Using Structure and Dependency Tracing Patterns for Aspect Composition

Uwe Zdun
New Media Lab, Department of Information Systems
Vienna University of Economics and BA, Austria
zdun@acm.org

Abstract pects that can be separated in an (object-oriented) language
construct (e.g. a class-like structure like an AspectJ aspect) and

. . . . are executed for certain events in the method call flow. How-
Aspects avoid tangled solutions for cross-cutting design CON-ayer, this kind of aspects is just one possible interpretation of

corns However thee are veriousfeasons hy it B¢ i ferm “aspect in the ealm of softare engincerig. De:
ers are faced with cross-cutting design concerns. For instance sign disciplines know other interpretations, and there is no rea-

O hyo T . ~7'son to believe that other interpretations are less relevant for
certain limitations of specific aspect composition (or weaving) the software engineering discip?line. For instance, March sees

riechansis ray hinder the e of aspecs o e Use 12 kspect onentation as a way 10 menweaue the aspecis design
y P proj q ’ programming, and use of software [14]. For example, in the

as used language, performance, or memory limitations, devel'context of reengineering it is often important to be able to sep-
opers are not able to use an aspect language. In such cases

developers would benefit from better understanding current as—arxai‘;%ns U(X]O?Begﬁ ?Jraeétsrarc;]t;hehrgl frct)om ;})é'ﬁitt'ggtjgﬁrci eC Og_e'
pect composition mechanisms to customize existing technique 9 guag y Nep y sep

or implement (simple) aspect extensions from scratch. For te some parts of these aspects, but such aspects can hardly

e completely untangled. There are many other situations in
these purposes, we present a pattern Ianguage for structure an hich egtens)i/onal asgpects are not providixg a complete solu-
dependency tracing, and then explain different, existing aspect;

implementations as sequences throuah this pattern lanquage. O™ consider a situation in which an aspect should be added
P q 9 P guage. permanently to a system, as in many reengineering projects.

Solving this problem with an extensional aspect is not an ar-
chitecturally stable and clean solution, but program transfor-

1 Introduction mation is required.

))))) Besides these requirements for conceptual additions to cur-
This paper addresses possible implementation techniques fofent AOSD concepts, there are also practical problems with
composing (or weaving) aspects. Different composition mech-given implementations that are recurring in many projects.
anisms and techniques for aspect-oriented software developgyen though AOSD environments exist for many programming
ment (AOSD) [11] are distinct but yet comparable. The dis- |anguages, there are still many language without AOSD sup-
tinctive properties in the design of the AOSD implementations port. If the computation environment is limited, as in embed-
can be largely explained using a pattern language for tracingded systems, it can be problematic to use current AOSD sys-
software structures and dependenCIeS [24] The patterns in th|$emsl as they produce some memory and performance over-
pattern language are often used in reengineering and softwar@eads for their language runtime; however, from a concep-
development tools. They provide solutions to find relevant ar- tyal point of view the aspect concept can be used to reduce or
chitecture fragments in the source code, trace runtime struceliminate such overheads. For instance, the small components
tures, and inject structure and dependency changes. Note thgdroject [21] implements a project-specific aspect extension to
we donot address a comparison abpect language concepts ayoid the overhead of a language runtime. Sometimes it is sim-
in this paper, but only implementations a$pect composition pjy a business decision that no third-party language extensions
mechanisméin most cases these implementations are not evenshould be used in a project. Some aspect models are already
directly visible to the aspect language user). quite complex languages; for solving simplistic AOSD prob-

After describing the pattern language briefly, we will con- 1€MS the required learning effort might be too large and writing
centrate ordifferentimplementations of AOSD composition & simple project-specific AOSD extension might be less effort.
mechanisms. These will be explained as sequences through - . .
the pattern language. First, we will explain generative aspect " ¢ases where existing AOSD extensions do not provide
implementations, as used in popular AOSD extensions such a& Suitable solution, developers either have to make additions
Aspect] [10] or Hyperd [20]. Secondly, we discuss dynamic or customizations to given implementations or implement their
message interception models, such as XOTcl message intercefp/" (little, project-specific) AOSD extension. In this paper, we
tors [16] or message interceptors in popular middleware (e.g.diSCUSS patterns that are actually used for implementing aspect
[9, 22]). Thirdly, we discuss a variant in which partial pars- cOMPOSition mechanisms in existing aspect languages or ex-
ing techniques are used for implementing aspects. Finally, wel€nsions. Note that the purposenistto propose a new aspect

discuss mixed approaches that introduce, for instance, mor&@NCePL, but to explain existing technical solutions, so that de-
dynamics into generative aspect implementations. velopers of new or customized aspect composition implemen-
tations can reuse the knowledge of the existing solutions. Of

A main motivation for this work is our observation that the course, not only aspect language or extension developers bene-
term “aspect” is broader than the AOSD concepts currently fit from understanding the implementation of aspect composi-
realized with the techniques named above. These primarilytion mechanisms: an aspect language user also requires a clear
realize extensional (or sometimes called “superimposed”) as-understanding of the consequences of the aspect composition

mechanisms. respective entities’ implementation. There are many imple-
mentation variants for such aspects. In terms of the pattern
) language, these have in common that there has to be some way
2 Understanding Structure and Dependency to extract the relevant pieces of trace information and modify
Tracing; A Pattern Language the system accordingly. With differempirRectioN LAYER Valri-
ants a language runtime can be built.

Structure and dependency tracing techniques extract some))

knowledge from existing source documents of a software sys-3.1 Using Program Generation to Weave Aspects

tem or from the running system. We collectively refer to these

pieces of information asace information The kinds of trace Currently the most common way to implement aspects are gen-
information required for a particular task may vary: for in- erative environments, such as AspectJ [10], HyperJ [20], D
stance, for program transformation we usually require a full [13], ComposeJ [23] (a tool for adding composition filters [2]
parse tree representation of the program text, whereas buildingo Java), or JAC [18]. These follow a similar sequence. For
an call graph requires dynamic interception of specific mes-illustration, we will give some examples from AspectJ. The
sage flows. In the AOSD context, the goal of trace information other named generative environments use different terms and
extraction is to find the entities in focus of an aspect. apply different transformations, but yet the basic implementa-

. . __tion ideas are the same or similar.
In Figure 1 a pattern language map is presented. For each in-

dividual pattern, we provide a pattern thumbnail with problem The aspects as well as the points where to apply them are
and solution in Table 1 (see [24] for more details). described in an extended language consisting of a set of addi-

,) tional instruction. This aspect language is added to the code
_The pattern language is used in many areas of software enyyitten in the base language. Consider we have a Java class
gineering. In the field of software maintenance and reengi-point and assert certain properties using AspectJ. As addi-
neering, the patterns are used for finding the structures andjpnal statements, AspectJ introducesahgect statement, as

relationships in software systems. Typical maintenance andyell as pointcutsdall , target , && etc.) and advicesé-
reengineering tasks that should be supported are code analfpre | after , around):

sis, refactoring, visualization, metrics computation, tracing de- ... pgint ()
pendencies, analysis of quality attributes, grouping, integra-aspect PointAssertions {
tion, and wrapping. Reengineering tools, such as Rigi [15], before(Point p, int x): target(p) && args(x)
support these tasks. Development tools (e.g. IDEs, profilers, && call(void setX(int)) {
architecture visualizations) also use structure and dependency i (x> 100 || x < O) {

. System.out.printin("lllegal value for x");
tracing techniques. Programming language implementations return:
and programming language extensions need to find existin }
structures and dependencies in the source code when parsi%g
it. Component gluing and configuration mechanisms provide The required trace information are the additional statements of
some means to compose software components in a customizeghe aspect language, the (Java) class and method structure, and
way, either statically at compile time (or load time) or dynami- the spots where invocations are sent or received (to handle the
cally at runtime. At the composition time, the component com- method call structures). AsRSE TREE INTERPRETER parses the
position mechanisms requires a knowledge about the (currentprogram text and creates a parse tree. In AspectJ, the aspect
architecture configuration (for instance, to avoid loading re- language parser inherits from a Java parser, as the AspectJ syn-
quired components twice). As aspect-oriented systems have teax is an extended Java syntax. Note that an aspect language
interpret and potentially manipulate either the software struc-can potentially have a different syntax than the base language.
tures or the method call flow, they are often implemented with

patterns of the pattern language (see next section). In a next step aook INJECTOR injects hooks at the respective

joinpoints (a process also called “inlining”). The aspect lan-

guage code is replaced by base language primitives (or byte-

3 Pattern Sequences for Aspect Composition code instructions of the virtual machine). The result is not
Mechanisms visible to the user. Theook muector inserts hooks into the

existing base language program code. These hooks call their

implementations in thiswirection LavErR. The hooks together

In this section, we explain current aspect composition tech-with respective implementations are a static formvefsace

nigues as sequences through the pattern language. As AlexanxTerceptors. In theNnpRECTION LAYER also other functionality

der points out [1] pattern descriptions alone do not really allow of the language runtime is implemented (like the join-points).

a person to generate a good design, step by step, because th@y AspectJ theiessace INTERCEPTOR implementation is realized

concentrate on the content of the patterns rather than layingas an advice; the injected hooks call the before, after, or around

the emphasis on morphological unfolding. The creative poweradvices. Note that alternatively we could agkice cALLBACKS

lay in the sequencesor orders) in which the steps of apply- (that for instance can trace variable accesses with operators or

ing patterns are to be performed. For a given task, the numbebther internal structures of thepirecTION LAYER). HOwever, to-

of possible sequences is huge compared with the number otlay’s generative aspect languages concentrate on message in-

sequences which work, that is by comparison, tiny. Thus it terception.

is important to document the inherent knowledge in the pat-

tern language in form of sequence examples that have prove

to work in practice. Discussing such pattern sequences for th

technical implementation of aspect composition mechanisms i

the focus of this paper.

At runtime of the woven program, the aspect language run-
ime is implemented as afpirREcTION LAYER (See Figure 2). As-
ectJ and the other named generative approaches implement a
static weaving process. This meansSsAGE INTERCEPTORS Can-
not be composed at runtime. Some tasks, however, are handled
For any kind of extensional or superimposed aspect imple-dynamically by thewpirection LavER. FOr instance, AspectJ
mentation, we first have to find the target entities, then changeprovides a dynamic join-point model. As a benefit, this allows
their behavior (or structure) according to the aspect definition, pointcuts and advices to retrieve CertaimocArioN CONTEXT in-
and finally execute the system with the aspect woven into theformation about the message flow and the current join-point at

Message Interceptor
Parse Tree Interpreter
Trace Callback implements and
provides
extracts N
statically implements and
provides

Indirection Layer

" grunti,me)
extracts— Trace Information <—aextraction of

tatically
Partial Parser .
can use message redirector

internally for command dispatching

Invocation Context

Introspection Option

i i get structure
g?t |nvocgg%n Information
at runtime

at runtime

implements stati Hook Injector
indirection layer

dynamic/static
alternatives

implements dynamic
indirection layer

Message Redirector

Figure 1. Important relationships of the patterns are represented by labeled arrows

Name Problem Solution
PARSE Static trace information, as available from the code or oth&arse the source language documents to create a parse tree
TREE IN- | (formal) source documents, is required. How to extract (arehd provide a tree traversal API. Use this API to build fan
TERPRETER | possibly modify) the information in the source documents2pplication-specifieARSE TREE INTERPRETER that offers op-
erations to extract (and modify) the trace information in the
parse tree.
INDIREC- Trace information can consist of information in source dpd”rovide anINDIRECTION LAYER between the application
TION LAYER | uments, but also of information derived from dynamic infogic and the sub-system that should be traced. kbe
vocation data (and data flows). How to gather all relevamEecTioN LAYER wraps all accesses to the sub-system, and
static and dynamic trace information in a unique way? | provides custom hooks to extract the relevant trace infor-
mation. INDIRECTION LAYER iS a generalization for othey
patterns, such asbject system layefi7], microkernel[3],
virtual maching[6], interpreter[5], and others.
TRACE You want to trace one or more specific structures of the fufrovide an interface to dynamically add or removerace
CALLBACK time system. How to trace runtime structures ofsmIREC- | CALLBACK for a specific runtime structure of thepIrREC-

TION LAYER generically and dynamically? TION LAYER. Whenever a specified callback event happens
for the specified runtime structure, a user-defined callback
operation is executed by tHeDIRECTION LAYER.

MESSAGE An object-oriented INDIRECTION LAYER intercepts and Provide aMESSAGE REDIRECTOR as afacadeto the INDIREC-
REDIREC- adapts all individual messages that are sent from the apption LAYER. Application layer objects use symbolic (e.g.
TOR cation logic to the hidden subsystem. How to gain confratring-based) commands t0 aCC&SSIRECTION LAYER Ob-

over the message flow in an object-oriented system so|thatts. TheMESSAGE REDIRECTOR dispatches these invoca-

we can at least trace (and modify) all messages and thé&ons to the respective method and object.

results?

Hook 1IN- | You do not want the trace code to be tangled within the sultse a parser for the base language and inject the indire¢tion
JECTOR system code. Changes to trace code should be independsmtks directly into the parse tree. Either write a custom
of the sub-system. How to trace (or modify) specific messompiler to directly create machine code or byte code,| or,
sages for a sub-system transparently? as a simpler alternative, produce a new program in the bbase
language with the injected indirection hooks.
INTRO- Architectural structures of interest include dynamic strucAll messages that are creating or changing structures or de-
SPECTION tures (that can change at runtime) as well as static structupendencies have to pass t@IRECTION LAYER. Offer In-
OPTIONS (that are defined at compile time and do not change at funrospECTION oPTIONS for each interesting architectural el-
time). How to gather and provide such information? ement. Provide a simple extension API for adding new,
domain-specifiGNTROSPECTION OPTIONS.
Invo- Invocation information are useful for building call graphsProvide access to thepirRECTION LAYER’s callstack by re-
CATION and object-oriented adaptations that rely on message énrning the currentNvocATION CONTEXT, an object (or other
CONTEXT changes. How to obtain the invocation information frgnstructure) representing the top-level callstack entry. ikhe
inside of an invoked method or a wrapper method? VOCATION CONTEXT contains at least information to identify
the calling and called method, object, and class.
MESSAGE How to dynamically compose message traces, modificRrovideMESSAGE INTERCEPTORS in the INDIRECTION LAYER
INTERCEP- tions, or adaptations at runtime? How to reuse or refirtbat are dynamically composed with the invoked objects and
TOR message traces, modifications, or adaptations? operations. Before, after, or instead-of specified messages
the MESSAGE INTERCEPTORS are invoked.
METADATA Sometimes some of the relevant information necessary Rvovide a standard notation for embeddMigraDATA TAGS
TAGS produce trace information are not yet documented or canriat code or formal design documents. In theserapara

be expressed with the given implementation language. Howas provide additional architectural knowledge and doc-

to add some trace information to a system? umentation (e.g. as hierarchical key/value lists).

PARTIAL A complete parser for the source document’s language ddesovide a simple parser that only understands the very| ba-
PARSER not exist, it is too expensive, or it has bugs. How to accessc syntax of the language. It only parses the specified Jan-
the trace information in source documents in a simple argliage’s subset, and ignores all other statements. For ngsted

extensible way?

statements, the parser can be applied recursively.

Table 1. Patterns for structure and dependency tracing: pattern thumbnails

runtime. As a drawback, the dynamic parts of the languageinvocations that are indirected to the actual implementations.

runtime consume additional runtime resources. Limitedo- A MESSAGE INTERCEPTOR Can dynamically intercept any message
SPECTION opPTIONS are offered for instance via the Java Reflection in the message flow, when it is dispatched hyEeasaGe REpI-
API. RECTOR. In particular:

Application Logic Objects Aspect Indirection

¢ In the case of a programming language like XOTcl, the
symbolic invocations are strings extracted from the pro-
gram code. These invocations are indirected to the Tcl
or XOTcl implementation (written in C), or other loaded
components.

B0

T

189S uononJsu|

0

abenbue] Buiwweiboid

¢ In the case of a middleware the symbolic invocations are
the remote calls that are sent across the network. On
server-side there is server request handleand anin-

)) L vokerthat demarshal the invocation and dispatch it to the
Figure 2. The aspect language runtime and advice im- respectivaemote object

plementations build anINDIRECTION LAYER

=

In both cases, each invocation to a sub-system can be con-

trolled by themessaGe REDIRECTOR that is added to thewirec-

TION LAYER (See Figure 4). Thus each invocation in the applica-

tion logic layer is evaluated using tlwessaGe REDIRECTOR. The
ESSAGE REDIRECTOR maps the called symbolic instruction to a
ommandn theinbirecTioN LAYER. Thiscommandmplements

the base language instruction (in case of XOTcl,dbamand

aspect PointAssertions { for instance, implements an XOTcl object or operation).
private boolean Point.assertX(int x) {
return (x <= 100 && x >= 0);

In AspectJ the original class implementation can also be ex-
tended with so-called introductions. For instance, in the exam-
ple above it would make sense to have a method for checkin
the assertion, but this method requires the self reference of th
current object. Thus it should be a method of Buint class:

} Application Logic Objects Indirection L_ayer P
before(Point p, int X): target(p) && args(x) Implementation |-L] o

~ && call(void setX(int)) { :;’____D =5

if (p.assertX) {) D gg

g5 . 23

In a generative environment such introduction are imple- = . D %‘.‘33
mented by injecting hooks into the respective classes. T tl Q%
"""" -t)

The sequence for composing aspects generatively (perhaps = °

together with a language runtime for dynamic tasks) is depicted

in Figure 3. Note that the order of application is important. Figure 4. INpIRECTION LAYER architecture with a MEssAGE

REDIRECTOR
| build full t?rse tlree foraspiect build ful -
anguage and base language eemeﬁ&w pare fee~a| Builder
Goal: obtain trace . . .
information from | Pa’SE{Tfee interpreter | Factory The idea of applying aspects as dynamissaGE INTERCEP-
anst:c:?jea(;?)iits interprete pare tree: extract aspectlanguage and Tors 0N top of a (given)vEessaGe REDIRECTOR architecture is
add hooks invoking the aspect runtime quite simple: if we specify all those calls that are in focus of an
Introductions aspect as criteria for theessaGe INTERCEPTOR, and let theves-
asp T ook o e SAGE REDIRECTOR €Xecute thisvEssAGE INTERCEPTOR every time

hook: Il i
messtu Ak ptors s_uch messages are called, we can |mplement any aspect that re-
Indirection Layer) lies on message exchanges. To receive the necessary informa-
Message Interceptor tion for dealing with the information, th@essaGe INTERCEPTOR

[invocation Context_|s-get imvocation T —————> get sructure should be able to obtain thevocarion context (€.g. to find out

atruntime atruntime which method was called on which object) antrosPEcTION
optioNs (to obtain structure information).

Figure 3. Generative aspect language with a language

. In case of Tcl alsarack caLeacks for variable slots are sup-
runtime sequence

ported. That is, we can dynamically observe specified vari-
ables, when they are accessed ini@RECTION LAYER.

For instance, XOTcl code corresponding to the above As-

3.2 Dynamic Implementations based on Message pect] point class example looks as follows:

Redirection Class Point
Dynamic MESSAGE INTERCEPTORs are provided by many differ- Class PointAssertions
ent environments; especially by programming languages suchO;Ptgxseiioq%d”ggr%:x ajzseg}x {rxe tfj m o)
as XOTcl [16] and by middleware environments, such as Or- oqim 1
bix [9] or Tao [22] (also described in thaterceptorpattern }
[19]). A mEssaGE INTERCEPTOR Can easily be implemented on its PointAssertions instproc setX x {

own; it just requires ampIRECTION LAYER in which messages i %’J‘é f’?‘ﬁlzzgf(v$$)|(l]J}e {for X..
can be dynamically intercepted. TypicallyM8ssAGE REDIREC- } else {

Tor IS used for implementing this layer. It receives symbolic next

}

Point instmixin PointAssertions

First, the corresponding code for the class and the aspect (her
also implemented as a class) is defined. Then dynamically
one of these classes is registered as an instance mixin for al
points; thus all calls to the methadtX are intercepted by the
PointAssertion mixin’s methodsetX .

In contrast to AspectJ, we do not have to “introduce” the
methodassertX onPoint , asthe mixin shares its objectiden-
tity with the class it extends. However, in other cases we might
want to change the class structure. In XOTcl at any time a new
method can be defined. We may also dynamically check with
anINTROSPECTION opTION that it does not exist yet.

Theinterceptorpattern [19] is a variant of this implementa-
tion scheme, especially suitable for distributed environments,
such as middleware platforms.

The dynamic trace information extraction sequence is de-
picted in Figure 5. Note that the order of application is impor-
tant.

- Message Redirector - ;
Goal: obtain trace invokes dynamically

shields
Message Interceptor

get invocation
information

information from Invocations
invokes dynamicall . R
Indirection Layer

Trace Callback

get structure
information

at runtime

. at runtime
Invocation Context
get structure Introspection Option
information

at runtime

Figure 5. Dynamic trace information extraction se-
quence

DemeterJ [17] is a variant of the dynamic implementation
technique that does not provid@ssace INTERCEPTORS but uses
traversal strategies andsitors[5]. A class graph can be tra-
versed as follows:

static final ClassGraph cg = new ClassGraph();

cg.traverse(this,
"from Schema via ->TypeDef,attrs,* to Attribute”,
new Visitor() {
void before(Attribute host) {
if (host.name.equals("name"))
def.add(host.value);

}
D

The cg object is amessaGe REDIRECTOR that first creates a
(reusable) traversal graph and then the object structure is tra

versed. Ateach step in atraversal, the fields and methods of the,

current object, as well as methods on Yisitor object, are in-
spected and invoked hytrospecTION OPTIONS that are obtained
via Java’'s Reflection API.

3.3 Partial Interpretation Aspects

In this section, we discuss an alternative implementation for as-

pects which we are currently developing within a framework,
called Prowler, which is designed for dynamically extracting
and transforming architecture information from a given pro-

the runtime impact or (slight) memory overhead of redirections
or hooks is a problem. Or simply adding hooks or intercepting
calls may be not enough, but more sophisticated transforma-
tions are required. Perhaps modifications should be added per-
manently and not as extensions. These situations are typical in
@ reengineering context.

AClass BClass CClass
. tput:
I 1 Extraction Outpu .
Transformation,
= Command Set X
|) Analysis Result,

2

interpret/
transform

\

input

aspect
definition

Partial Parser |— extract aspect-»

Figure 6. Aspects in architecture analysis or transfor-
mation with a PARTIAL PARSER

As a solution, we could userarse TREE INTERPRETER fOr stat-
ically finding these information, but then possibly we would
have to write a full parser for the language and this solutions
cannot be used for extracting trace information from the run-
ning program. Extracting trace information usinguessaGe
REDIRECTOR Can (in some cases) cause a significant performance
impact and would require us to execute the system (often not
suitable in a reengineering context).

ParTIAL PARSER IS another alternative fOrRACE INFORMATION
extraction (see Figure 6). As its input it reads a program with
tangled aspects. It must be possible that these tangled aspects
automatically can be found, say, because they are annotated in
a comment. How to find these tangled aspects in the program
text is specified in an extracti@mommandset.

A rarTIAL PARSER addresses the problem that a complete
parser for the source document’s language does not exist or
cannot (easily) be used. Often only a few language elements
are interesting to create a certain architectural view, all others
can be ignored. However, these spots are scattered across the
whole source code. The output of therTiaL parser Can be
either interpreted programmatically or bypA&RSE TREE INTER-
PRETER.

The idea is to use a simplistic parser that only understands
the very basic syntax of the language. It is enough, if it is
able to find the beginning and the end of a statement and can
read the statements one after another. ME®AGE REDIRECTOR
we evaluate the statements and compare them to the extraction
commandaet. If acommandnatches a statement, tbemmand
is invoked, and it extracts the required trace information from
the statement (containing parts of the tangled aspect).

"~ Note that theuessaGe REDIRECTOR iS NoOt used for message in-
rception in the program code but to implement theriaL
PARSER. The PARTIAL PARSER’S commandsactions are called
only if the corresponding statement occurs in the program text.
All statements that are not enlisted @ammandsn the mes-

SAGE REDIRECTOR are ignored. Theommandsactions are used

to build up the relevant trace information.

3.4 Sequence Categories and Mixed Approaches

The sequences through the pattern language, as discussed in
the previous sections, can be categorized regarding different

gram. Consider a situation in which we want to add an aspecicriteria:
to a system but have to get rid of some overhead produced by

solutions uSsing aMESSAGE REDIRECTOR Of @ PARSE TREE INTER-
PRETER With a Hook mNJEcTOR. Such situations can arise when

¢ the main trace information extraction pattern usedase
TREE INTERPRETER, MESSAGE REDIRECTOR, Ol PARTIAL PARSER;

e aspects can be registered dynamically or are (statically)References

woven for the whole system;
e an aspect language runtime is supported or not;
e aspects support architecture modification or not.

(1]
(2]

The presented examples can rather cleanly be grouped into 13]
these categories. However, there are also some mixed imple-

mentation approaches.

For instance, the partial interpretation implementation, dis-

cussed in the previous section, primarily usesmiIAL PARSER
that may feed @Arse TREE INTERPRETER, if the output of the

PARTIAL PARSER IS Still complex. However, we can also easily

redirect the results of th@RTIAL PARSER 1O @ MESSAGE REDIREC-
TOR, SaY, by registeringiessace INTERCEPTORS fOr the respective

command®r by redefining their definitions. Thus we build a

PARTIAL PARSER that creates a dynamic structure.

[4]
5

(6]

(7]

Another important variant are approaches that integrate ben- [8]

efits of the dynamic aspect composition into generative envi-
ronments. For instance, the solution in [12] is a generative as-
pect model; however, it allows for activating and deactivating

aspects at runtime, which is done via a central registry for as-[10]

pects. This registry serves as a centnalsaGe REDIRECTOR for
which every class is registered that containsiperimpose

statement. Aiook miECTOR injects hooks into each method of

[11]

these classes. The hooks call the registry in case of a method

dispatch , enter , or exit event. If an correspondinges-

SAGE INTERCEPTOR IS registered as an advice, it is called by the

registry before the original call.

Sometimes it makes sense to apply different aspect interpre-
tations together. For instance, AJDC (AspectJ Design Checker)
[8] is an extension of AspectJ that uses TyRuBa [4] as a logic
meta-programming engine for finding errors and problems in 14

[12]

[13]

AspectJ code. AJDC generates facts and rules out of the parse

tree to be compiled and provides some rules for retrieving trace
information like subclass relationships. Then TyRuBa is used

to interpret this output. There are three additioo@inmands

understood by AJDC to define errors and problems in AspectJ
code, and within them the TyRuBa syntax is embedded as a

pointcut language.

The small components project [21] implements a projects-
specific aspect composition mechanism (among other things),
solely using generative techniques. The goal is to avoid over-
heads of an aspect language runtime in embedded systems.

4 Conclusion

[15]

[16]

[17]

[18]

We have described current AOSD implementation approaches[19]
using a pattern language for structure and dependency tracing.

In this realm we believe the patterns capture the major im-
plementation variants. We have only implicitly discussed the

[20]

forces and consequences of the patterns. These mainly lead to
the choice of appropriate patterns and pattern variants. Cen-
tral, domain-specific issues like performance, flexibility, mem- [21]

ory usage, program length, program complexity, etc. are highly

different in different solution. Pattern language sequences were[22]
used to illustrate the existing solutions. The sequences should
help developers to better understand existing AOSD language
implementation choices. This understanding should enable de-

velopers to use, customize, or implement AOSD composition

mechanisms.

Acknowledgements Thanks to Stefan Hanenberg for his

helpful comments on this paper and to Markuslter for dis-
cussion of the pattern language.

[23]
[24]

C. Alexander and others.
http://www.patternlanguage.com, 2001.
L. Bergmans and M. Aksit. Composing crosscutting con-
cerns using composition filterscCommunications of the ACM
44(10):51-57, Oct 2001.

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal. Pattern-orinented Software Architecture - A System
of Patterns J. Wiley and Sons Ltd., 1996.

K. De Volder. Type-Oriented Logic Meta Programmind?hD
thesis, Vrije Universiteit Brussel, 1998.

Patternlanguage.com.

] E. Gamma, R. Helm, R. Johnson, and J. Vlissidefe-

sign Patterns: Elements of Reusable Object-Oriented Software
Addison-Wesley, 1994.

J. Garcia-Martin and M. Sutil-Martin. Virtual machines and
abstract compilers - towards a compiler pattern language. In
Proceeding of EuroPlop 2000rsee, Germany, July 2000.

M. Goedicke, G. Neumann, and U. Zdun. Object system layer.
In Proceeding of EuroPlop 20Q0rsee, Germany, July 2000.

S. Hanenberg and R. Unland. Specifying aspect-oriented de-
sign constraints in AspectJ. Workshop on Tools for Aspect-
Oriented Software Development at OOPSLA 2(ijes 641—
655, Seattle, USA, Nov 2002.

9] IONA Technologies Ltd. The orbix architecture, August 1993.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. G. Griswold. Getting started with AspectJommunications

of the ACM 44(10), Oct 2001.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes,
J. M. Loingtier, and J. Irwin. Aspect-oriented programming. In
Proceedings of ECOOP’9Finnland, June 1997. LCNS 1241,
Springer-Verlag.

R. Lammel, W. Lohmann, G. Riedewald, and C. Stenzel.
Dynamically Registered Method-Call Interception via Source
Code Instrumentation, 2002. submitted.

C. V. Lopes. D: A Language Framework for Distributed Pro-
gramming PhD thesis, College of Computer Science, North-
eastern University, Dec 1997.

] A. I. March. Aspect-oriented tailoring of object-oriented ap-

plications. InProceedings of the 21st Information System Re-
search Seminar in Scandinavia (IRIS 2ftiages 641-655, Aal-
borg University, Denmark, August 1998.

H. A. Miller, M. A. Orgun, S. R. Tilley, and J. S. Uhl. A re-
verse engineering approach to subsystem structure identifica-
tion. Journal of Software Maintenance: Research and Practice
5(4):181-204, 1993.

G. Neumann and U. Zdun. XOTcl, an object-oriented scripting
language. InProceedings of Tcl2k: The 7th USENIX Tcl/Tk
ConferenceAustin, Texas, USA, February 2000.

D. Orleans and K. Lieberherr. DJ: Dynamic adaptive program-
ming in Java. IrReflection 2001: Meta-level Architectures and
Separation of Crosscutting Concertg/oto, Japan, Sep 2001.

R. Pawlak, L. Seinturier, L. Duchien, and G. Florin. JAC: a
flexible framework for AOP in Java. IReflection 2001: Meta-
level Architectures and Separation of Crosscutting Congerns
Kyoto, Japan, Sep 2001.

D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmarmat-
terns for Concurrent and Distributed ObjectBattern-Oriented
Software Architecture. J. Wiley and Sons Ltd., 2000.

P. Tarr, H. Ossher, W. Harrison, and S. Sutton. N degrees of
separation: Multi-dimensional separation of concernsPrior
ceedings of the 21st International Conference on Software En-
gineering (ICSE '99)Los Angeles, CA, USA, May 1999.

M. Voelter. Small Components Project, 2003. http://
www.voelter.de/projects/smallComponents.html.
N. Wang, K. Parameswaran, and D. C. Schmidt. Meta-

programming mechanisms for object request broker middle-
ware. InProceedings of the 6th USENIX Conference on Object-
Oriented Technologies and Systems (COQT&Nn Antonio,
TX, USA, Jan/Feb 2001.

H. Wichman et al. ComposeJ Homepage, 2002.
trese.cs.utwente.nl/prototypes/composeJ/.

U. Zdun. Patterns of tracing software structures and de-
pendencies. submitted to EuroPLoP 2003, a draft can
be found at: http://wi.wu-wien.ac.atuzdun/publications/
archTracing.pdf, 2003.

http://

