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Abstract. Software product lines provide a common architecture, reusable code, and other common assets for a 

set of related software products. Variation is a central requirement in this context, as the product line components 

have to be instantiated, composed, and configured in the context of the products. In many approaches either static 

composition techniques or dynamic composition techniques based on loose relationships, such as association, ag-

gregation, or replacement of entities, are proposed to design the variation points. If the domain of the product re-

quires runtime variation, however, these approaches do not provide any central management facility for the run-

time variation points. As a solution to this problem, we propose a pattern language that provides a domain-specific 

variation language and runtime variation point management facilities as part of the product line. We present three 

case studies from the areas of interactive digital television and document archiving in which we have applied this 

pattern language. 

1 Introduction 

Software product lines or system families provide a structure for a set of products of a specific organization in form 

of a so-called product line architecture. Such a product line architecture contains a set of generic components in 

addition to other common assets. The individual architecture of a particular product is derived from the product line 

architecture. Each particular product uses the set of generic components and introduces product-specific code as 
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well. Generic components provide well-defined interfaces. In the product-specific code the generic components of 

the product line architecture are configured to build the particular product’s architecture. 

The typical process of adopting and/or using the product line approach concentrates on reducing structural com-

plexity by finding and extracting commonalities between the various product variants.  A particular product is pri-

marily built from a common set of assets [2]. Often these common assets are designed as (black-box) components. In 

software product line approaches, a component configuration is usually handled by well-defined variation points, 

implemented with appropriate variability mechanisms. Common (traditional) variability mechanisms are parameteri-

zation, specialization, or replacement of entities in the reusable component. At design time the variability mecha-

nisms and architectural styles are decided. Once a design and implementation is based on a certain variability 

mechanism, it is often in traditional approaches quite hard to exchange them with other mechanisms. Also there is no 

central facility for managing these variation points at runtime, as they are usually based on ordinary (e.g. object-

oriented) relationships. 

One of the main contributions of the product-line approach is its focus on domain-specific architectures. A prod-

uct-line should provide a systematic derivation of a tailored approach suited to an organization’s capabilities and 

objectives [6]. The approach pays special attention to the traceability between architectural decisions and func-

tional/non-functional requirements. However, many domains impose requirements for domain-specific customiza-

tions that can hardly be implemented with variation points bound before runtime. In such cases, without a central 

runtime variation management concept that can be derived from the product line architecture and that goes beyond 

(object-oriented) relationships, traceability and similar features can hardly include the traceability links that are es-

tablished at runtime.  In this paper, we will concentrate on techniques that can be applied to introduce domain-

specific ad hoc customizability and treat these runtime variation points as first-class entities.  

We have studied these issues theoretically and practically in two larger industry projects from which we will pre-

sent three case studies in this paper: 

 

• TPMHP is an EU project that focuses on a generic product line architecture for development of digital television 

applications on top of the MHP (Multimedia Home Platform) [9]. We present two cases in this context: 
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- An MHP application has to determine the hardware configuration of the client terminal (for instance: a 

digital set-top box) at runtime onto which it is broadcasted and executed in turn. The application has to 

adapt and configure itself according to these parameters. Then it loads the appropriate MHP product 

line components, as well as its application domain components, from the broadcast channel. 

- In the context of a retail chain a number of different interactive television (e-commerce) shops are of-

fered. These e-commerce applications share a common architecture and common components, and con-

tain additional special components for a particular shop. In this e-commerce area, usually additional 

channels to interactive television have to be supported at the server side as well. For instance, web 

shops and integration with mobile phones are also supported. The second case study investigates how 

to integrate content for all these platforms and dynamically add orthogonal aspects, such as channel 

specifics, content formats, or content styles.  

• We conducted a reengineering project for a large-scale document archive system [14]. In this paper, we present 

a (runtime) configuration and customization framework with the goal of product derivation, deployment, and in-

stallation at the customer as a third case study. 

 

In these projects, late-bound flexibility is not only a useful feature, but also a requirement for using a product line 

approach at all. These domains are characterized by constant domain changes. For rapid incorporation of these 

changes it is impractical to hand-code the changes in long development and deployment cycles. In some product 

lines customer-specific customization requirements are foreseeable, and rapid customizability is required. Sometimes 

variations are dependent on the runtime context, and such product lines require runtime variability. 24x7 server ap-

plications, such as custom web servers and application servers, have to be integrated. These usually cannot simply 

be stopped for deploying or configuring components. Thus in such domains a dynamic component exchange mecha-

nism is required. The same problem arises in the context of broadcast  (MHP-)clients, because the server has no 

control of the client at all. 

Our general approach is to provide a “little” domain-specific language and a central architecture for managing the 

runtime variation points in this language. This architecture is provided in the generic product line architecture im-

plementation and can be reused for all products derived from it. 
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At first, we outline some open issues in the design of runtime variation points. Next we discuss a pattern language 

for designing a runtime variation point management language within a given object-oriented software architecture. 

Note that these patterns can be used in any object-oriented software framework, not only in product lines. Then we 

present three cases from the projects mentioned above to illustrate the use of a domain-specific runtime variation 

point management language in practical examples. Finally, we discuss related work and conclude with a summary of 

our main findings. 

2 Open Issues in Designing Runtime Variation Points 

Variation points are implemented using a variability mechanism. Typical traditional examples for variability mecha-

nisms are associating objects in DECORATOR style [12], delegating to a STRATEGY [12], using inheritance for spe-

cialization, exchanging a runtime entity such as an object, parameterization, inlining, or preprocessor directives. 

Obviously, all these variability mechanisms have quite different properties. For instance, the binding time differs: 

some mechanisms have to be bound at design time, some at compile time, some at startup of the program, and some 

at runtime. In general, the later we bind a variation point, the more flexible the solution is. However, with runtime 

variability we have to deal with certain drawbacks as well, for instance, degraded performance, increased memory 

consumption, and higher runtime complexity. 

In this paper, we consider the question how to manage variation points efficiently and in a structured way that 

have to be bound at runtime. Obviously, only a few of the techniques, discussed above, provide a solution here. As 

these techniques primarily rely on associating different objects, they are mainly implemented by hand and thus there 

is no central management of variation points at runtime. 

Also there is not first-class representation [3] of variation points. Thus the recurring use of variation points has to 

be built with certain syntactic conventions and is scattered across the code.  The constructs used to implement an 

architectural artifact cannot easily be reused.  As a consequence the traceability of variation points is limited: without 

a first-class representation in the program code or design, a variation point is not recognizable ad hoc as an entity. 

Therefore, complex variation points are hard to locate for a client of the component. 
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Variability at the requirements level often does not map nicely onto programming language code. Thus, in naive 

implementations, features are simply scattered across system parts, and multiple features are tangled within system 

parts. As a consequence these “scattered” variation points heavily reduce understandability of the design and code. 

Variation points that are hard-coded into the code cannot easily be reused at runtime. Once such a variation point 

is configured, it is not easy to pass its configuration to other applications. 

Dependencies between variation points and features are often only implicit. As a result it is not clear what parts of 

the product line architecture are needed for a specific product.  

What is needed, is a way to manage the runtime variation points as first-class entities in the product line architec-

ture. Otherwise it may be hard to use, extend, and customize products that require rapid changeability. A general, 

generic architecture for managing runtime variation points, resolving all these issues mentioned above, can be hard 

to build. However, in the product line context, we can benefit from the domain knowledge. Thus our solution is to 

provide a domain-specific runtime variation point management solution for the product line. Of course, such tech-

niques can also be used in other contexts, such as object-oriented frameworks or component frameworks, for in-

stance. 

3 A Pattern Language for Building a Domain-specific Runtime Variation Point 

Management Language 

In this section, we present a pattern language for building, manipulating, and managing domain-specific runtime 

variation points. We use this pattern language in the case studies, presented in the following sections, as a conceptual 

foundation. 

A pattern is a proven solution to a problem in a context, resolving a set of forces. Each pattern is a three-part rule, 

which expresses a relation between a certain context, a problem, and a solution [1]. A pattern language is a collec-

tion of patterns that solve the prevalent problems in a particular domain and context, and, as a language of patterns, it 

especially focuses on the pattern relationships in this domain and context. As an element of a language, a pattern is 

an instruction, which can be used, over and over again, to resolve the given system of forces, wherever the context 

makes it relevant [1]. 
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Our pattern language uses some patterns that have been documented in the literature before, either as “isolated” 

patterns or in other pattern languages. In this pattern language we use these patterns specifically in the context of 

building, manipulating, and managing domain-specific runtime variation points. Thus we describe the patterns here 

in this particular context. The main contribution of this section is to describe these patterns in the context of variation 

point management and their integration is this context. 

Figure 1 shows an overview of our pattern language. In particular it consists of the following patterns: 

 

• A COMMAND [12] encapsulates an invocation to an object and provides a generic, abstract invocation interface. 

In the pattern language, COMMANDS are used as the basic mechanism to implement variation points. 

• A COMMAND PROCESSOR [5] allows for processing COMMANDS via an API-based interface and can provide add-

ons to processing, such as a COMMAND history. 

• A COMMAND LANGUAGE provides a symbolic (usually string-based) language that is mapped to COMMANDS. It 

can be seen as a sophisticated COMMAND PROCESSOR that embeds a COMMAND INTERPRETER. 

• An INTERPRETER [12] defines a representation for a grammar along with an interpretation mechanism to inter-

pret sentences in the language. In the pattern language, we use a COMMAND INTERPRETER that uses the symbolic 

instruction of the COMMAND LANGUAGE and interprets them as COMMANDS. 

• A MESSAGE REDIRECTOR [13] provides a generic invocation mechanism that allows one to integrate an (existing) 

object system in a COMMAND LANGUAGE. 

• A MESSAGE INTERCEPTOR provides an adaptation mechanism that can intercept message invocations and deco-

rate or modify them. A MESSAGE REDIRECTOR can trigger the interceptors. Various kinds of MESSAGE 

INTERCEPTORS have been documented as patterns (see [14], [25]). 

• A SERVICE ABSTRACTION LAYER [26] provides service abstractions as variations orthogonal to the COMMAND 

LANGUAGE. It can be used, for example, when clients operating in varying contexts should use COMMAND 

LANGUAGE elements. 
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Figure 1. Pattern language overview 

3.1 Command 

Context. A runtime variation needs to be implemented. 

Problem. A runtime variation point has to be dynamic. In an object-oriented system, runtime variation can be ex-

pressed by message invocations. But ordinary invocations are embedded in or scattered across the program text. 

How to provide dynamic invocations that can be managed centrally? 

Solution. Encapsulate an invocation to an object in another object, called a COMMAND [12]. Provide an abstract 

COMMAND class that offers an operation to execute the encapsulated invocation. Special COMMAND classes provide 

the different COMMAND variations. A variation point associates with the abstract COMMAND class, and clients invoke 

an “execute” operation. At runtime the executing COMMAND can be exchanged; this way runtime variation is pro-

vided. 

Note that COMMANDS often require parameters to fulfill sensible actions. These are typically given as an argument 

list of variable length, such as a string array. The COMMAND implementation is responsible for converting the pa-

rameters to the correct types. Thus not each COMMAND can be exchanged with any other COMMAND, but they have to 

be compatible in their parameters. If a COMMAND is called with the wrong parameters, a runtime error has to be 

raised.  
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Discussion. The COMMAND pattern is a simple and easy-to-build form of a pre-defined runtime variation mechanism. 

Particular COMMANDS can possibly be offered by a product line architecture. All classes that are derived from the 

abstract COMMAND class can be used in variation points; thus a management of the variants is possible. Note that 

there is no variation management at runtime and no management of the variation points (i.e. invocations of the 

COMMANDS), when only using COMMANDS. The invocations are still scattered across the code. The COMMAND classes 

can be seen as a very primitive language for runtime variations, with only an execution model for single COMMANDS. 

COMMANDS are used in the other patterns, presented below, to encapsulate single instructions. 

3.2 Command Processor  

Context. COMMANDS are used for runtime variation and management of variants.  

Problem. A COMMAND only provides an execution model for itself, but does not allow for more complex relation-

ships between COMMANDS, such as an order of execution or nested execution. These relationships have to be hard-

coded in the variation points. 

Solution. Let the client of a variation point associate with a COMMAND PROCESSOR [5]. It has the primary responsi-

bility to simply invoke its COMMANDS. The COMMAND PROCESSOR provides a simple form of runtime management of 

variations: it simply aggregates all accessible COMMANDS. It also maintains a stack of COMMANDS to be able to ac-

cess the COMMAND history. 

Discussion. A COMMAND PROCESSORS does not raise the expressiveness of the “language” offered by the 

COMMANDS. But it adds some management functionality; especially it maintains a list of all COMMAND objects at 

runtime. Also the stack of COMMANDS can be used to support slightly more complex variations, such as undo, redo, 

or macro recording functionalities. However, still there is no variation management at runtime and no management 

of the variation points supported. 

3.3 Command Language 

Context. COMMANDS are used for runtime variation and management of variants. 
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Problem. The COMMANDS provide a very simple kind of a language, but it is cumbersome and hard to read this lan-

guage, as every instruction requires an API call to the COMMAND objects. For instance in the following example, a 

condition is constructed, a COMMAND is configured with the condition and an action implemented in another 

COMMAND,  and then the COMMAND is executed:  

  

Condition c = constructCondition(“x > 1”); 

ifCommand.setCondition(c); 

ifCommand.setThenAction(doSomethingCommand); 

ifCommand.execute(); 

 

In addition to the code complexity of this example, there is another central problem: as these instructions are hard-

coded in the program code, in a compiled programming language such as Java or C++, it is not possible to exchange 

the whole COMMAND execution code presented above; only variations by exchanging the referenced COMMAND ob-

jects can be performed.  

Solution. Provide a (little) COMMAND LANGUAGE and a representation for its grammar. Also provide an INTERPRETER 

[12] for this language. It uses the language representation to interpret sentences in the language. For each language 

element, provide a class that performs the interpretation. The interpretation class invokes the respective COMMAND, 

and the COMMAND provides the implementation for the language element. Then the following script, for example, 

can be used instead of the cumbersome command instructions above: 

 

if {x > 1} {doSomething} 

 

Here, a COMMAND “if” is used that accepts a condition and a body as string arguments. The condition is evaluated 

on the fly. Only if the condition is true the body script is evaluated dynamically. In it, another COMMAND doSome-

thing is invoked.  

Such a script can be handed over to the INTERPRETER as a string; thus it is possible to dynamically evaluate it. It 

can also be changed and constructed at runtime. 
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Discussion. A COMMAND LANGUAGE combines COMMANDS with an interpretation mechanism for a (little) language, 

evaluated by an embedded INTERPRETER. The (little) language scripts can be maintained independently of the pro-

gram code containing the variation point; thus variation points can be managed separately. The scripts can also be 

changed and constructed at runtime allowing for dynamic variant point management at runtime. As each script has to 

be processed by the COMMAND LANGUAGE INTERPRETER, a (limited) runtime control of the variation points and 

variations is possible. 

3.4 Interpreter 

Context. A COMMAND LANGUAGE is used.  

Problem. For implementing a COMMAND LANGUAGE we need some mechanism for mapping a language syntax and 

grammar to the respective COMMANDS. Even though a COMMAND LANGUAGE can potentially have a very simple syn-

tax and grammar, there are some additional language constructs required, such as grouping of instructions in blocks 

and substitutions. These additional language constructs have to be executed before COMMAND execution can be per-

formed. 

Solution. Provide an INTERPRETER [12] for the COMMAND LANGUAGE. For instance, the INTERPRETER can define a 

class per grammar rule of the language. The INTERPRETER parses one instruction after another, according to the line 

end rules and the grouping (in instruction blocks) rules of the language. Then substitutions are performed. Note that 

there may be COMMAND substitutions. That is, COMMANDS that nest in an other COMMAND. Substitutions have to be 

interpreted recursively. After all substitutions are performed, the instruction is interpreted. Interpretation in a 

COMMAND LANGUAGE means to lookup the responsible COMMAND in the command table and invoke it with the given 

arguments. Consider the following example, in which the square brackets (“[…]”) are used for COMMAND substitu-

tion: 

 

set value [doSomething] 

doSomethingElse 
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Here, two instructions are interpreted one after another with the COMMANDS set and doSomethingElse. But be-

fore we can interpret the set COMMAND, we have to evaluate doSomething. The result of this evaluation is given 

as a second argument to the set COMMAND. In this example two interpretation rule classes of the INTERPRETER are 

used: EvalCommand and EvalBracketSubstitution. 

Discussion. An INTERPRETER requires a parser for the language. For COMMAND LANGUAGES this parser can be pretty 

simple, for instance, simply searching for line ends, groupings, and substitutions. Often, when implementing a 

COMMAND LANGUAGE, an existing interpreter (for example of a scripting language) can be reused with only slight 

modifications. Thus, writing a full-fledged INTERPRETER and parser is not always necessary. In an INTERPRETER 

implementation nesting structures in the language are typically modeled as COMPOSITES [12]. 

3.5 Message Redirector 

Context. A COMMAND LANGUAGE with an INTERPRETER is used for interpreting a (little) variation point management 

language. 

Problem. COMMANDS are a good means for implementing variations in a limited or well-defined scope. But consider 

writing a (little) language that should be able to access all classes in a product line, instantiate them, and invoke 

methods of the objects. Using COMMANDS as an invocation mechanism here is tedious, as one COMMAND per method 

of a class has to be written. Another problem of COMMANDS in this context is that – despite that they all perform the 

same task of invoking encapsulated code – they do not provide a central control mechanism for the variation points.   

Solution. Build a MESSAGE REDIRECTOR [13] as a central invocation mechanism. It is called with the symbolic invo-

cations that can be extracted by the INTERPRETER. The message itself is given as an argument to the MESSAGE 

REDIRECTOR’S dispatch operation. The MESSAGE REDIRECTOR maps the symbolic calls to actual implementation ob-

jects and methods. These can for instance be found via reflection or be registered by the application. After this map-

ping is performed, the redirector invokes the message implementation and returns the result.  

Discussion. A MESSAGE REDIRECTOR is a generic invocation mechanism that allows one to integrate an (existing) 

object system in a COMMAND LANGUAGE. In contrast, COMMANDS are specific invocation mechanisms. COMMANDS 

are more suitable when the INTERPRETER should be extended with new language elements. For automated wrapping 



 

12 

and generating new variation points at runtime, MESSAGE REDIRECTOR is the better solution. This is because – in 

contrast to COMMANDS – it can easily wrap a complex subsystem, provide adaptation mechanisms, such as MESSAGE 

INTERCEPTORS, and control the variation points under its control.  

In the context of a COMMAND LANGUAGE, MESSAGE REDIRECTORS are usually triggered by COMMANDS of the lan-

guage. That is, the elements of the language are built as COMMANDS. Those COMMANDS that represent variation 

points and/or should access classes of the product line are bound to the MESSAGE REDIRECTOR. These MESSAGE 

REDIRECTOR COMMANDS handle the class lookup, for instance via reflection, and method invocation. For each object 

or class that represents a variation point, a new COMMAND, bound to the MESSAGE REDIRECTOR, is created.  

3.6 Message Interceptor 

Context. A MESSAGE REDIRECTOR is used. 

Problem. A MESSAGE REDIRECTOR controls the message flow to all variant points, relevant for a specific problem. 

To implement rapid variations it is necessary in many situations to support tracing, modifying, or adapting of mes-

sage invocations. With COMMANDS and COMMAND bindings in a MESSAGE REDIRECTOR as the only variation mecha-

nisms, these tasks have to be hard-coded into the MESSAGE REDIRECTOR or all affected COMMANDS. This solution 

does not allow for dynamically composing message traces, modifications, or adaptations at run-time. Also the mes-

sage traces, modifications, or adaptations cannot be reused or refined. How to express message traces, modifications, 

or adaptations as first-class entities dynamically? 

Solution. Build a callback mechanism into the MESSAGE REDIRECTOR working for all messages that have to pass it. 

These callbacks invoke MESSAGE INTERCEPTORS for standardized events observable by the MESSAGE REDIRECTOR, 

such as “before” a method invocation, “after” a method invocation, or “instead-of” invoking a method. MESSAGE 

INTERCEPTORS can be dynamically composed with the invoked objects and operations. 

Discussion. The MESSAGE INTERCEPTORS are usually defined in the COMMAND LANGUAGE as a special kind of 

COMMAND, so that COMMAND LANGUAGE scripts can access them. The MESSAGE INTERCEPTOR usually requires some 

way to obtain the invocation context, such as the calling object, method, class, and current object ID, from the 

MESSAGE REDIRECTOR. 
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3.7 Service Abstraction Layer 

Context. Basic variations of the “services” offered by the software product line and its products are handled via 

COMMAND LANGUAGES and MESSAGE REDIRECTORS.  

Problem. The typical variation points when building the services of a product line can typically be well managed 

with COMMAND LANGUAGES and MESSAGE REDIRECTORS. Usually, in the context of a product line we concentrate on 

the inter-product variation, when designing variation points. Many product lines have to handle some orthogonal 

variations as well, especially when they are to be presented in the context of  “new media” platforms. That is, the 

same services have to be present to more than one channel, in more than one format, and/or with more than one 

presentation style. These are just examples; there are many other possible client-specific or request-context-

dependent variations. These issues should not interfere with the implementation of the services of the products or the 

product line.  

Solution. A SERVICE ABSTRACTION LAYER [26] is an extra layer to the business tier containing the logic to receive 

and delegate requests. The SERVICE ABSTRACTION LAYER abstracts over different service providers by implementing 

different channel adapters to support invocations using different protocols. 

Discussion. The SERVICE ABSTRACTION LAYER provides additional dimensions or aspects of variation to the same 

services, such as channel, presentation style, and formats. Each of these individual aspects can contain variations that 

are usually expressed by a COMMAND LANGUAGE as well. For instance a presentation style script contains 

COMMANDS to format a given content in a specific presentation style. 

A SERVICE ABSTRACTION LAYER may be implemented with a MESSAGE REDIRECTOR for indirecting symbolic calls 

to actual implementations of appropriate services, as well as channel, presentation style, and format implementations. 

The later aspects (channel, presentation style, and formats) are then typically handled by MESSAGE INTERCEPTORS 

that decorate and adapt the results of the service. 

4 Case Study 1: Adapting to the MHP Hardware Environment 

In this section we discuss the problem of domain-specific variation point handling in the context of adaptation to 

hardware environments for the Multimedia Home Platform (MHP). This case study was conducted within the EU 
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project “Technological Perspectives of the Multimedia Home Platform” (TPMHP), aiming at a product line architec-

ture for the MHP.  

The MHP specification [9] is a generic set of APIs for digital content broadcast applications, interaction via a re-

turn channel, and Internet access on an MHP terminal. Typical MHP terminals are for instance digital set-top boxes, 

integrated digital TV sets, and multimedia PCs. The MHP standard defines a client-side software layer for MHP 

terminal implementations, including the platform architecture, an embedded Java virtual machine implementation 

running DVB-J applications, broadcast channel protocols, interaction channel protocols, content formats, application 

management, security aspects, a graphics model, and a GUI framework. In this section, we focus on the basic vari-

ability concerns that MHP applications have to deal with on client side, resulting from the diversity of digital TV 

hardware  environments. 

4.1 Variety of MHP Set-Top Boxes, Supporting Systems, and the TV Environment 

Although there are just a few MHP set-top boxes on the market right now, a great diversity of products can be fore-

seen in this field. In addition, there will be a great number of supporting systems, in particular input devices. In addi-

tion to these components the whole variety of different TV systems, as traditionally to be found on the TV market, 

has to be addressed, when building MHP applications. Let us consider this diversity in detail: 

 

• MHP set-top boxes: Set-top boxes typically have more limited hardware resources than PC platforms, especially 

boxes at the entry level of the pricing range. In the field of television hardware there is typically also a market 

for more sophisticated boxes; that is, high-end MHP boxes with a PC-like hardware. These will support the 

broad range of MHP functionalities very early, whereas smaller boxes, such as cheap “zapping boxes” with low 

CPU speed, small graphical chips, little RAM memory, and no persistent storage, only implement (mandatory) 

parts of the specification. Since existing boxes in the TV market have to be supported for a long period of time, 

there has to be a broad variety of hardware platforms to be considered when writing interactive TV applications. 

The configuration of a box has to be taken into account as well, for instance availability of an optional flash 
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ROM or hard drives, or the particular type of modem. If a return channel can be accessed, we have to differenti-

ate between line modems with varying bandwidth support, cable modems, and satellite modems.  

• Input devices: The most important supporting device of a set-top box is the remote control. The minimum re-

mote control of an MHP terminal includes a standard set of four color keys, the number pad, and four arrow 

keys with an OK button. Keyboards are typical extensional input devices, either external or included inside of 

the remote control. Other input devices might be PDAs or mobile phones using the infrared interface. Also 

voice control, mouse input, joysticks, and laser pointers are discussed as potential input devices. Alternatives in 

this context are program-based text inputs with the remote control, as supported by cheap boxes as well. Thus, a 

variety of different hardware and possibly also software components have to be taken into account as possible 

input devices. 

• TV environment: The output device of an MHP application can be any Video and TV display. Different sizes, 

screen formats (4/3, 16/9), resolutions, and brightness degrees are just some parameters that have to be consid-

ered by an MHP application developer. 

 

The variability parameters in the hardware environment, characterised above, can be divided into two groups: 

 

• Basic Hardware Parameters: Some parameters have to be addressed by almost any MHP application, such as 

CPU speed and RAM size. Here, we propose the basic COMMAND pattern and exchange of the COMMAND sets of 

a COMMAND LANGUAGE as a solution. 

• Advanced Hardware Features: Other issues can optionally be addressed to support more advanced hardware 

environments. Variation in parameters of the second group can be handled using small scripts that dynamically 

download and lookup the required hardware support classes. The scripts then access these Java classes with a 

MESSAGE REDIRECTOR. This has a slight performance impact, but allows for more flexibility and a higher com-

plexity of parameterization. Many parameterizations can be expected to be recurring; thus these scripts are also 

implemented via the COMMAND LANGUAGE used for basic hardware parameters. 

 

4.2 Availability of Environment Information 
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To determine a proper application configuration for the given hardware, as described above, it is necessary for the 

MHP application to obtain the runtime information about the environment and its parameters into which it is broad-

casted. The MHP API only includes a few ways for retrieving environment information, and only if supported by the 

set-top box manufacturer. For example, the method System.getManufacturer() returns the hardware manufac-

turer of the set-top box and its version. The class HrcCapabilities describes basic remote control capabilities of 

the box, but does not check whether the actually used remote control supports them. Some more data might be ob-

tained without user interference. For instance, we can check for the memory size using garbage collection or use 

runtime performance measurements. But many relevant parameters cannot be checked automatically, and thus these 

have to be specified by the user at least once. It depends on the individual hardware components of a set-top box 

how such information can be retrieved by an application: 

 

• Flash ROM: If supported, it is possible to store some environment information in the flash ROM, even so the 

MHP specification intends to use this storage only for user-specific data, called “user preferences.” Concerning 

the small size of typical flash ROMs it is not possible to store much information here. 

• Persistent storage: Extended information can be stored on a hard drive. Saving standardized configuration files 

would enable different applications to get environment information without having to ask the user over and over 

again.  

• Background application: A small application running in the background can be used to dynamically offer envi-

ronment information. This is useful if none of the devices mentioned above is integrated in a box and/or the in-

formation offered by this application have to be centrally interpreted. The major problem of this solution is the 

permanent usage of memory and performance resources. 

• Return channel: The information can be retrieved from a remote server using the return channel of a set-top 

box. As this is a rather slow way of access, it should only be used if the methods mentioned before cannot be 

used. 

 

The techniques mentioned above can be used for storing information of any kind, such as technical parameters, user 

preferences, or customization information. In general, the user inputs of hardware information should be avoided, if 



 

17 

possible, and system resources should be saved. Note that how system information is accessed and stored by a 

broadcasted application needs runtime variation itself. 

4.3 Runtime Variation Approaches for Hardware Selection in an MHP Application 

In this section we describe the use of the patterns for runtime variation, discussed in Section 3, with regard to the 

problems of interactive TV hardware environments, as introduced in the previous section. Here, we face the follow-

ing forces: 

 

• The decision for the proper hardware configuration cannot be made before the application is broadcasted to the 

set-top box and started on the box. Thus runtime variability is required.  

• Variation points that are handling issues like performance, storage size, or other basic parameters of a set-top 

box should be as small and performant as possible because MHP applications always have to use them, what-

ever the performance of the box is they are running on.  

• Runtime flexibility, after the hardware configuration selection is made once, may be required, but this will occur 

rather seldom, for instance, if the used input devices changes. 

• The hardware environment information is required for different products (i.e. MHP applications) derived from 

the MHP product line. Once collected, the hardware environment information should be reusable for all prod-

ucts downloaded onto a set-top box. Especially repetitious user inputs should be avoided.   

• The solution should not require the aspect “hardware configuration” to be scattered across the code: for in-

stance, conditionals, such as if statements for each selection in the code, are not a reusable and changeable so-

lution and should thus be avoided. The hardware configuration should be cleanly encapsulated, for instance in a 

separate component of the product line. 

4.3.1 Building a Command Language for Accessing the Basic Hardware Structures 

COMMANDS are a good basic solution for accessing the basic hardware structures, providing fast access without the 

need of further performance-consuming interpretation or dispatch steps. The basic idea of our solution is to provide a 

small language based on COMMANDS for accessing the basic MHP components that are dependent on the MHP hard-
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hardware environment. When the application is downloaded and started on the set-top box, it performs the hardware 

configuration selection, downloads the proper COMMAND set, and binds these commands to the application. We use 

the INTERPRETER and COMMAND LANGUAGE patterns to select a proper COMMAND set. Obviously, this decision can-

not be made before runtime – that is, not before the broadcast. Thus runtime variability is required.  

The basic MHP components that are dependent on the MHP hardware environment are: 

 

• Input device: Different input devices offer various input events. How to react on these events depends on the 

hardware used. Thus generic getInputDeviceEvent and a setInputDeviceEvent COMMANDS are created 

with specializations for specific devices, such as getKeyEvent, getDirectionEvent (for example raised by 

joystick movement or a pressed arrow button), or a getCharEvent created by either a hardware keyboard or a 

virtual keyboard shown on the TV. 

• Graphical Objects: Graphical elements in the MHP API include a few basic Java functions and elements of the 

HAVI standard [15]. HAVI (home audio video interoperability) is a standard specification for digital au-

dio/video appliances, mostly providing lightweight GUI objects like buttons, lists, etc. Unfortunately, at the 

moment different set-top boxes interpret HAVI elements slightly different, so it depends on the type of set-top 

box if HAVI should be used or graphical elements have to be painted using the fundamental graphic functions 

of Java. Thus COMMANDS for each graphical object are needed: A button for example is a COMMAND. It has 

various (aggregated) sub-COMMANDS, e.g. for paintButton, setBorder, setColor,  setText, setImage 

etc. The sub-COMMANDS can be invoked on every individual button COMMAND. Just replacing these COMMANDS 

at runtime can change also the style of an application. For instance, we can use simple graphical objects on 

small set-top boxes, and extended ones on medium-sized and high-end platforms. 

• Styles Design: To configure a design fitting to the actually used TV screen and the capabilities of the set-top 

box, COMMANDS for combinations of size, outer appearance, and color of graphical elements are needed. Fur-

thermore the style of texts, fonts, line breaks, and alignment have to be constructed on runtime. 

• Communication: Different return channels can be identified at runtime and may in some situations be handled 

differently. Thus COMMANDS for sendData and receiveData are introduced. These provide, for instance, 

blocking communication on faster return channels and unblocking communication for slower ones. This way 
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users of fast channels can be sure that the communication has been successful before going on. Users of slow 

connections get the acknowledgement later but can go on using the application instantly. 

 

Let us consider the classes for a few buttons as an example: 

 

Class GraphicsButton { 

  ... 

  setVisible() {...} 

  paint() {...} // paint button with Java graphics instructions 

} 

Class HAVIButtonCmd implements Command { 

  HtextButton button; 

  static final private String validOptions[] = { 

    “setVisible”, 

    ... 

  } 

  static final private int SET_VISIBLE = 0; 

  ... 

  public void execute(String[] arguments) { 

    ... 

    int subcmd = getIndex(arguments[1], validOptions); 

    switch (subcmd) { 

      ... 

      case SET_VISIBLE: { 

        button.setVisible(); //invoke the HAVI HTextButton 

      } 

    } 

  ... 
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} 

Class GraphicsButtonCmd implements Command { 

  GraphicsButton button;  

  ... 

  execute() { 

    // map graphics button operations to sub-commands in the same way 

    // as for the HAVI button 

  } 

}  

 

In this code we have introduced a new self-made button, as well as two button COMMANDS, both offering the same 

COMMAND interface. One COMMAND is using the HAVI button; one is using the self-made graphics button. To enable 

a developer to use these COMMANDS, they have to be instantiated. For the GUI COMMANDS we create a FACTORY [12] 

COMMAND that allows developers to create new COMMANDS of the respective GUI types with the FACTORY’S cre-

ate sub-COMMAND: 

 

Class HAVIGUIFactoryCmd implements Command { 

  ... 

  public void execute(String[] arguments) { 

    ... 

    int subcmd = getIndex(arguments[1], validOptions); 

    switch (subcmd) { 

      case CREATE: { 

        ... 

        int type = getIndex(arguments[2], validOptionsCreate); 

        switch (type) { 

          case BUTTON: { 

            ... 
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            String cmdID = getArgument(arguments[3]); 

            HAVIButtonCmd button = new HAVIButtonCmd(cmdID); 

            ... 

          } 

        ... 

      } 

  ... 

} 

Class GraphicsGUIFactoryCmd { 

  // create Graphics GUI elements in the same way as in the  

  // HAVI GUI factory 

  ... 

} 

 

Now we have different choices to select for the button type in an application. The most simple one is to use an if 

statement at every point where a GUI COMMAND is executed. Because of the danger of code scattering, this tech-

nique can only be used for a small number of variation points. The handling of fundamental environmental parame-

ters should be done at a higher level. An additional advantage of a higher-level variation point handling and deploy-

ment is the lower amount of class files that have to be downloaded onto a set-top box, if dynamic class loading is 

implemented. Of course, we can still address COMMANDS using simple conditions. For instance, a complex 

COMMAND can be built using the GUI FACTORIES. Note again that this style of selection should only be used to build 

complex COMMANDS, for instance, to avoid performance bottlenecks. The typical selection of hardware functional-

ities should be performed with one of the approaches discussed in the next sections. 

4.3.2 Integration of MHP-specific Commands in a Command Language 

Using COMMANDS for encapsulating variation points solely, as in the previous section, still implies the problem that 

there is no central management of the runtime variation points. With an INTERPRETER that is configured dynamically, 

it is possible that different COMMANDS can be bound to language elements of a COMMAND LANGUAGE in a simple, yet 
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flexible way. The variation points, encapsulated in COMMANDS, can be centrally managed with the COMMAND table 

of the language. Dynamic lookup with a MESSAGE REDIRECTOR is not used for basic hardware selection to avoid its 

performance overhead. Thus all COMMANDS depending on basic hardware environment parameters are directly 

bound to language elements. 

This approach offers a solution for a central reaction to varying environmental parameters of MHP boxes, directly 

after the application is started on the set-top box. Environmental changes at runtime, such as changes of input device 

or getting more performance by stopping a parallel application, can be handled this way as well, simply by providing 

a dynamic re-configuration of the COMMAND mapping. As the interpretation step is a simple mapping of string to 

COMMAND, this solution is quite efficient, and can even be used on smaller boxes. However, for performance bottle-

necks, it is always possible to define COMMANDS that perform the selection directly using if statements, as men-

tioned above. 

In the following example, COMMANDS are dynamically bound to an INTERPRETER of a COMMAND LANGUAGE. The 

selection of these COMMANDS is based on the detected selection conditions described before, as for instance perform-

ance, RAM size, TV size, box type, input device, kind of back channel, etc.: 

 

if (tvsize() > 15 && preferences.getPerformance() < 80) { 

  interpreter.createCommand(“GUIFactory”, GraphicsGUIFactoryCmd); 

  ... 

} else { 

  interpreter.createCommand(“GUIFactory”, HAVIGUIFactoryCmd); 

  ... 

} 

if (inputDeviceSupported(JOYSTICK)) {   

  interpreter.createCommand(“getDirectionEvent”, JoystickEventHandlerCmd); 

} else { 

  interpreter.createCommand(“getDirectionEvent”, KeyboardEventHandlerCmd); 

} 

... 
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At first the INTERPRETER has to detect what kind of TV screen is used. This can be specified in a configuration file, 

for instance. By combining this result with performance parameters of the box a decision is made how the GUI wid-

gets are presented, meaning which respective FACTORY COMMAND class is bound to the COMMAND LANGUAGE in-

struction GUIFactory. Then, as a second example, the direction input event of the user is bound to the detected 

input device. These COMMANDS implement the respective sub-COMMANDS and handle the argument parsing. For 

instance, a script for creating and showing two buttons, named “OK” and “CANCEL” may look as follows: 

 

GUIFactory create Button OK 

GUIFactory create Button CANCEL 

CANCEL setVisible 

OK setVisible 

 

Note that we use a Tcl-style syntax in our COMMAND LANGUAGE, as its INTERPRETER reuses some classes of the Tcl-

Java [8] implementation for evaluation, substitution, blocking, and other basic INTERPRETER tasks. COMMAND 

LANGUAGE scripts, such as the example above, can be passed to the INTERPRETER of the COMMAND LANGUAGE. In 

this example, it invokes the previously bound FACTORY COMMAND two times. This creates two new COMMANDS both 

bound to the respective button COMMAND class. The method setVisible is then invoked for these two COMMANDS. 

The code size of these scripts is much smaller than coding everything by hand. Thus we can provide little scripts 

through the broadcast channel or return channel. Thus, initially only the COMMANDS and COMMAND LANGUAGE 

classes are loaded. Thereafter environment parameters are detected and script(s) fitting to these are loaded and exe-

cuted. This way it is possible to insert a lot of little scripts into the limited space of the broadcast channel (the so-

called DSM-CC object carousel [9]) producing different kinds of application logic without the need of hard-coding 

these variations. This avoids the effect of overloading applications with scattered decision structures (see Figure 2). 
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Figure 2. Download of scripts for runtime interpretation 

4.3.3 Using a Message Redirector in the Broadcasting Environment 

In the context of our pattern language, the MESSAGE REDIRECTOR pattern can be seen as an extension of the program 

designs described above, adding new or changing functionality of an application at runtime. It can be used to inte-

grate scripts and existing Java classes. It does so without having us to write a new COMMAND wrapper class for each 

Java class that should be integrated. In the context of hardware selection, it is only desirable to write COMMAND sets 

for the most commonly used elements, as the ones in the examples above. For less commonly used elements of an 

MHP platform we need more flexibility, however, a slight performance impact is not as problematic, as less com-

monly used hardware elements can typically be found on more advanced set-top boxes.  

Consider, we have dynamically loaded a Java class for keyboard support onto a set-top box and want to access it 

from a script. As part of our product line, we register a MESSAGE REDIRECTOR as a COMMAND of the INTERPRETER. It 

is able to access Java classes by reflection using a method new. As first argument this method accepts the name of a 

Java class. This Java class is looked up and, if found, registered in the MESSAGE REDIRECTOR. As a second argument 

new expects the name of a COMMAND which is dynamically created. This name is also used as an identifier for the 

newly created object, and it is stored in the MESSAGE REDIRECTOR’S object id/object mapping table. Thereafter, 

methods can be called for this COMMAND, which are redirected to the Java class by the MESSAGE REDIRECTOR. This 

design is depicted in Figure 3. 
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Figure 3. A message redirector for accessing Java objects via reflection 

 
Consider the following simple example script: 

 

JavaObject new KeyboardHandler keyboardHandler1 

while {[keyboardHandler1 getNextEvent]} { 

  ... 

}  

 

First the COMMAND JavaObject is called to create a new Java wrapper object. The method new looks up the class 

given as first argument (KeyboardHandler) and instantiates it. An instance of JavaObject is created with the 

object ID and COMMAND name given as second argument (keyboardHandler1). The mapping of object ID to the 

instantiated object is stored in the MESSAGE REDIRECTOR’S “registered objects” table. When the new COMMAND key-

boardHandler1 is invoked, it forwards the invocation to the MESSAGE REDIRECTOR. The MESSAGE REDIRECTOR 

looks up the method given as first argument for the respective Java class. If it is found, it is invoked on the wrapped 

Java object. This way we are able to flexibly add Java classes at runtime in MHP applications. Note that the applica-

tions need not to be specially prepared for this addition. In other words, we can deal with unexpected hardware de-

vices simply by downloading the classes for device handler and the respective scripts. 
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5 Case Study 2: Branding and Customization for the MHP 

In this section, we consider a second case study in the context of our MHP project, introduced already in the previ-

ous section. Within the project, we considered the situation of a large retail chain (the “company”) with multiple 

different stores serving as a content provider for the MHP. The company wants to offer multiple slightly different 

shops realized on top of new media platforms, including the MHP. Each shop application can be seen as a product 

derived from a common “new media shop” product line. Apart from the variation in shops there are other, orthogo-

nal variation requirements, as all shops should be presented as web shops, MHP-based interactive television shops, 

and possibly also as m-commerce shops, for instance, based on the Multimedia Messaging Service (MMS). Develop-

ing and maintaining a new interface for each of these portals of each shop is undesirable. Here different runtime 

variability requirements have to be handled: 

 

• Branding: It is important that each individual shop has its own unique brand identity, including logos, layouts, 

banners, colors, etc. This uniqueness cannot simply be reached by providing always the same document layout 

for all shops. It is more about a complex combination of all components giving the customer an experience of  

“recognition.”  The styling mechanisms of the MHP product line should not be too obvious, giving each service 

the freedom to develop its own style to a certain degree. So branding requires a unique coding of layout, design, 

and even behavior of control elements and navigation means.  

• User Personalization: Users should be able to personalize “their” application to a certain degree using simple 

interfaces. It should be possible to transfer the personalized behavior to all other services of a product derived 

from the MHP product line. In MHP user information can be sent from the client to a server using the return 

channel. This server could act like a central point where all customization information is stored. Another ap-

proach is to store personalization information in the persistent storage of the client, so that every application can 

use these parameters to configure itself at runtime. 

 

Once in place, the customization solutions for branding and user personalization should be largely performed at a 

level of end-user customizability. Content editors should perform changes without Java programming, and users 
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should be able to customize their application from the user interface. Customizability requirements often impose ad 

hoc changeability as well; that is, a change, for instance performed by a content editor or user, should be directly 

applicable at runtime. In the web context, it is important that the server has not to be stopped for introducing simplis-

tic changes: usually applications should run 24x7 hours a week. Different platforms, such as the web, mobile de-

vices, digital TV sets, etc., may impose orthogonal stylistic customization requirements for the content. For instance, 

on mobile devices and on the television screen the information is usually presented in a much more condensed way 

than on the Internet. The user interaction schemes vary as well. That is, on the TV set the user interfaces should be 

simple, say, to be usable with a remote control. Moreover, specifics of the channel used to transport the content mat-

ter as well: the web usually presents a generated page within a few seconds, whereas providing information for TV 

broadcast channel takes a substantially longer period of time, as it requires building the DSM-CC object carousel 

and multiplexing on the broadcast channel. 

The basic server architecture of our solution is a SERVICE ABSTRACTION LAYER, as shown in Figure 4. The archi-

tecture abstracts different channels including MHP terminals, mobile phones, and web browsers. Each of the cus-

tomizable applications is realized by one or more services of this layer. The SERVICE ABSTRACTION LAYER is respon-

sible for selecting which service has to be mapped to which channel (DSM-CC, HTTP, MMS) in which format 

(DVB-J classes and scripts, HTML, MMS) and with which shop layout (according to branding and personalization). 
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Figure 4. A service abstraction layer for the server side of the MHP product line 
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In this architecture, the recurring fragments of shop business logic services, as well as styles, formatting instruc-

tions, and channel specifics, should be cleanly separated as aspects and composable as required by the current re-

quest reaching the SERVICE ABSTRACTION LAYER. 

Pages to be displayed on various devices are represented by classes that build up COMMAND scripts for these 

pages. In Figure 5 there are some Document class examples for shop interaction. Thus the product line provides a 

domain-specific COMMAND language for building the business logic of the shop services. Each of these Document 

classes provides Java methods and emits COMMAND scripts for the business logic of shop interaction services. 

Format, channel, and layout aspects are separated from the Document classes. These aspects are handled in sepa-

rate classes that implement a MESSAGE INTERCEPTOR interface.  

When the COMMAND LANGUAGE’S INTERPRETER evaluates COMMAND scripts, a MESSAGE REDIRECTOR maps the 

COMMANDS to Java classes, in the same way as in Case Study 1. Thus the MESSAGE REDIRECTOR is used to compose 

the elements of the server side application. 

The orthogonal aspects channel, layout, and format are introduced as MESSAGE INTERCEPTORS. These are regis-

tered with the MESSAGE REDIRECTOR. Before or after the invocation of a Document object, the MESSAGE REDIRECTOR 

invokes the MESSAGE INTERCEPTORS registered for that object. These adapt the computation performed for a 

COMMAND so that format, channel, and layout specifics are added dynamically. 

On server side for web pages and MMS pages this adaptation is necessary, as the concrete combination of aspects 

and the page have to be dynamically build and composed depending on the actual request. On the MHP platform, the 

layout aspects have to be added and the page creation business logic rules should be the same. Thus the same busi-

ness logic scripts and classes are delivered to the MHP client side, as used on server side. Note that these COMMAND 

LANGUAGE script and Document classes can stay the same, regardless whether it is executed to build some business 

logic on an MHP client or for a dynamically generated web page in a web server. By exchanging the binding of 

COMMANDS in the MESSAGE REDIRECTOR, as well as the MESSAGE INTERCEPTOR registration, on the MHP client a 

GUI representation of the business logic is created. 

The MESSAGE INTERCEPTORS compose the aspects, cutting across the glue code of different components, to one 

computational entity, in particular: shop layout, content format, and channel-specifics (see Figure 5).  
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Figure 5. Document classes are composed by message interceptors with the orthogonal  aspects format, channel, 

and layout 

 

Note that very often such an architecture on server side also requires advanced fragments and caching mecha-

nisms to support highly efficient dynamic page creation. Refer to [27] for a pattern language dealing with these is-

sues.  

Customizability is provided in the COMMANDS LANGUAGE. Thus content editors only have to learn and use the 

COMMANDS LANGUAGE primitives, instead of a full-fledged programming language. COMMAND LANGUAGE scripts 
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can be used on client side (e.g. an MHP terminal) and on the server side (e.g. as part of a web application server’s 

mechanisms to build dynamic pages). Thus it is possible to use the same user personalization on client and server 

side. Moreover, COMMANDS LANGUAGE scripts also define a standard format how to deliver client side user personal-

ization to the server via the return channel. On server side, the pages’ application logic and these components are 

composed before a content page is generated. Thus a thin client suite is supported, which is important, as weaker set-

top boxes should be supported and broadcast bandwidth is limited. 

6 Case Study 3: Configuration and Customization of a Document Archiving System 

In [14] we present a larger reengineering case study of a document archive system. A document archive system al-

lows users to archive a large number of documents on several sorts of storage devices. The primary devices used in 

the application area are optical storage devices, but other media types are also used, such as hard drives or networked 

storage devices. Users can retrieve archived documents with different text-, web-, and GUI-based clients. At the time 

of the reengineering effort, the system was implemented in C. These clients need to be customizable for different 

customer requirements. The client through several search criteria delimits searches. Such information is stored in an 

associated database for each record archived by the system.  

The document archive system has a generic product line architecture that can be directly instantiated. But in the 

area of document archiving it is usual to derive specialized products for the customer, what includes new develop-

ments as well as sophisticated configuration and customization tasks for the server side of the document archive 

system. For instance, often some recurring archive tasks of the customer should be automated, such as archiving 

some directories every 24 hours or providing a customized scanning routine for physical documents. The system also 

has to be adapted to specifics of the customer’s infrastructure and the archived documents. 

In the original system implementation, for such tasks, a small language extension of the korn shell was intro-

duced. It was able to embed applications as plug-ins into the system. These shell scripts essentially have called a 

binary that executes in a forked process. To raise expressiveness of these plug-ins, a set of new key words was added 

to the korn shell together with a small parser/compiler. In particular, plug-in initialization, execution, and termina-

tion was supported by the following primitives: 
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• head - Comments, version labels, actions before plug-in execution. 

• var - Global Variables. 

• func - Callable Functions. 

• begin - Plug-in initialization. 

• loop - Looping body of the plug-in execution. 

• end - Termination of the plug-in. 

 

Here, a little language was implemented for plug-in execution. But there were some problems with this solution 

leading to the reengineering effort: 

 

• Language maintenance: What seemed in first place a small effort of implementation and maintenance has 

evolved over the time into a complex language.  

• Language extension: Since the underlying korn shell language is not designed for language extension, it was 

rather difficult to add quite simple additions, requiring writing new C and korn shell code. 

• Understanding: There is no integration of the scripts and there is a rather obfuscated syntax, both limiting un-

derstandability. 

• Language integration: The language was integrated with the current system release, but there was no concept to 

integrate with other systems or planned future system releases of the system (written in Java). 

• No runtime variation: The solution was neither dynamic nor introspective at runtime. Thus it was hard to add ad 

hoc changes and “play” with the system, when deploying it to a new customer. 

 

In summary, all these issues have made it hard to quickly derive a custom product and/or deploy and customize the 

system to a new customer. 

Our proposed solution resides on the pattern language presented. Instead of using the korn shell, we use a 

COMMAND LANGUAGE implementing the same primitives, as discussed above, as COMMANDS. These COMMANDS are 

themselves implemented as part of the document archive system. They are aggregated by a customization and con-
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figuration component, provided by the document archive system’s generic architecture, which can be loaded into the 

script INTERPRETER of the COMMAND LANGUAGE as a standard language extension. The elements of the document 

archive system to be customized are also provided as COMMANDS. These are accessed with a MESSAGE REDIRECTOR 

that handles dynamic lookup of these elements. 

When deriving an individual product from the generic architecture, the customization and configuration can be 

done in little scripts written in the COMMAND LANGUAGE. These scripts load the customization and configuration 

component and use its COMMANDS to customize and configure the elements of the document archive system at run-

time.  
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Figure 6. Configuration and customization in document archive products 

 

Figure 6 shows that the document archive system’s generic architecture defines the framework for configuration 

and customization. Especially, an INTERPRETER is defined with a COMMAND LANGUAGE. The COMMAND LANGUAGE 

consists of COMMANDS that wrap functions of the document archive system. Other COMMANDS register events with 
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the event system, such as timer events. There is a pre-defined set of standard configuration scripts. Concrete prod-

ucts can simply refine or replace these scripts. They can also define new user-specific code. If this code should be 

configured as well, a wrapper COMMAND for the domain class has to be implemented. The products then can be con-

figured using instances of these domain classes.    

In summary, the customization and configuration component is derived from the product line architecture and can 

easily be extended with new primitives using new COMMANDS and object-oriented abstractions, such as inheritance. 

Language maintenance of the COMMAND LANGUAGE is part-of the ordinary maintenance activities of the document 

archive system’s implementation. Thus integration with it is not an issue anymore. Direct access to the elements of 

the document archive system by dynamic lookup and script composition at runtime allow for more rapidly deriving 

new products, instead of changing the C code for every installation. Only when new elements of the document ar-

chive system should be configured we have to add some code for building COMMAND wrappers for these elements. 

As COMMAND wrappers only have to convert string arguments and forward an invocation, they can be built quite 

quickly, what can even be automated using a wrapper generator. 

7 Related Work 

Different approaches tackle the design of software architectures in the context of product lines (see for instance [4], 

[7], [16], [2]) focusing on design and implementation. Variability as a basic issue in this context became more and 

more an apparent need, in parallel with an increasing interest for software product lines in general. 

Variability concerns in software architectures can be seen from different points of view, resulting from different 

phases of the software development process. A taxonomy of variability realization techniques is given in [24], de-

scribing determining factors of what kind of variability should be introduced at which time and in which context, 

giving various case studies. Here configuration management and design patterns are identified as important tech-

niques for realizing variability. Several patterns are introduced and compared like “runtime component specializa-

tion,” showing how several implementations can use the same interface is described, or “condition on variable,” 

deciding what variant to use depending on a value determined by a condition during runtime. 
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There are various approaches [22], [17], [10] describing how variability can be managed in product lines during 

all these lifecycle activities. The approaches are mainly introducing notation techniques based on features that define 

abstractions from the concrete requirements. In contrast, our approach focuses on variability mechanisms of systems 

that should be configured (either automatically or by user interaction) to be fitting to a given environment or sup-

porting evolutionary tasks. In [11] the features, realized by Mozilla, and the underlying variation techniques are 

discussed as a case study, including the used runtime variation techniques. Mozilla uses some techniques that are 

similarly used in our approach, namely dynamic binding, scripting, and domain-specific languages. Our work pro-

poses an integration of these and other runtime variation techniques by the patterns in our pattern language, and to 

instantiate this variation concept from the product line architecture. 

The COMMANDS in our work were often used as wrappers for existing classes. Wrappers are mechanisms for in-

troducing new behavior to be executed before, after, in, and/or around an existing method or component. Wrapping 

is especially used as a technique for encapsulating legacy components [23]. In the document archive system case 

study, our approach was primarily used as a high level wrapping technique to access the underlying system from the 

configuration scripts. 

In [21] adaptive plug & play components are proposed. These define cross-cutting behavioral fragments for dif-

ferent components that can be parameterized. Although the technical realization is different to our approach, a simi-

lar goal of flexible composition of given components is pursued. 

Domain-specific languages (DSL) are an approach to resolve the problems related to domain-specific aspects. 

They are small, usually declarative languages. In general they are particularly expressible in a certain problem do-

main. A typical example of a domain-specific language is MHEG-5 [20]. MHEG-5 is a language for declaring mul-

timedia and hypermedia objects for building scenes within an application. Domain-specific languages are often cre-

ated in the context of domain engineering projects focused on achieving reuse and reliability in particular problem 

domains. In the MHEG-5 example, the DSL is also used for the domain of broadcasting application content for set-

top boxes. Domain-specific languages have been used in various domains, and aim at higher productivity, reliability, 

and flexibility. Although domain-specific languages are an attractive alternative, often mainstream languages are 

preferred due to the wealth of available libraries. Also some domain-specific languages have problems with portabil-

ity and long-term support, since they tend to be research projects. Several domain-specific languages have problems 
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regarding integration with other domain-specific languages. In our work, we have also provided a kind of domain-

specific language for a specific product line architecture, but by tight integration with the base language we have 

tried to avoid these typical problems of traditional domain-specific languages.  

Aspect-oriented programming (AOP)  [18] copes with tangled code fragments which logically belong to one sin-

gle module (a “concern”) but cannot be modularized because of limited composition mechanisms of the underlying 

programming language. Modularization of crosscutting concerns or tangled code is achieved in most aspect lan-

guages, such as AspectJ [19], by statically weaving aspects to a program. In the context of the second case study we 

have faced a similar concern with the aspects channel, layout, and format of a page. However, here we needed run-

time composition of these aspects. We have provided MESSAGE INTERCEPTORS within a COMMAND LANGUAGE as an 

alternative solution to static AOP. This can be seen as a hand-crafted form of dynamic aspect composition.  

To a certain extent, the use of COMMANDS and COMMAND LANGUAGES in our work can also be seen as an aspect-

oriented technique, resembling so-called “introductions” in AspectJ. Introductions are a means to add structures, 

such as methods, to existing classes.  COMMAND LANGUAGE script elements can be seen as a similar structural behav-

ior extension of the classes they wrap. The realization technique, however, is completely different: AspectJ introduc-

tions are statically added by the aspect weaver (a kind of compiler), whereas COMMAND LANGUAGE scripts are dy-

namically composed and interpreted. 

8 Conclusion 

The contributions of this paper are a pattern language for building runtime variation points with COMMANDS and a 

COMMAND LANGUAGE, as well as three industrial case studies that we have conducted using the concepts of this pat-

tern language. 

Our goal was to show a runtime variation approach based on the combination of these pattern. Most of these pat-

terns are explained in more detailed elsewhere, including [12] (COMMAND and INTERPRETER), [5] (COMMAND  

PROCESSOR), [13] (MESSAGE REDIRECTOR), and [26] (SERVICE ABSTRACTION LAYER). Our pattern language’s contrib-

utes is a pattern description that focuses primarily on the context of managing variation points. As a pattern lan-

guage, our description primarily highlights the pattern relationships in this particular context.  
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For applying the pattern language some central place is required, where the variation point handling architecture 

is provided. For this reason, the pattern language can well be applied in the product line context, where the common 

product line code servers as such as central place. Also for building a COMMAND LANGUAGE for variation point han-

dling, it is important to operate in a limited domain, as it is hard to build a generic COMMAND LANGUAGE, working 

well for all possible variation requirements. This domain-focus is also provided by the product line approach. How-

ever, of course, the pattern language can also be used within an object-oriented framework or a component frame-

work. 

The three cases we have presented are operating in the product line context. Here, we have explored in how far 

the pattern language can be applied to some quite different contexts, where runtime variability is required. It turns 

out that the different patterns are well capable to resolve the forces in these three cases. We believe this is due to the 

use of patterns as a conceptual foundation. In particular, the presented patterns are successful solution in the runtime 

variability context. The inherent variability in the pattern format also contributes as a way to convey successful soft-

ware solution to new contexts. Finally, the contextual integration of the patterns by the pattern language helps to 

conceptually integrate a variety of solutions in a context, despite all variations in the problem fields and application 

areas. 

There are, however, also some potential drawbacks. Implementing a substantial part of the pattern language is a 

considerable work. In our work, we are reusing parts of existing Tcl-Java implementations [8] to minimize this im-

plementation effort. If this is not possible for some reason, the approach might be too much an implementation effort 

for small projects. Also, the proposed techniques should carefully be used in cases where runtime variability is not 

required, as these techniques imply a performance overhead. In cases where runtime decisions are necessary, the 

techniques proposed can be implemented very efficiently with only a slight or no overhead compared to other dy-

namic solution, such as delegation. In cases where a completely static technique can be applied as well, usually dy-

namic techniques perform not as well, especially if they involve a dynamic lookup or reflection. In such cases, it has 

to be decided whether the additional flexibility provided by a dynamic solution is really needed. Note that our pat-

tern language has a solution for problems that are implemented as dynamic variation points, but then turn out to be 

better handled statically: as we rely on a two-level language concept of base language and COMMAND LANGUAGE, 
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any variation point written in the COMMAND LANGUAGE can simply be moved into a base language implementation. 

This implementation is then bound to a COMMAND and thus it is still accessible from the COMMAND LANGUAGE. 
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