
Using Structure and Dependency Tracing Patterns for Aspect Composition

Uwe Zdun
New Media Lab, Department of Information Systems

Vienna University of Economics and BA, Austria
zdun@acm.org

Abstract

Aspects avoid tangled solutions for cross-cutting design con-
cerns. However, there are various reasons why it may be hard
to use an aspect language as a solution, even though develop-
ers are faced with cross-cutting design concerns. For instance,
certain limitations of specific aspect composition (or weaving)
mechanisms may hinder the use of aspects or the use is cum-
bersome. Or because of particular project requirements, such
as used language, performance, or memory limitations, devel-
opers are not able to use an aspect language. In such cases,
developers would benefit from better understanding current as-
pect composition mechanisms to customize existing techniques
or implement (simple) aspect extensions from scratch. For
these purposes, we present a pattern language for structure and
dependency tracing, and then explain different, existing aspect
implementations as sequences through this pattern language.

1 Introduction

This paper addresses possible implementation techniques for
composing (or weaving) aspects. Different composition mech-
anisms and techniques for aspect-oriented software develop-
ment (AOSD) [11] are distinct but yet comparable. The dis-
tinctive properties in the design of the AOSD implementations
can be largely explained using a pattern language for tracing
software structures and dependencies [24]. The patterns in this
pattern language are often used in reengineering and software
development tools. They provide solutions to find relevant ar-
chitecture fragments in the source code, trace runtime struc-
tures, and inject structure and dependency changes. Note that
we donot address a comparison ofaspect language concepts
in this paper, but only implementations ofaspect composition
mechanisms(in most cases these implementations are not even
directly visible to the aspect language user).

After describing the pattern language briefly, we will con-
centrate ondifferent implementations of AOSD composition
mechanisms. These will be explained as sequences through
the pattern language. First, we will explain generative aspect
implementations, as used in popular AOSD extensions such as
AspectJ [10] or HyperJ [20]. Secondly, we discuss dynamic
message interception models, such as XOTcl message intercep-
tors [16] or message interceptors in popular middleware (e.g.
[9, 22]). Thirdly, we discuss a variant in which partial pars-
ing techniques are used for implementing aspects. Finally, we
discuss mixed approaches that introduce, for instance, more
dynamics into generative aspect implementations.

A main motivation for this work is our observation that the
term “aspect” is broader than the AOSD concepts currently
realized with the techniques named above. These primarily
realize extensional (or sometimes called “superimposed”) as-

pects that can be separated in an (object-oriented) language
construct (e.g. a class-like structure like an AspectJ aspect) and
are executed for certain events in the method call flow. How-
ever, this kind of aspects is just one possible interpretation of
the term “aspect” in the realm of software engineering. De-
sign disciplines know other interpretations, and there is no rea-
son to believe that other interpretations are less relevant for
the software engineering discipline. For instance, Mørch sees
aspect-orientation as a way to interweave the aspects design,
programming, and use of software [14]. For example, in the
context of reengineering it is often important to be able to sep-
arate such aspects or extract them from existing source code.
Existing AOSD languages may help to architecturally sepa-
rate some parts of these aspects, but such aspects can hardly
be completely untangled. There are many other situations in
which extensional aspects are not providing a complete solu-
tion: consider a situation in which an aspect should be added
permanently to a system, as in many reengineering projects.
Solving this problem with an extensional aspect is not an ar-
chitecturally stable and clean solution, but program transfor-
mation is required.

Besides these requirements for conceptual additions to cur-
rent AOSD concepts, there are also practical problems with
given implementations that are recurring in many projects.
Even though AOSD environments exist for many programming
languages, there are still many language without AOSD sup-
port. If the computation environment is limited, as in embed-
ded systems, it can be problematic to use current AOSD sys-
tems, as they produce some memory and performance over-
heads for their language runtime; however, from a concep-
tual point of view the aspect concept can be used to reduce or
eliminate such overheads. For instance, the small components
project [21] implements a project-specific aspect extension to
avoid the overhead of a language runtime. Sometimes it is sim-
ply a business decision that no third-party language extensions
should be used in a project. Some aspect models are already
quite complex languages; for solving simplistic AOSD prob-
lems the required learning effort might be too large and writing
a simple project-specific AOSD extension might be less effort.

In cases where existing AOSD extensions do not provide
a suitable solution, developers either have to make additions
or customizations to given implementations or implement their
own (little, project-specific) AOSD extension. In this paper, we
discuss patterns that are actually used for implementing aspect
composition mechanisms in existing aspect languages or ex-
tensions. Note that the purpose isnot to propose a new aspect
concept, but to explain existing technical solutions, so that de-
velopers of new or customized aspect composition implemen-
tations can reuse the knowledge of the existing solutions. Of
course, not only aspect language or extension developers bene-
fit from understanding the implementation of aspect composi-
tion mechanisms: an aspect language user also requires a clear
understanding of the consequences of the aspect composition

mechanisms.

2 Understanding Structure and Dependency
Tracing: A Pattern Language

Structure and dependency tracing techniques extract some
knowledge from existing source documents of a software sys-
tem or from the running system. We collectively refer to these
pieces of information astrace information. The kinds of trace
information required for a particular task may vary: for in-
stance, for program transformation we usually require a full
parse tree representation of the program text, whereas building
an call graph requires dynamic interception of specific mes-
sage flows. In the AOSD context, the goal of trace information
extraction is to find the entities in focus of an aspect.

In Figure 1 a pattern language map is presented. For each in-
dividual pattern, we provide a pattern thumbnail with problem
and solution in Table 1 (see [24] for more details).

The pattern language is used in many areas of software en-
gineering. In the field of software maintenance and reengi-
neering, the patterns are used for finding the structures and
relationships in software systems. Typical maintenance and
reengineering tasks that should be supported are code analy-
sis, refactoring, visualization, metrics computation, tracing de-
pendencies, analysis of quality attributes, grouping, integra-
tion, and wrapping. Reengineering tools, such as Rigi [15],
support these tasks. Development tools (e.g. IDEs, profilers,
architecture visualizations) also use structure and dependency
tracing techniques. Programming language implementations
and programming language extensions need to find existing
structures and dependencies in the source code when parsing
it. Component gluing and configuration mechanisms provide
some means to compose software components in a customized
way, either statically at compile time (or load time) or dynami-
cally at runtime. At the composition time, the component com-
position mechanisms requires a knowledge about the (current)
architecture configuration (for instance, to avoid loading re-
quired components twice). As aspect-oriented systems have to
interpret and potentially manipulate either the software struc-
tures or the method call flow, they are often implemented with
patterns of the pattern language (see next section).

3 Pattern Sequences for Aspect Composition
Mechanisms

In this section, we explain current aspect composition tech-
niques as sequences through the pattern language. As Alexan-
der points out [1] pattern descriptions alone do not really allow
a person to generate a good design, step by step, because they
concentrate on the content of the patterns rather than laying
the emphasis on morphological unfolding. The creative power
lay in thesequences(or orders) in which the steps of apply-
ing patterns are to be performed. For a given task, the number
of possible sequences is huge compared with the number of
sequences which work, that is by comparison, tiny. Thus it
is important to document the inherent knowledge in the pat-
tern language in form of sequence examples that have proved
to work in practice. Discussing such pattern sequences for the
technical implementation of aspect composition mechanisms is
the focus of this paper.

For any kind of extensional or superimposed aspect imple-
mentation, we first have to find the target entities, then change
their behavior (or structure) according to the aspect definition,
and finally execute the system with the aspect woven into the

respective entities’ implementation. There are many imple-
mentation variants for such aspects. In terms of the pattern
language, these have in common that there has to be some way
to extract the relevant pieces of trace information and modify
the system accordingly. With different  vari-
ants a language runtime can be built.

3.1 Using Program Generation to Weave Aspects

Currently the most common way to implement aspects are gen-
erative environments, such as AspectJ [10], HyperJ [20], D
[13], ComposeJ [23] (a tool for adding composition filters [2]
to Java), or JAC [18]. These follow a similar sequence. For
illustration, we will give some examples from AspectJ. The
other named generative environments use different terms and
apply different transformations, but yet the basic implementa-
tion ideas are the same or similar.

The aspects as well as the points where to apply them are
described in an extended language consisting of a set of addi-
tional instruction. This aspect language is added to the code
written in the base language. Consider we have a Java class
Point and assert certain properties using AspectJ. As addi-
tional statements, AspectJ introduces theaspect statement, as
well as pointcuts (call , target , &&, etc.) and advices (be-
fore , after , around):
class Point {...}
aspect PointAssertions {

before(Point p, int x): target(p) && args(x)
&& call(void setX(int)) {

if (x > 100 || x < 0) {
System.out.println("Illegal value for x");
return;

}
}

The required trace information are the additional statements of
the aspect language, the (Java) class and method structure, and
the spots where invocations are sent or received (to handle the
method call structures). A   parses the
program text and creates a parse tree. In AspectJ, the aspect
language parser inherits from a Java parser, as the AspectJ syn-
tax is an extended Java syntax. Note that an aspect language
can potentially have a different syntax than the base language.

In a next step a  injects hooks at the respective
joinpoints (a process also called “inlining”). The aspect lan-
guage code is replaced by base language primitives (or byte-
code instructions of the virtual machine). The result is not
visible to the user. The  inserts hooks into the
existing base language program code. These hooks call their
implementations in this . The hooks together
with respective implementations are a static form of

. In the   also other functionality
of the language runtime is implemented (like the join-points).
In AspectJ the  implementation is realized
as an advice; the injected hooks call the before, after, or around
advices. Note that alternatively we could add 

(that for instance can trace variable accesses with operators or
other internal structures of the ). However, to-
day’s generative aspect languages concentrate on message in-
terception.

At runtime of the woven program, the aspect language run-
time is implemented as an  (see Figure 2). As-
pectJ and the other named generative approaches implement a
static weaving process. This means  can-
not be composed at runtime. Some tasks, however, are handled
dynamically by the . For instance, AspectJ
provides a dynamic join-point model. As a benefit, this allows
pointcuts and advices to retrieve certain  in-
formation about the message flow and the current join-point at

Invocation Context

Introspection Option

Message Interceptor

Trace Information

Indirection Layer
(runtime)

extraction of

Message Redirector

Hook Injector

dynamic/static
alternatives

implements dynamic
indirection layer

implements static
indirection layer

implements and
provides

get structure
information
at runtime

get invocation
 information
at runtime

uses

uses

Partial Parser

Trace Callback

Parse Tree Interpreter

extracts
statically

implements and
provides

extracts
statically

can use message redirector
internally for command dispatching

Figure 1. Important relationships of the patterns are represented by labeled arrows

Name Problem Solution
P
 -


Static trace information, as available from the code or other
(formal) source documents, is required. How to extract (and
possibly modify) the information in the source documents?

Parse the source language documents to create a parse tree
and provide a tree traversal API. Use this API to build an
application-specific   that offers op-
erations to extract (and modify) the trace information in the
parse tree.

I-
 

Trace information can consist of information in source doc-
uments, but also of information derived from dynamic in-
vocation data (and data flows). How to gather all relevant
static and dynamic trace information in a unique way?

Provide an   between the application
logic and the sub-system that should be traced. The-
  wraps all accesses to the sub-system, and
provides custom hooks to extract the relevant trace infor-
mation. I  is a generalization for other
patterns, such asobject system layer[7], microkernel[3],
virtual machine[6], interpreter[5], and others.

T


You want to trace one or more specific structures of the run-
time system. How to trace runtime structures of an-
  generically and dynamically?

Provide an interface to dynamically add or remove a
 for a specific runtime structure of the-
 . Whenever a specified callback event happens
for the specified runtime structure, a user-defined callback
operation is executed by the .

M
-


An object-oriented   intercepts and
adapts all individual messages that are sent from the appli-
cation logic to the hidden subsystem. How to gain control
over the message flow in an object-oriented system so that
we can at least trace (and modify) all messages and their
results?

Provide a  as afacadeto the-
 . Application layer objects use symbolic (e.g.
string-based) commands to access  ob-
jects. The  dispatches these invoca-
tions to the respective method and object.

H -


You do not want the trace code to be tangled within the sub-
system code. Changes to trace code should be independent
of the sub-system. How to trace (or modify) specific mes-
sages for a sub-system transparently?

Use a parser for the base language and inject the indirection
hooks directly into the parse tree. Either write a custom
compiler to directly create machine code or byte code, or,
as a simpler alternative, produce a new program in the base
language with the injected indirection hooks.

I-



Architectural structures of interest include dynamic struc-
tures (that can change at runtime) as well as static structures
(that are defined at compile time and do not change at run-
time). How to gather and provide such information?

All messages that are creating or changing structures or de-
pendencies have to pass the . Offer -
  for each interesting architectural el-
ement. Provide a simple extension API for adding new,
domain-specific .

I-



Invocation information are useful for building call graphs
and object-oriented adaptations that rely on message ex-
changes. How to obtain the invocation information from
inside of an invoked method or a wrapper method?

Provide access to the ' callstack by re-
turning the current , an object (or other
structure) representing the top-level callstack entry. The-
  contains at least information to identify
the calling and called method, object, and class.

M
-


How to dynamically compose message traces, modifica-
tions, or adaptations at runtime? How to reuse or refine
message traces, modifications, or adaptations?

Provide  in the  
that are dynamically composed with the invoked objects and
operations. Before, after, or instead-of specified messages
the  are invoked.




Sometimes some of the relevant information necessary to
produce trace information are not yet documented or cannot
be expressed with the given implementation language. How
to add some trace information to a system?

Provide a standard notation for embedding 
in code or formal design documents. In these
 provide additional architectural knowledge and doc-
umentation (e.g. as hierarchical key/value lists).

P


A complete parser for the source document’s language does
not exist, it is too expensive, or it has bugs. How to access
the trace information in source documents in a simple and
extensible way?

Provide a simple parser that only understands the very ba-
sic syntax of the language. It only parses the specified lan-
guage’s subset, and ignores all other statements. For nested
statements, the parser can be applied recursively.

Table 1. Patterns for structure and dependency tracing: pattern thumbnails

runtime. As a drawback, the dynamic parts of the language
runtime consume additional runtime resources. Limited-
  are offered for instance via the Java Reflection
API.

Application Logic Objects Aspect Indirection
Layer

P
rogram

m
ing Language

Instruction S
et

Figure 2. The aspect language runtime and advice im-
plementations build an  

In AspectJ the original class implementation can also be ex-
tended with so-called introductions. For instance, in the exam-
ple above it would make sense to have a method for checking
the assertion, but this method requires the self reference of the
current object. Thus it should be a method of thePoint class:

aspect PointAssertions {
private boolean Point.assertX(int x) {

return (x <= 100 && x >= 0);
}
before(Point p, int x): target(p) && args(x)

&& call(void setX(int)) {
if (!p.assertX) {

...
}

In a generative environment such introduction are imple-
mented by injecting hooks into the respective classes.

The sequence for composing aspects generatively (perhaps
together with a language runtime for dynamic tasks) is depicted
in Figure 3. Note that the order of application is important.

Invocation Context

Introspection Option

Message Interceptor

Goal: obtain trace
information from

source code
and add aspects

Indirection Layer

Hook Injector

Parse Tree Interpreter

Builder

Introductions

Trace Callback
get invocation
 information
at runtime

get structure
information
at runtime

build full parse tree for aspect
language and base language elements build full

parse tree

Factory

interprete pare tree: extract aspect language and
add hooks invoking the aspect runtime

insert hooks to call
aspect language runtime

hooks call
message interceptors

Figure 3. Generative aspect language with a language
runtime sequence

3.2 Dynamic Implementations based on Message
Redirection

Dynamic  are provided by many differ-
ent environments; especially by programming languages such
as XOTcl [16] and by middleware environments, such as Or-
bix [9] or Tao [22] (also described in theinterceptorpattern
[19]). A   can easily be implemented on its
own; it just requires an  in which messages
can be dynamically intercepted. Typically a -
 is used for implementing this layer. It receives symbolic

invocations that are indirected to the actual implementations.
A   can dynamically intercept any message
in the message flow, when it is dispatched by a -
. In particular:

• In the case of a programming language like XOTcl, the
symbolic invocations are strings extracted from the pro-
gram code. These invocations are indirected to the Tcl
or XOTcl implementation (written in C), or other loaded
components.

• In the case of a middleware the symbolic invocations are
the remote calls that are sent across the network. On
server-side there is aserver request handlerand anin-
vokerthat demarshal the invocation and dispatch it to the
respectiveremote object.

In both cases, each invocation to a sub-system can be con-
trolled by the  that is added to the-
  (see Figure 4). Thus each invocation in the applica-
tion logic layer is evaluated using the . The
  maps the called symbolic instruction to a
commandin the  . Thiscommandimplements
the base language instruction (in case of XOTcl, thecommand,
for instance, implements an XOTcl object or operation).

Application Logic Objects Indirection Layer
Implementation

R
elevant P

rogram
m

ing Language
Instruction (S

ub-)S
et

M
es

sa
ge

R
ed

ire
ct

or
Figure 4.I  architecture with a 


The idea of applying aspects as dynamic -
 on top of a (given)  architecture is
quite simple: if we specify all those calls that are in focus of an
aspect as criteria for the , and let the-
  execute this  every time
such messages are called, we can implement any aspect that re-
lies on message exchanges. To receive the necessary informa-
tion for dealing with the information, the 

should be able to obtain the  (e.g. to find out
which method was called on which object) and

 (to obtain structure information).

In case of Tcl also  for variable slots are sup-
ported. That is, we can dynamically observe specified vari-
ables, when they are accessed in the .

For instance, XOTcl code corresponding to the above As-
pectJ point class example looks as follows:

Class Point
...
Class PointAssertions
PointAssertions instproc assertX x {

if {$x <= 100 && $x >= 0} {return 0}
return 1

}
PointAssertions instproc setX x {

if {[my assertX $x]} {
puts "Illegal value for x"

} else {
next

}
}
Point instmixin PointAssertions

First, the corresponding code for the class and the aspect (here
also implemented as a class) is defined. Then dynamically
one of these classes is registered as an instance mixin for all
points; thus all calls to the methodsetX are intercepted by the
PointAssertion mixin’s methodsetX .

In contrast to AspectJ, we do not have to “introduce” the
methodassertX onPoint , as the mixin shares its object iden-
tity with the class it extends. However, in other cases we might
want to change the class structure. In XOTcl at any time a new
method can be defined. We may also dynamically check with
an   that it does not exist yet.

The interceptorpattern [19] is a variant of this implementa-
tion scheme, especially suitable for distributed environments,
such as middleware platforms.

The dynamic trace information extraction sequence is de-
picted in Figure 5. Note that the order of application is impor-
tant.

Invocation Context

Introspection Option

Message Interceptor

Goal: obtain trace
information from Invocations

Indirection Layer

Trace Callback

get structure
information
at runtime

receives all invocations

shields
Message Redirector

invokes dynamically

invokes dynamically

get structure
information
at runtime

get invocation
 information
at runtime

Figure 5. Dynamic trace information extraction se-
quence

DemeterJ [17] is a variant of the dynamic implementation
technique that does not provide  but uses
traversal strategies andVisitors [5]. A class graph can be tra-
versed as follows:

static final ClassGraph cg = new ClassGraph();
...
cg.traverse(this,

"from Schema via ->TypeDef,attrs,* to Attribute",
new Visitor() {

void before(Attribute host) {
if (host.name.equals("name"))

def.add(host.value);
}

});
...

The cg object is a  that first creates a
(reusable) traversal graph and then the object structure is tra-
versed. At each step in a traversal, the fields and methods of the
current object, as well as methods on theVisitor object, are in-
spected and invoked by  that are obtained
via Java’s Reflection API.

3.3 Partial Interpretation Aspects

In this section, we discuss an alternative implementation for as-
pects which we are currently developing within a framework,
called Prowler, which is designed for dynamically extracting
and transforming architecture information from a given pro-
gram. Consider a situation in which we want to add an aspect
to a system but have to get rid of some overhead produced by
solutions using a  or a   -
 with a  . Such situations can arise when

the runtime impact or (slight) memory overhead of redirections
or hooks is a problem. Or simply adding hooks or intercepting
calls may be not enough, but more sophisticated transforma-
tions are required. Perhaps modifications should be added per-
manently and not as extensions. These situations are typical in
a reengineering context.

AClass BClass CClass

Partial Parser

Extraction
Command Set

Output:
Transformation,
Analysis Result,

...

Aspect1

Aspect2

interpret/
transform

Aspect2
extract aspect

input
aspect

definition

Figure 6. Aspects in architecture analysis or transfor-
mation with a  

As a solution, we could use a   for stat-
ically finding these information, but then possibly we would
have to write a full parser for the language and this solutions
cannot be used for extracting trace information from the run-
ning program. Extracting trace information using a

 can (in some cases) cause a significant performance
impact and would require us to execute the system (often not
suitable in a reengineering context).

P  is another alternative for 

extraction (see Figure 6). As its input it reads a program with
tangled aspects. It must be possible that these tangled aspects
automatically can be found, say, because they are annotated in
a comment. How to find these tangled aspects in the program
text is specified in an extractioncommandset.

A   addresses the problem that a complete
parser for the source document’s language does not exist or
cannot (easily) be used. Often only a few language elements
are interesting to create a certain architectural view, all others
can be ignored. However, these spots are scattered across the
whole source code. The output of the  can be
either interpreted programmatically or by a  -
.

The idea is to use a simplistic parser that only understands
the very basic syntax of the language. It is enough, if it is
able to find the beginning and the end of a statement and can
read the statements one after another. In a 

we evaluate the statements and compare them to the extraction
commandset. If acommandmatches a statement, thecommand
is invoked, and it extracts the required trace information from
the statement (containing parts of the tangled aspect).

Note that the  is not used for message in-
terception in the program code but to implement the

. The  ' commands’ actions are called
only if the corresponding statement occurs in the program text.
All statements that are not enlisted ascommandsin the -
  are ignored. Thecommands’actions are used
to build up the relevant trace information.

3.4 Sequence Categories and Mixed Approaches

The sequences through the pattern language, as discussed in
the previous sections, can be categorized regarding different
criteria:

• the main trace information extraction pattern used:

 ,  , or  ;

• aspects can be registered dynamically or are (statically)
woven for the whole system;

• an aspect language runtime is supported or not;

• aspects support architecture modification or not.

The presented examples can rather cleanly be grouped into
these categories. However, there are also some mixed imple-
mentation approaches.

For instance, the partial interpretation implementation, dis-
cussed in the previous section, primarily uses a 

that may feed a  , if the output of the
  is still complex. However, we can also easily
redirect the results of the  to a -
, say, by registering  for the respective
commandsor by redefining their definitions. Thus we build a
  that creates a dynamic structure.

Another important variant are approaches that integrate ben-
efits of the dynamic aspect composition into generative envi-
ronments. For instance, the solution in [12] is a generative as-
pect model; however, it allows for activating and deactivating
aspects at runtime, which is done via a central registry for as-
pects. This registry serves as a central  for
which every class is registered that contains asuperimpose
statement. A  injects hooks into each method of
these classes. The hooks call the registry in case of a method
dispatch , enter , or exit event. If an corresponding-
  is registered as an advice, it is called by the
registry before the original call.

Sometimes it makes sense to apply different aspect interpre-
tations together. For instance, AJDC (AspectJ Design Checker)
[8] is an extension of AspectJ that uses TyRuBa [4] as a logic
meta-programming engine for finding errors and problems in
AspectJ code. AJDC generates facts and rules out of the parse
tree to be compiled and provides some rules for retrieving trace
information like subclass relationships. Then TyRuBa is used
to interpret this output. There are three additionalcommands
understood by AJDC to define errors and problems in AspectJ
code, and within them the TyRuBa syntax is embedded as a
pointcut language.

The small components project [21] implements a projects-
specific aspect composition mechanism (among other things),
solely using generative techniques. The goal is to avoid over-
heads of an aspect language runtime in embedded systems.

4 Conclusion

We have described current AOSD implementation approaches
using a pattern language for structure and dependency tracing.
In this realm we believe the patterns capture the major im-
plementation variants. We have only implicitly discussed the
forces and consequences of the patterns. These mainly lead to
the choice of appropriate patterns and pattern variants. Cen-
tral, domain-specific issues like performance, flexibility, mem-
ory usage, program length, program complexity, etc. are highly
different in different solution. Pattern language sequences were
used to illustrate the existing solutions. The sequences should
help developers to better understand existing AOSD language
implementation choices. This understanding should enable de-
velopers to use, customize, or implement AOSD composition
mechanisms.

Acknowledgements Thanks to Stefan Hanenberg for his
helpful comments on this paper and to Markus Völter for dis-
cussion of the pattern language.

References

[1] C. Alexander and others. Patternlanguage.com.
http://www.patternlanguage.com, 2001.

[2] L. Bergmans and M. Aksit. Composing crosscutting con-
cerns using composition filters.Communications of the ACM,
44(10):51–57, Oct 2001.

[3] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal. Pattern-orinented Software Architecture - A System
of Patterns. J. Wiley and Sons Ltd., 1996.

[4] K. De Volder. Type-Oriented Logic Meta Programming. PhD
thesis, Vrije Universiteit Brussel, 1998.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.De-
sign Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1994.

[6] J. Garcia-Martin and M. Sutil-Martin. Virtual machines and
abstract compilers - towards a compiler pattern language. In
Proceeding of EuroPlop 2000, Irsee, Germany, July 2000.

[7] M. Goedicke, G. Neumann, and U. Zdun. Object system layer.
In Proceeding of EuroPlop 2000, Irsee, Germany, July 2000.

[8] S. Hanenberg and R. Unland. Specifying aspect-oriented de-
sign constraints in AspectJ. InWorkshop on Tools for Aspect-
Oriented Software Development at OOPSLA 2002, pages 641–
655, Seattle, USA, Nov 2002.

[9] IONA Technologies Ltd. The orbix architecture, August 1993.
[10] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and

W. G. Griswold. Getting started with AspectJ.Communications
of the ACM, 44(10), Oct 2001.

[11] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes,
J. M. Loingtier, and J. Irwin. Aspect-oriented programming. In
Proceedings of ECOOP’97, Finnland, June 1997. LCNS 1241,
Springer-Verlag.

[12] R. Lämmel, W. Lohmann, G. Riedewald, and C. Stenzel.
Dynamically Registered Method-Call Interception via Source
Code Instrumentation, 2002. submitted.

[13] C. V. Lopes. D: A Language Framework for Distributed Pro-
gramming. PhD thesis, College of Computer Science, North-
eastern University, Dec 1997.

[14] A. I. Mørch. Aspect-oriented tailoring of object-oriented ap-
plications. InProceedings of the 21st Information System Re-
search Seminar in Scandinavia (IRIS 21), pages 641–655, Aal-
borg University, Denmark, August 1998.

[15] H. A. Müller, M. A. Orgun, S. R. Tilley, and J. S. Uhl. A re-
verse engineering approach to subsystem structure identifica-
tion. Journal of Software Maintenance: Research and Practice,
5(4):181–204, 1993.

[16] G. Neumann and U. Zdun. XOTcl, an object-oriented scripting
language. InProceedings of Tcl2k: The 7th USENIX Tcl/Tk
Conference, Austin, Texas, USA, February 2000.

[17] D. Orleans and K. Lieberherr. DJ: Dynamic adaptive program-
ming in Java. InReflection 2001: Meta-level Architectures and
Separation of Crosscutting Concerns, Kyoto, Japan, Sep 2001.

[18] R. Pawlak, L. Seinturier, L. Duchien, and G. Florin. JAC: a
flexible framework for AOP in Java. InReflection 2001: Meta-
level Architectures and Separation of Crosscutting Concerns,
Kyoto, Japan, Sep 2001.

[19] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann.Pat-
terns for Concurrent and Distributed Objects. Pattern-Oriented
Software Architecture. J. Wiley and Sons Ltd., 2000.

[20] P. Tarr, H. Ossher, W. Harrison, and S. Sutton. N degrees of
separation: Multi-dimensional separation of concerns. InPro-
ceedings of the 21st International Conference on Software En-
gineering (ICSE ’99), Los Angeles, CA, USA, May 1999.

[21] M. Voelter. Small Components Project, 2003. http://
www.voelter.de/projects/smallComponents.html.

[22] N. Wang, K. Parameswaran, and D. C. Schmidt. Meta-
programming mechanisms for object request broker middle-
ware. InProceedings of the 6th USENIX Conference on Object-
Oriented Technologies and Systems (COOTS), San Antonio,
TX, USA, Jan/Feb 2001.

[23] H. Wichman et al. ComposeJ Homepage, 2002. http://
trese.cs.utwente.nl/prototypes/composeJ/.

[24] U. Zdun. Patterns of tracing software structures and de-
pendencies. submitted to EuroPLoP 2003, a draft can
be found at: http://wi.wu-wien.ac.at/∼uzdun/publications/
archTracing.pdf, 2003.

