
View-based and Model-driven Approach for Reducing the
Development Complexity in Process-Driven SOA

Huy Tran and Uwe Zdun and Schahram Dustdar
Distributed Systems Group

Information System Institute
Vienna University of Technology, Austria

{htran|zdun|dustdar}@infosys.tuwien.ac.at

Abstract: In process-driven, service-oriented architectures (SOA), process activities
invoke services to perform the various tasks of the process. As the number of ele-
ments involved in a business process architecture, such as processes, process activi-
ties, and services, grows, the complexity of process development also increases along
with the number of the elements’ relationships, interactions, and data exchanges – and
quickly becomes hardly manageable. In addition, process-driven SOA models address
different stakeholders, such as business experts and technical experts, who require
different kinds of information for their work. Finally, process-driven SOA models
must deal with constant changes – both at the business level (e.g. business concept
changes) and the technical level (e.g. technologies and platform changes). Separation
of concerns is a promising approach to manage such development complexity. In this
paper, we propose a view-based, model-driven approach with three major contribu-
tions: firstly, it captures different perspectives of a business process model in separate,
(semi-)formalized views; secondly, it separates different abstraction levels in a busi-
ness process architecture; thirdly, an extensible model-driven approach to integrate
the different view models and abstraction levels is presented. Our approach is benefi-
cial not only in reducing the process development complexity, but also in coping with
dynamic changes at all abstraction levels.

1 Introduction

Service-oriented computing is an emerging paradigm that made an important shift from
traditional tightly coupled, hard-to-adapt software development to more platform neutral,
loosely coupled software development. The interoperable and platform independent nature
of services supports a novel approach to business process development by using processes,
running in a process engine, to invoke existing services from their process activities (aka
process tasks, steps). We call this kind of architecture process-driven, service-oriented ar-
chitecture [HZ06]. In this approach, a typical business process consists of many activities,
the control flow, and the process data. Each activity is correspondent to a communication
task (e.g., invoking other services, processes, or an interaction with a human), or a data
processing task. The control flow describes how these activities are ordered and coordi-
nated to achieve the business goals. Being well considered in both research and industry,

this approach has led to a number of standardization efforts, such as BPEL4WS [IBM03],
XPDL [WfM05], BPMN [OMG06], and WS-CDL [W3C05].

As the number of services or processes involved in a business process grows, the com-
plexity of developing and maintaining the business processes also increases along with the
number of invocations and data exchanges. It is error-prone and time consuming for de-
velopers to work with large business processes that implement numerous concerns. This
problem occurs because business process descriptions integrate various concerns of the
process, such as the process control flow, the data dependencies, the service invocations,
etc. In addition, this problem also occurs at different abstraction levels [HZ06]. For in-
stance, the business process is relevant for different stakeholders: Business experts require
a high-level business-oriented understanding of the various process elements (e.g., the re-
lations of processes and activities to business goals and organization units), whereas the
technical experts require the technical details (e.g., deployment information or communi-
cation protocol details for service invocations).

In addition to this complexity, business experts and technical experts alike have to deal
with a constant need for change. On the one hand, process-driven SOA aims at supporting
business agility. That is, the process models should enable a quicker reaction on business
changes in the IT by manipulating business process models instead of code. On the other
hand, the technical infrastructure (technologies, platforms, etc.) constantly evolves.

One of the successful approaches to manage complexity is separation of con-
cerns [GJM91]. Process-driven SOAs use a specific realization of this principle,
modularization [GJM91]: Services expose standard interfaces to processes and hide
unnecessary details for using or reusing. This helps in reducing the complexity of
process-driven SOA models, but from the modelers’ point of view this is often not enough
to cope with the complexity challenges explained above, because modularization only
exhibits a single perspective of the system focusing on its (de-)composition. Other – more
problem-oriented – perspectives, such as a business-oriented perspective or a technical
perspective (used as an example above), are not exhibited to the modeler. In the field
of software architecture, architectural views have been proposed as a solution to this
problem. An architectural view is a representation of a system from the perspective of
a related set of concerns [IEE00]. The architectural view concept offers a separation of
concerns that has the potential to resolve the complexity challenges in process-driven
SOAs, because it offers more tailored perspectives on a system, but it has not yet been
exploited in process modeling languages or tools.

Inspired by the concept of architectural views, we suggest a view-based approach to mod-
eling of process-driven SOAs. Namely, perspectives on business process models and ser-
vice interactions – as the most important concerns in process-driven SOA – are used as
central views in our approach. The approach is extensible with all kinds of other views. In
particular, our approach offers separated views, in which each of them represents a certain
part of the processes and services, such as the collaboration view, the information view, the
orchestration view, etc. These views can be viewed separately to get a better understand-
ing of a specific concern, or they can be integrated to produce a richer view or a thorough
view of the processes and services.

Technically, our concepts are realized using the model-driven software development
(MDSD) paradigm [VS06]1. We have chosen this approach to integrate the various view
models into one model, and to automatically generate platform-specific or executable
code in WSDL, BPEL, or Java. MDSD is also used to separate these platform-specific
views from the platform-neutral views and the integrated views, so that business experts
do not have to deal with platform-specific details. The code generation process is driven
by model transformations from view models or integrated models into executable code.

The paper is organized as follows. We first provide an overview of the proposed modeling
framework and some basic concepts in Section 2. Then, Section 3 gives deeper insight
into the modeling framework, followed by a discussion of the extension-, integration-,
and transformation-mechanisms. In Section 4, a simple case study, namely, a Shopping
process, is used to illustrate the realization of the modeling framework concepts. Our
related work is discussed in Section 5. Finally, we summarize the main points of the
paper, and broaden the research with some outlooks.

2 Overview of the modeling framework

In this section, we briefly introduce our view-based modeling framework. The framework
consists of modeling elements such as a meta-meta-model, meta-models, and views (see
Figure 1(a)). As mentioned in the previous section, a view is a representation of a process
from the perspective of related concerns. In our framework, a view is specified using an ad-
equate framework’s meta-model. Each meta-model is a (semi-)formalized representation
of a particular business process concern. Therefore, the meta-model specifies entities and
their relationships that can appear in the correspondent view. The meta-models, in turn,
are defined on top of the meta-meta-model. Figure 2(a) shows the relevant excerpt of the
meta-meta-model of the Eclipse Modeling Framework [Ecl06a] (i.e., Ecore meta-model)
that we used to define our meta-models.

In our approach we categorize distinct activities – in which the modeling elements are
manipulated (see Figure 1(b)):

• Design is used to define new architectural views.

• Extend is used to create a new meta-model by adding more features to an existing
meta-model, or by developing it from scratch (e.g., to add a new formalization of a
certain business process concern to the framework).

• Integrate is used to combine views to produce a richer view or a thorough view of a
business process.

• Transform is used to generate executable code from one or many architectural views.

Before generating outputs, Transform and Integrate validate the input views against
relevant meta-models. Extend and Integrate are the most important activities used to

1Please note that the OMG’s MDA proposal is one specific MDSD approach.

Orchestration View

meta-model

Collaboration View

meta-model

Information View

meta-model

NewConcern

meta-model

Meta-

meta-model

Core

meta-model

Extension

meta-model

Executable

Code

Extension

View
View

M2

M0

M1

M3

(a) Modeling elements

Framework
Meta-models

Architectural
Views

Executable
Code

Transform

Design

Extend

Integrate

(b) Framework overview

Figure 1: View-based model-driven framework

broaden our view-based model-driven framework toward various dimensions. Existing
meta-models can be enhanced using the extension mechanisms provided in Section 3.5,
or can be combined using the meta-model-level integration mechanisms provided in
Section 3.6.

3 View-based modeling framework

A business process often contains various concerns that require support of modeling ap-
proaches. In this paper we firstly concentrate on modeling of the basic concerns of a
business process, namely, orchestration, information, and collaboration (see Figure 1(a)).
However, our view-based modeling framework is not only bound to the above-mentioned
concerns but also open and extensible to allow other concerns such as transactions, event
handling, security, quality of service, etc., to be plugged in using the same approach. In
the next sections, we present in detail (semi-)formalized representations of the process’s
concerns summarized above in terms of relevant meta-models along with the discussion
of extensibility mechanisms, namely, extension and integration.

3.1 The Core meta-model

To enhance the extensibility, we devise a basic meta-model, namely, the Core meta-model
as a foundation for the other meta-models (see Figure 2(b)). Each of the other meta-models

EStructuralFeature

ENamedElement

-name : String

EModelElement

ETypeElement

EObject

EClassifier

EReference

EClass

EDataType

EAttribute

eReferencedType 1 eReferences

0..*

eType

0..1

eAttributes

0..*

eOpposite 0..1

eAttributeType

1

eSuperTypes

0..*

(a) Meta-meta-model excerpt

NamedElement

-name : String

ElementView

ProcessService

process
1

consumer

*

required

*

provider

*

provided

*

element

*owner

service *

element*

process*

(b) The core meta-model

Figure 2: Meta-meta-model and the Core meta-model

is defined by extending the Core meta-model. Therefore, the meta-models are independent
of each other. The Core meta-model is the place where the relationships among the meta-
models are maintained. Accordingly, the relationships in the Core meta-model are needed
for both view- and meta-model-level integrations as described in Section 3.6.

The Core meta-model consists of a number of abstract meta-classes such as View, Process,
Service, and Element. These entities are cornerstones of our modeling framework. Each of
them can be extended further. At the heart of the Core meta-model is the View meta-class
that captures the central view concept. Each specific view (i.e. each instance of the View
meta-class) represents a perspective on one Process. It consists of a number of Services
representing the external functions the business process provides or requires, and a number
of Elements representing the objects that appear inside the process. Because the meta-
models represent concerns of a business process, they are mostly derived from the core
meta-model, and the Service and Element meta-classes are the most important extension
points. Moreover, the hierarchical structures in which those meta-classes are roots can be
used to define the integration points used to combine meta-models (see Section 3.6).

3.2 Orchestration view meta-model

Orchestration is one of the most important concerns of a SOA process. An orchestration
view comprises many activities and control structures. The activities are process tasks such
as service invocations, or data handling, while control structures describe the execution
order of the activities to achieve a certain goal. Each orchestration view is specified based
on the orchestration view meta-model.

Activity

StructuredActivity

Case

-condition : String

SimpleActivity

SequenceFlow

Switch

Element

(core)

activity
1

case

elements
1..*

owner

cases

1..*

switch

otherwise
0..1

owner

Figure 3: Orchestration view meta-model

There are several approaches to modeling process’s orchestration such as state-charts,
block structures [IBM03], activity diagrams [OMG04], Petri-nets [vdADO00], and so
on. Despite of this diversity in control flow modeling, it is well accepted that existing
modeling languages share five basic patterns: sequence, parallel split, synchronization,
exclusive choice, and simple merge [vdAtHKB03, WvdADtH02, vdADtHW02]. Thus, we
adopted these patterns as the building blocks of our orchestration meta-model. Other,
more advanced patterns can be added later by using extension mechanisms discussed in
Section 3.5 to augment the orchestration model.

The control structures of BPEL [IBM03], such as sequence, flow, and switch, are more
or less equivalent to the aforementioned patterns. The issue here is that the semantics of
BPEL’s structures is not as clear and precise as the semantics of the patterns. Therefore,
instead of re-inventing a new orchestration meta-model we built our meta-model on the
basic BPEL control structures, and define their semantics more strictly (see Table 1).

The primary entity of the orchestration meta-model is the Activity meta-class (see Figure 3)
which is the base class for other meta-classes such as Sequence, Flow, and Switch. An-
other important entity in the orchestration meta-model is the SimpleActivity meta-class that
represents a concrete action such as a service invocation, a data processing task, etc. The
actual description of each SimpleActivity is modeled in another specific view. For instance,
a service invocation is described in a collaboration view, while a data processing action is
specified in an information view. Each SimpleActivity is a placeholder or a reference to
another activity, i.e., an interaction, or a data processing task. Therefore, every SimpleAc-
tivity becomes an integration point to combine an orchestration view with an information
view, or with a collaboration view (see integration mechanisms in Section 3.6).

Structure Description
Sequence An activity is only enabled after the completion of another activity

in the same sequence structure. The sequence structure is therefore
equivalent to the semantics of the Sequence pattern.

Flow All activities of a flow structure are executed in parallel. The subse-
quent activity of the flow structure is only enabled after the comple-
tion of all activities in the flow structure. The semantics of the flow
structure is equivalent to a control block starting with the Parallel
Split pattern and ending by the Synchronization pattern.

Switch Only one of many alternative paths of control inside a switch struc-
ture is enabled according to a condition value. After the active path
finished, the process continues with the subsequent activity of the
switch structure. The semantics of the switch structure is equiva-
lent to a control block starting with the Exclusive Choice pattern and
ending by the Simple Merge pattern.

Table 1: Semantic of control structures

3.3 Collaboration view meta-model

A business process is often developed by composing the functionality provided by various
parties such as services or other processes. Other partners, in turn, might use the process.
All business functions required or provided by the process are exposed in terms of standard
interfaces (e.g., WSDL portTypes). We captured these concepts in the Core meta-model
by the relationships between the two elements Process and Service. The collaboration
view meta-model extends the Core meta-model to represent the interactions between the
business process and its partners.

In the collaboration view meta-model, the Service meta-class from the Core meta-model is
extended by a tailored Service meta-class that exposes a number of Interfaces. Each Inter-
face provides some Operations. An Operation represents an action that might need some
inputs and produces some outputs via correspondent Channels. The details of each data
element are not defined in the collaboration view but in the information view. Therefore,
a Channel holds a reference to a Message entity. Each Message becomes an integration
point, that can be used to combine a specific collaboration view with an information view
(see Section 3.6).

The ability and the responsibility of an interaction partner are modeled by the Role meta-
class. Every partner – who provides the relevant interface associated with a particular role
– can play that role. An interaction between the process and any partner is represented by
the Interaction meta-class that associates with a specific Role of that partner.

Interaction

Interface

Operation

Service

(core)

Role

Service

Message

Element

(core)

Channel

Element

(core)

role
*

associatedInterface

1

message

1

channel *

in

*
out

*

operation1..* interaction *

role 1

service *

interface 1..*

Figure 4: Collaboration view meta-model

3.4 Information view meta-model

The third basic concern we considered in modeling a business process is information.
This concern is (semi-)formalized by the information view meta-model (see Figure 5).
This meta-model involves the representation of data object flows inside the process, and
message objects traveling back and forth between the process and the external world.

In the information view meta-model, the BusinessObject meta-class, which has the type
ObjectType, is the abstraction of any piece of information, for instance, a purchase or-
der received from the customer, or a request sent to a banking service to verify the cus-
tomer’s credit card, etc. Each piece of information might be a SimpleBusinessObject, or
a ComplexBusinessObject that consists of a number of BusinessObjects. We define the
BusinessObjectPool meta-class as a generic container for a number of BusinessObjects.

Messages exchanged between the process and its partners, or data flowing inside the pro-
cess might go through some Transformations that convert or extract existing data to form
new pieces of data. The transformations are performed inside a DataHandling object. The
source or the target of a transformation is an ObjectReference entity that holds a reference
to a certain BusinessObject.

3.5 Extension mechanisms

The aforementioned meta-models are the cornerstones to create architectural views like
orchestration-, collaboration-, and information-views. Our framework is not limited to
these concerns but it allows other concerns to be plugged in via extension points. An ex-
tension point is any entity that can add additional features (e.g., attributes or relations)
to construct a new entity. Using relationships, such as generalization, extend, etc., we

ComplexBusinessObjectSimpleBusinessObject

BusinessObjectPool

ObjectReference

ObjectType

BusinessObject

DataHandling

Transformation

Element

(core)

Types

object *

pool

object

1reference

* element

1..*

owner

target

1

source

1

types

*

transformation 1..*

owner type 1

Figure 5: Information view meta-model

can gradually refine an existing meta-model toward another meta-model at a lower ab-
straction level. For instance, the orchestration view, collaboration view, and information
view meta-models are mostly extensions of the Core meta-model using the generaliza-
tion relation. We also demonstrate the extensibility of the collaboration view meta-model
by an enhanced meta-model, namely, the BPELCollaboration extension (see Figure 6).
Similar BPEL specific view extensions have also been developed for the information and
orchestration view (omitted here for space reasons). In the same way, more specific meta-
models for other technologies can be derived. In addition, any other business process
concern, such as transactions, event handling, and so on, can be (semi-)formalized by a
new meta-model derived from the common meta-meta-model using the same approach as
used above.

3.6 Integration mechanisms

In our approach, the orchestration view – as the most important concern in process-driven
SOA – is often used as the central view. Views can be integrated via integration points to
provide a richer view or a thorough view of the business process (see Algorithm 1).

Definition 1 Let M1, M2 be two meta-models (i.e., derived from the Core meta-model). If
the entities m1 ∈ M1 and m2 ∈ M2 extend the same entity of the Core meta-model, m1

and m2 are conformable.

Definition 2 Given M1, M2 are two meta-models and V1, V2 are two views conforming to
M1 and M2, respectively. An integration point between V1 and V2 is a tuple I(v1, v2|v1 ∈
V1, v2 ∈ V2, v1 = instanceOf(m1), v2 = instanceOf(m2)), and m1 and m2 are
conformable, such that V1 can be merged with V2 – at the position of v2 into that of v1.

AbstractInteraction

Receive

-createInstance

Interaction

(collaboration)

Operation

(collaboration)

Invoke Reply

Variable

variable

0..1

operation1

interaction

*

variable

0..1

in
0..1

out 0..1

Figure 6: An extension of the collaboration view

Algorithm 1: View integration algorithm
Input: View V1, view V2

begin
foreach Entity v1 ∈ V1 do

v2 = GetIntegrationPoint(v1, V2);
if (v2 != NULL) then

v1.add(v2.eAttributes);
v1.add(v2.eReferences);

end
end

end

The GetIntegrationPoint function receives as input an entity v1 ∈ V1 and a view V2. It
looks for v2 ∈ V2 such that (v1,v2) is an integration point between V1 and V2. This func-
tion can be implemented based on named-based matching, class hierarchical structures, or
ontology-based structures. The named-based matching mechanism might be effectively
used at the view level (or model level) because from a modeler’s point of view, it makes
sense and is reasonable to give the same name to the modeling entities which pose the
same functionality and semantics. To demonstrate the view integration idea, we present
a simple implementation of the name-based matching mechanism (Algorithm 2) for the
GetIntegrationPoint function.

To create an integrated view – as the result of view integration – a correspondent meta-
model of the view has to be defined first. That meta-model is also used later to validate or
transform the integrated view into code. Therefore, an adequate integration at the meta-
level is needed for any view integration or integrated view transformation. We can use
the same approach as used for view integration. However, at the meta-model level, name-

Algorithm 2: Named-matching algorithm
Input: Entity v1 ∈ V1, view V2

Output: Entity v2 ∈ V2 or NULL
begin

Found = FALSE;
while NOT Found do

v2 = getNextEntity(V2);
if v2.name == v1.name then Found = TRUE

end
if Found then return v2 else return NULL

end

based matching is not sufficient. The reason is that the relationships between meta-classes
are mostly hierarchical, and the meta-classes that have the same name might not be con-
formable. Therefore, class hierarchical structures are used at the meta-level to define the
integration points in our framework. We proposed the meta-level integration mechanism
using the class hierarchical relationship to define the meta-level integration points.

Definition 3 Given M1, M2 are two meta-models based on a common meta-meta-model.
A tuple MI(m1,m2|m1 ∈ M1,m2 ∈ M2) is a meta-level integration point iff m1 and
m2 are instances of the same entity of the meta-meta-model and M1 can be integrated
with M2 by merging the model structure at the position of m2 into that of m1.

3.7 Model transformations

There are two basic types of model transformations: model-to-model and model-to-code.
A model-to-model transformation maps a model conforming to a given meta-model to
another kind of model conforming to another meta-model. Model-to-code, so-called code
generation, produces executable code from a certain model.

In our framework, the model transformations are mostly model-to-code that take as input
one or many views and generate codes in executable languages, for instance, Java, BPEL,
WSDL, etc. In the literature there are numerous code generation techniques such as tem-
plates+filtering, template+meta-model, inline generation, code weaving, etc. [VS06]. In
our prototype, we used the template+meta-model technique – which is realized in the ope-
nArchitectureWare framework (oAW) [ope02] to implement the model transformations.
But any of above-mentioned techniques can be utilized in our framework with reasonable
modifications.

Figure 7: The shopping case study

4 Case study

To demonstrate the realization of the aforementioned concepts, we explain a simple but re-
alistic case study, namely, a Shopping process (see Figure 7). The BPEL syntax is adopted
to model the Shopping process, and the graphical notations are borrowed from the Eclipse
BPEL Designer environment [Ecl06b].

In the next paragraphs, we present an illustrative case study by the following steps. Firstly,
architectural views of the Shopping process are designed based-on our meta-models and
the sample extension for BPEL constructs, given in Figure 6. Secondly, some views are
integrated to produce a richer perspective. And finally, these views are used to generate
executable code in BPEL4WS [IBM03] and WSDL [W3C01] that can be deployed into
any BPEL engine.

Figure 8: Shopping process orchestration view

4.1 The Shopping process

The Shopping process is initiated when the process’s customer issues a purchase order.
The purchase order is retrieved via the ReceiveOrder activity. The process then invokes
the Banking service to validate the credit card information through the VerifyCreditCard
activity. The Banking service only needs some necessary information such as the owner’s
name, owner’s address, card number, and expiry date. The process performs a preparation
step PrepareVerify that extracts these information from the purchase order. The prepara-
tion step is executed before an interaction on the process takes place in order to arrange
the needed input data for the interaction. The control after validating the customer’s credit
card is divided into two branches according to the validation results. In case a negative
confirmation is issued from the Bank service, e.g., because the credit card is invalid, the
customer will receive an order cancellation response along with an explaining message.
Otherwise, the positive confirmation will trigger the second control branch in which the
process continues with two concurrent activities, DoShipping and DoCharging. DoShip-
ping gets shipping information from the purchase order and delivers ordered products to
the customer, while DoCharging sends a request to the Banking service for the credit
card’s payment. Finally, the purchase invoice is prepared and sent back to the customer
during the last step, SendInvoice. After that, the Shopping process successfully finishes.

4.2 View development

Figure 8 shows the orchestration model of the Shopping Process. There are no details of
data exchanges or service communication in this view. Hence, this view can be used at the
business level to capture the business expert knowledge. Because the orchestration view
meta-model is based on the BPEL control model excerpt, the structure of the Shopping’s
orchestration view is quite similar to that in Figure 7.

Moreover, using the extension meta-models (e.g., see Figure 6) we can develop much
richer views for a particular concern. In Figure 9, there are two models side by side in
which one is the abstract information model (see Figure 9(a)) and another one is a view
based on the BPELCollaboration meta-model (see Figure 9(b)).

4.3 View integration

The views also can be integrated to produce new richer views of the Shopping process. In
Figure 10, the collaboration view of the Shopping process (see Figure 9(a)) is integrated
with the orchestration view (see Figure 8). The most important integration points are de-
fined by SimpleActivity in the orchestration view with relevant Interaction entities in the
collaboration view. The output view consists of the control structures based on the orches-
tration view with other collaboration-related entities such as Role, InteractiveServices, etc.

4.4 Code generation

After modeling the Shopping process, we developed illustrative template-based transfor-
mations to generate executable code for the process in BPEL, and a service description in
WSDL that represents the provided functions in terms of service interfaces. The model-
ing framework’s models and Shopping process’s models are Ecore models. We used the
oAW’s Xpand language [ope02] to define our model transformations. Figure 11 shows
a transformation snippet in oAW’s Xpand language [ope02] that generates BPEL activi-
ties such as Invoke, Receive, etc. using the extension view in Figure 9(b). The resulting
executable code in BPEL and WSDL are successfully deployed on the ActiveBPEL en-
gine [Act06] as a running illustrative example for the realization of our concepts.

5 Related work

Our work is closely related to existing process modeling languages. There are several stan-
dardization efforts for process modeling languages, such as BPEL4WS [IBM03], BPMN
[OMG06], XPDL [WfM05], WSCI [W3C02], WS-CDL [W3C05], and so on. They can
be categorized into different dimensions, for instance, textual and graphical languages, or

(a) Shopping collaboration view (b) Extension view using BPELCollaboration

Figure 9: View and extension view of Shopping process

abstract and executable languages, and so on. The abstract modeling languages (e.g., ab-
stract BPEL, or WSCI/WS-CDL) are working at the same abstraction level as our abstract
models (i.e., orchestration, information, or collaboration models) while the executable lan-

Figure 10: Integration of orchestration and collaboration views

guage are more or less similar to our refined models. The aforementioned modeling lan-
guages consider the business process model as a whole. They do not support the separation
of the process model’s concerns. Moreover, there is no explicit relationship between an
abstract and an executable modeling language. So it requires additional effort to maintain
the integrity and consistency of the models, or to validate models [MH05, ODtHvdA06].
All these modeling languages can be integrated into our approach using extension models.

To the best of our knowledge, there is only a few view-based approaches to business
process modeling. The most related work in this area is the approach by Mendling et
al. [MS06] inspired by the idea of schema integration in database design. Process mod-
els based on Event-driven Process Chains (EPCs) are investigated, and the pre-defined
semantic relationships between model elements such as equivalent, sequence, and merge
operations are performed to integrate two distinct views. Semantics-based merging is a
promising approach to model integration, but it is difficult to apply to integrate two dif-

Figure 11: Code generation for SimpleActivity entities

ferent types of models, for instance, to merge a control model with a data model. Thus,
the authors mainly focus on integrating process models without any data element or any
collaboration.

The Amfibia [AKR05,KAR06] approach focuses on formalizing different aspects of busi-
ness process modeling, and/or develop an open framework to integrate various modeling
formalisms through the interface concept. Akin to our approach, Amfibia has the main
idea of providing a modeling framework that does not depend on a particular existing for-
malism or methodology. The major contribution in Amfibia is to exploit dynamic interac-
tion of those aspects. Like our approach, Amfibia’s framework also has a core model with
a small number of important elements, which are referred to, or refined in other models.
The distinct point to our framework is that in Amfibia the interaction of different ‘aspects’
is only performed by event synchronization at run-time when the workflow management
system executes the process. Using extension and integration mechanisms in our frame-
work, the integrity and consistency between models can be verified earlier at the model
level.

The ISO Reference Model for Open Distributed Processing (RM-ODP) [ISO98] is a stan-
dardized reference model, which defines a set of different view points such as enterprise,
information, computational, engineering, and technology viewpoints. Each viewpoints has

its own language and clear semantics. The consistency among viewpoints is ensured by
the common architecture and the common object model. These concepts, similar to those
in Amfibia and our approach, are defined based on the principle of separation of concerns
to help stake-holders thinking from different perspectives in order to manage complexity
of distributed applications. The advantage of our approach compared to these approaches
is that our view-based model-driven framework does not only separate process model con-
cerns but also separate process model into different levels of abstraction, for instance,
business level, and technical level.

Our work also shares some concepts with the approach described in [vdABvH+06]. van
der Aalst et al. develop a conceptual SOA-based architecture framework around the idea
of modularization. The key concept in [vdABvH+06] is the component that is more or
less equivalent to our process concept, and the relationships between components. The
authors emphasize the separation of activities from data elements, but do not mention
the capability of extending or integrating other concerns that could be part of a business
process.

Skogan et al. [SGS04] offer another approach for process-based modeling in UML. A tool-
chain is devised to extract and formalize WSDL descriptions using UML models. Service
compositions are captured by UML activity diagrams with special stereotypes. Finally,
code in executable languages is generated from a composition model. The authors neither
consider separation of concerns in service composition nor integration of other concerns
except service interfaces and the control flow.

Schmidt et al. [SD05] proposes an interesting approach to web service transaction mod-
eling. Even though the approach is only considering one concern of a business process
model, the paper also mentions the separation of views into layers and maintaining ref-
erences between various layers. Our work has not yet focused on other concerns, such
as transactions, security, etc., but our model-driven framework in general can be extended
into these dimension using the approach presented in this paper. Consequently, the transac-
tion model in [SD05] can be seen as a complement to our work to develop the meta-model
for the transaction concerns of the business process.

6 Summary and outlook

Existing modeling approaches lack sufficient support to manage the complexity of de-
veloping large business processes with many different concerns because most of them
consider the process model as a whole. In this paper, we introduced a view-based frame-
work that (semi-)formally defines various concerns of the process model and uses those
(semi-)formalized models to capture a particular perspective of the business process. It
not only helps to manage the development complexity by the separation of the processes’
concerns, but also to cope with both business and technical changes using the separation
of abstraction levels.

This study also raises a number of research questions which are only answered by further
work. The modeling framework should be extended with other concerns of the business

process such as transactions, security, event handling, etc. In addition, the view integration
algorithms can be enhanced by the validation of possible constraint conflicts between var-
ious integration points. Finally, an ontology-based structure might be richer and be better
suited to improve the integration at the meta-level than the class hierarchical structure.

References

[Act06] Active Endpoints. ActiveBPEL Open Source Engine 2.x. http://www.active-
endpoints.com/, 2006.

[AKR05] Björn Axenath, Ekkart Kindler, and Vladimir Rubin. An Open and Formalism
Independent Meta-Model for Business Processes. In Proceedings of the Workshop
on Business Process Reference Models, pages 45–59, 2005.

[Ecl06a] Eclipse. Eclipse Modeling Framework. http://www.eclipse.org/emf/, 2006.

[Ecl06b] Eclipse. WS-BPEL Project 0.2.0. http://www.eclipse.org/bpel/, 2006.

[GJM91] Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of Software
Engineering. Prentice Hall, 1991.

[HZ06] Carsten Hentrich and Uwe Zdun. Patterns for Process-Oriented Integration in
Service-Oriented Architectures. In Proceedings of 11th European Conference on
Pattern Languages of Programs (EuroPLoP 2006), Irsee, Germany, July 2006.

[IBM03] IBM, BEA Systems, Microsoft, SAP AG, Siebel Systems. Busi-
ness Process Execution Language for Web Services (BPEL4WS).
ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf, 05 2003.

[IEE00] IEEE. Recommended Practice for Architectural Description of Software Intensive
Systems. Technical Report IEEE-std-1471-2000, IEEE, 2000.

[ISO98] ISO. Open Distributed Processing Reference Model (IS 10746).
http://isotc.iso.org/livelink/livelink/fetch/2000/2489/Ittf Home/PubliclyAvailable
Standards.htm, 1998.

[KAR06] Ekkart Kindler, Björn Axenath, and Vladimir Rubin. AMFIBIA: A Meta-Model
for the Integration of Business Process Modelling Aspects. In The Role of Business
Processes in Service Oriented Architectures, number 06291 in Dagstuhl Seminar
Proceedings, 2006.

[MH05] Jan Mendling and Michael Hafner. From Inter-organizational Workflows to Process
Execution: Generating BPEL from WS-CDL. In OTM Workshops, pages 506–515,
2005.

[MS06] Jan Mendling and Carlo Simon. Business Process Design by View Integration. In
Business Process Management Workshops, volume 4103 of LNCS, pages 55–64.
Springer, 2006.

[ODtHvdA06] Chun Ouyang, Marlon Dumas, Arthur H. M. ter Hofstede, and Wil M. P. van der
Aalst. From BPMN Process Models to BPEL Web Services. In ICWS, pages 285–
292, 2006.

[OMG04] OMG. Unified Modelling Language 2.0 (UML). http://www.uml.org, 2004.

[OMG06] OMG. Business Process Modeling Notation (BPMN).
http://www.bpmn.org/Documents/OMG-02-01.pdf, 02 2006.

[ope02] openArchitectureWare.org. openArchitectureWare project.
http://www.openarchitectureware.org, 08 2002.

[SD05] Benjamin A. Schmit and Schahram Dustdar. Model-driven Development of Web
Service Transactions. International Journal Enterprise Modelling and Information
Systems Architectures, 1(1):46–, 10 2005.

[SGS04] David Skogan, Roy Grønmo, and Ida Solheim. Web Service Composition in UML.
In Enterprise Distributed Object Computing Conference, 2004, pages 47–57, 2004.

[vdABvH+06] Wil van der Aalst, Michael Beisiegel, Kees van Hee, Dieter König, and Christian
Stahl. A SOA-Based Architecture Framework. In The Role of Business Processes
in Service Oriented Architectures, number 06291 in Dagstuhl Seminar Proceedings,
2006.

[vdADO00] Wil van der Aalst, Jőrg Desel, and Andreas Oberweis, editors. Business Process
Management: Models, Techniques, and Empirical Studies - Lecture Notes in Com-
puter Science, volume 1806. Springer-Verlag, 2000.

[vdADtHW02] Wil M.P. van der Aalst, Marlon Dumas, Arthur H.M. ter Hofstede, and Petia Wohed.
Pattern Based Analysis of BPMN (and WSCI). Technical report, FIT-TR-2002-04,
Queensland University of Technology, Brisbane, 2002.

[vdAtHKB03] Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, Bartek Kiepuszewski, and
Alistair P. Barros. Workflow Patterns. Distributed and Parallel Databases, 14(1):5–
51, 2003.

[VS06] Markus Völter and Thomas Stahl. Model-Driven Software Development: Technol-
ogy, Engineering, Management. Wiley, 2006.

[W3C01] W3C. Web Services Description Language (WSDL) 1.1.
http://www.w3.org/TR/wsdl, 03 2001.

[W3C02] W3C. Web Service Choreography Interface (WSCI). http://www.w3.org/TR/wsci,
08 2002.

[W3C05] W3C. Web Services Choreography Description Language (WSCI).
http://www.w3.org/TR/ws-cdl-10, 11 2005.

[WfM05] WfMC. XML Process Definition Language (XPDL).
http://www.wfmc.org/standards/XPDL.htm, 10 2005.

[WvdADtH02] Petia Wohed, Wil M.P. van der Aalst, Marlon Dumas, and Arthur H.M. ter Hof-
stede. Pattern Based Analysis of BPEL4WS. Technical report, FIT-TR-2002-04,
Queensland University of Technology, Brisbane, 2002.

