Object

«instanceOf»

«perObjectMixin»

«isKindOf»
Persistence

«isKindOf»
Persistence

Figure 7. All possible compositions of the Persistence class and Object instances

mtd Persistence Object

cd

«transform»

«transform» «perClassMixin»

cd

«perObjectMixin»

«allInstances»
:Persistence

«isKindOf»
Persistence

«isKindOf»
Storage

«isKindOf»
Storage

Figure 8. Possible compositions of the Persistence and Storage classes

(see also Figure 5). There are two mutual exclusive alternatives, but it is mandatory to
select one of these alternatives. Figure 8 shows the two variants modeled via an MTD:

– TheStorage is defined as per-class mixin for thePersistence class, meaning
that all persistence data is written to the same storage.

– The Storage class is defined as per-object mixin forPersistence instances,
meaning that the storage for each persistent instance is configured individually.

After we have defined the different structural transformations, we describe the cor-
responding model transformations of the behavioral model states. Figure 9 shows an
empty activity diagram as an initial state. This initial state can either be transformed
to a behavioral model state that introduces the eager persistence strategy or to a model
state that introduces the lazy persistence strategy. The model states in Figure 9 are given
as ModelStateUse references. The detailed behavioral model states for eager and lazy
persistence that these ModelStateUse states refer to are shown in Figure 10.

5 Related work

The majority of existing architecture description languages (ADL) focus a static view
on configurations [14]. Only a few ADLs, such as Rapide [12], support both static and
dynamic views on the architecture, but do not support (dynamic) structure or behav-
ior modification. The C2 ADL [13] can be seen as an exception because it allows for
arbitrary modifications of the component and connector configuration. Similar to our
approach, it uses a language for architecture modification (called AML). In contrast to
MTDs, AML does not specify transformation paths, but a set ofoperations for insertion,
removal, and rewiring of elements in an architecture at runtime.

Allen, Douence, and Garlan provide an extension to the architecture description
language Wright [1]. This approach is closely related to ourMTDs because it uses
architectural snapshots to model static configurations, and special events triggering re-
configuration between these snapshots. The general idea to model dynamics is thus
similar to the class diagram snapshots that we use in our MTDs.

[eager persistence]

[lazy persistence]

mtd Introduce Persistence

[shutdown]

[shutdown]

[shutdown]

«transform»

«transform»

«transform» «transform»

[persistence off]

«transform»

Persistence Lazy
Strategy

mref

ad

[persistence off]

«transform»

Persistence Eager
Strategy

mref

Figure 9. Behavioral model transformations for eager and lazy persistence

Get Open
Database Connection

Object Change
Event

«datastore»

Persistence
Storage

PersistentObject

Write Object
to Persistent Storage

Close all
Database Connections

Receive Shutdown
Signal

ad Persistence Lazy Strategy

ad Persistence Eager Strategy

«datastore»

Persistence
Storage

Get Open
Database Connection

Write All Objects
to Persistent Storage

Lazy
Persistence

Table

Close all
Database Connections

Receive Shutdown
Signal

Lazy
Persistence

Table

Remember Persistent
Object IDs

Open Database
Connections

Open Database
Connections

Activate Persistent Object
Change Events

Figure 10.Detailed behavioral model states for eager and lazy persistence

In addition to the above mentioned approaches, there are a number of other ap-
proaches for modeling dynamics of software architectures.In [5] a recent survey of
techniques for architectural reconfiguration is presented. While ADLs are often based
on process algebras, other techniques used for specifying architectural reconfiguration
are graph rewriting rules, graph transformation, and logic. None of the surveyed ap-
proaches, however, is based on model transformations like the approach presented in
our paper.

A commonality of the approaches mentioned so far is that theyfocus on the addition
and removal of components and connectors at runtime only. That means that, in contrast
to our MTDs, those other approaches do not model other dynamic composition mech-
anisms. Moreover, corresponding changes in the behavioralmodel state which can be
specified in MTDs via activity diagram snapshots, cannot be modeled using the above
mentioned approaches.

Czarnecki and Antkiewicz propose an alternative way to model variants of behav-
ioral models [6] that is comparable to our transformations of behavioral model states.
The work described in [6] does, however, not cover the other elements of MTDs yet.
In particular, Czarnecki and Antkiewicz use feature modelsto describe the possible
variants of UML activity diagrams. Here a model is describedvia a model template,
which specifies the possible composition of a system’s features. Furthermore, they use
a special-purpose tool to instantiate the model template from a feature configuration.
Using the MTDs presented in this paper, we can use model transformations to add fea-
tures in a similar fashion. In cases where many features needto be combined, the MTDs
might get more complex than feature models. On the other hand, possible transforma-
tions of the models are not directly visible in feature models.

Our approach is based on the concept of model transformation. Recently, the
research field of model-driven software development [19] has brought up a number
of approaches for model transformations, mainly based on UML models (see, e.g.,
[3,18,24,7]). Our work extends these approaches with a concept for representing dy-
namic software compositions and with an extension of the UMLstandard for depicting
structural and behavioral transformations suitable for these dynamic software compo-
sitions. As our general approach does not depend on a specificmodeling language (as
the UML for example), the transformation syntax and semantics in those other model
transformation approaches could be extended, following our approach, to also support
dynamic software composition. We have chosen the UML to exemplify our approach
because it is the de-facto standard for software systems modeling.

Dynamic aspect-oriented approaches (see, e.g., [4,20,8])provide an implementa-
tion of dynamic aspect-oriented transformations. However, modeling dynamic aspects
is not yet in focus of the aspect-oriented community. Our approach can potentially be
used to provide models for transformations implemented by dynamic aspect-oriented
approaches. However, in this paper, we have only focused on modeling object-oriented
language features.

6 Conclusion

In this paper, we have presented an approach to model structural and behavioral compo-
sitions in dynamic programming environments – with a special focus on object-oriented
language features. Even though dynamic composition mechanisms are in widespread
use, most contemporary modeling languages provide only little or even no support to
specify dynamic compositions. Our paper describes an intuitive approach to resolve this
problem. We use structural and behavioral snapshots of a system that are given as class
and activity diagrams. These snapshots are interconnectedusing model transformations.

To be able to apply our approach in model-driven development, we introduced a
formal meta-model extension to the UML. We chose the UML since it is a standardized
modeling language that is in widespread use. Our general approach, however, is not
depending on the UML. As a part of our future work, we plan to develop a model-driven
tool-set for dynamic languages. So far our main focus was on structural evolution of
dynamic object-oriented composition mechanisms. We plan to further extend our work
in two directions: first, we want to introduce a pointcut language for model states to
provide modeling support for (dynamic) AOP. Second, we willdevelop an approach to
specify constraints on system states, e.g. via forbidden model states.

References

1. R. Allen, R. Douence, and D. Garlan. Specifying and analyzing dynamic software archi-
tectures. InProc. of the Conference on Fundamental Approaches to Software Engineering
(FASE’98), Lisbon, Portugal, March 1998.

2. R. Allen and D. Garlan. A formal basis for architectural connection.ACM Trans. Softw. Eng.
Methodol., 6(3):213–249, 1997.

3. J. Bezivin. From object composition to model transformation with the mda. InProceedings
of the Technology of Object-Oriented Languages and Systems(TOOLS USA), Santa Barbara,
CA, USA, 2001. IEEE Press.

4. C. Bockisch, M. Haupt, M. Mezini, and K. Ostermann. Virtual Machine Support for Dy-
namic Join Points. InAOSD 2004 Proceedings. ACM Press, 2004.

5. J. S. Bradbury, J. R. Cordy, J. Dingel, and M. Wermelinger.A survey of self-management
in dynamic software architecture specifications. InWOSS ’04: Proceedings of the 1st ACM
SIGSOFT workshop on Self-managed systems, pages 28–33. ACM Press, 2004.

6. K. Czarnecki and M. Antkiewicz. Mapping features to models: A template approach based
on superimposed variants. InProc. of 4th International Conference on Generative Program-
ming and Component Engineering (GPCE 2005), pages 422–437, Tallinn, Estonia, Sep/Oct
2005.

7. J. Greenfield and K. Short.Software Factories: Assembling Applications with Patterns,
Frameworks, Models & Tools. J. Wiley and Sons Ltd., 2004.

8. R. Hirschfeld. AspectS – Aspect-Oriented Programming with Squeak. InObjects, Compo-
nents, Architectures, Services, and Applications for a Networked World, LNCS 2591, pages
216–232. Springer-Verlag.

9. A. Kay. The Reactive Engine. PhD thesis, University of Utah, 1969.
10. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J. M. Loingtier, and J. Irwin.

Aspect-oriented programming. InProceedings European Conference on Object-Oriented
Programming (ECOOP’97), pages 220–242, Finnland, June 1997. LCNS 1241, Springer-
Verlag.

11. C. Krueger. Software product lines – binding times. http://www.softwareproductlines.com/
introduction/binding.html, 2005.

12. D. C. Luckham and J. Vera. An event-based architecture definition language.IEEE Trans.
Softw. Eng., 21(9):717–734, 1995.

13. N. Medvidovic. Adls and dynamic architecture changes. In Joint proceedings of the sec-
ond international software architecture workshop (ISAW-2) and international workshop on
multiple perspectives in software development (Viewpoints ’96) on SIGSOFT ’96 workshops,
pages 24–27. ACM Press, 1996.

14. N. Medvidovic and R. N. Taylor. A classification and comparison framework for software
architecture description languages.IEEE Trans. Softw. Eng., 26(1):70–93, 2000.

15. D. Moon. Object-oriented programming with flavors. InProceedings of the Conference
on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA ’86),
volume 21 ofSIGPLAN Notices, pages 1–8, Portland, November 1986.

16. G. Neumann and U. Zdun. Enhancing object-based system composition through per-object
mixins. In Proceedings of Asia-Pacific Software Engineering Conference (APSEC), Taka-
matsu, Japan, December 1999.

17. G. Neumann and U. Zdun. XOTcl, an object-oriented scripting language. InProceedings of
Tcl2k: The 7th USENIX Tcl/Tk Conference, Austin, Texas, USA, February 2000.

18. OMG. MOF 2.0 Query / Views / Transformations RFP. Technical Report ad/2002-04-10,
Object Management Group, April 2002.

19. OMG. MDA Guide Version 1.0.1. Technical report, Object Management Group, 2003.
20. A. Popovici, T. Gross, and G. Alonso. Just In Time Aspects: Efficient Dynamic Weaving for

Java. InProc. of the 2nd International Conference on Aspect-Oriented Software Develop-
ment (AOSD 2003), pages 100–109, Boston, USA, 2003. ACM Press.

21. J. Rumbaugh, I. Jacobson, and G. Booch.The Unified Modeling Language Reference Man-
ual. Addison-Wesley, 1999.

22. G. Succi, R. Wong, E. Liu, and M. Smith. Supporting dynamic composition of components.
In ICSE ’00: Proceedings of the 22nd international conferenceon Software engineering,
page 787, New York, NY, USA, 2000. ACM Press.

23. The Object Management Group. Unified Modeling Language:Superstructure.
http://www.omg.org/technology/documents/formal/uml.htm, August 2005. Version 2.0,
formal/05-07-04, Object Management Group.

24. D. Vojtisek and J.-M. Jzquel. MTL and Umlaut NG - Engine and framework for model
transformation.ERCIM News 58, 58, 2004.

