
Engin Kirda engin@infosys.tuwien.ac.at
Christopher Kruegel chris@auto.tuwien.ac.at

Design and Architectural Principles
Internet Security [1] VU



Internet Security 1 2

News from the Lab

• Challenge 4 will be announced today (16:00) after the 
lecture
– E-Mail Spoofer
– First programming challenge (show us how good you can 

code ;-))
– You need to look at SMTP protocol (Web, RFCs,etc.)
– You need to write a Java program

• Quality control issues
– Obviously, copying solutions is not allowed
– Automated checks -- you might receive an invitation – don’t 

panic – follow the instructions



Internet Security 1 3

Overview

• Security issues at various stages of application life-
cycle
– mistakes, vulnerabilities, and exploits
– avoidance, detection, and defense

• Design and Architecture
– security considerations when designing the application
– Implementation

• security considerations when writing the application
– Operation

• security considerations when the application is in production



Internet Security 1 4

Architecture – A quick recap

• A software architecture has emerged as a crucial part 
of design process
– Much work was done in the early 90s. Today, there are 

research issues like product family architectures, 
architectural description languages, flexibility, fault tolerance, 
etc.

• Software architecture encompasses the structures of 
large software systems
– The architectural view is abstract and distills details of 

implementation, algorithm and data representation



Internet Security 1 5

Security Architecture

• What is security architecture?
A body of high-level design principles and decisions that allow a 
programmer to say "Yes" with confidence and "No" with 
certainty.

A framework for secure design, which embodies the four classic 
stages of information security: protect, deter, detect, and react.

• Security is a measure of the architecture’s ability to 
resist unauthorized usage
– At the same time, services need to be provided to legitimate 

users.



Internet Security 1 6

What happens if the architecture is 
flawed?

• Some history: The Swedish Warship Vasa
– Now in Stockholm, Vasa Museum – A solemn reminder for 

engineers
– The ship was built well, but it’s architecture was flawed. On 

its first voyage, it fired its guns to salute the port and…

• OK, so what does Vasa have to do with security?
– Your code might be good, but if your architecture is bad from 

a security point of view, your system may be broken by 
attacker

– E.g., P2P systems



Internet Security 1 7

Architecture is Important

Cost of fixing security flaws during different development phases

Design
Implementation

Testing
Post-Release

(cost = 1)

(cost = 6.5)

(cost = 15)

(cost = 60)

Time

C
os

t



Internet Security 1 8

Security and Design

• Systems are often designed without security in mind
– Application programmer is often more worried about solving 

the problem than protecting the system.
– Often, security is ignored because either the policy is 

generally not available, or it is easier to ignore security 
issues.

• Organizations and individuals want their technology 
to survive attacks, failures and accidents
– Critical systems need to be survivable



Internet Security 1 9

Design Principles

• Design is a complex, creative process
• No standard technique to make design secure 
• But general rules derived from experience
• 8 principles according to Saltzer and Schroeder (1975) in their 

paper “The protection of information of computer systems”, Univ.
of Virginia

– Economy of Mechanism
– Fail-safe defaults
– Complete mediation
– Open design
– Separation of privilege
– Least privilege
– Least common mechanism
– Psychological acceptability



Internet Security 1 10

Economy of Mechanism

• Design should be as simple as possible
– KISS -- keep it simple, stupid
– Brian W. Kernighan

“Debugging is twice as hard as writing the code in the first place. Therefore, 
if you write the code as cleverly as possible, you are, by definition, not 
smart enough to debug it.”

• Black-box / functional testing
– treats system as a black box
– usually does not discover security problems
– makes white-box testing / code auditing necessary

• For successful white-box testing, simple design necessary



Internet Security 1 11

Fail-safe Defaults

• Allow as default action
– grant access when not explicitly forbidden
– in case of mistake, access allowed (often not noticed)
– improves ease-of-use
– wrong psychological model

• Deny as default action
– grant access only on explicit permission
– in case of mistake, access denied (noticed quickly)
– improves security
– important for firewall configurations

and input validation tasks



Internet Security 1 12

Fail-safe Defaults

• Configuration
– secure initial configuration
– easy (re)configuration

• Secure initial configuration
– no default passwords
– no sample users
– files are write-protected, owned by root/admin

• Error messages
– should be very generic
– additional information in log files



Internet Security 1 13

Complete Mediation

• Complete access control
– check every access to every object
– include all aspects (normal operation, initialization, maintenance, ..)
– caching of checks is dangerous
– identification of source of action (authentication) is crucial

• Trusted path
– make sure that user is talking to authentication program
– important for safe login (thwart fake logins)
– Windows “control-alt-delete” sequence



Internet Security 1 14

Complete Mediation

• Secure interface
– minimal
– narrow
– non-bypassable (e.g., check at server, not client)

• Input validation (well-known by now)

• Trust input only from trustworthy channels
– any value that can be influenced by user cannot be trusted

• do not authenticate based on IP source addresses / ports
• E-mail sender can be forged (i.e., Challenge 4)
• hidden fields or client side checks are inappropriate
• reverse DNS lookup

– safely load initialization (configuration)



Internet Security 1 15

Open Design

• Design must not be secret
– security mechanisms must be known
– allows review
– establishes trust
– unrealistic to keep mechanism secret in widely distributed systems

• Security depends on secrecy of few, small tokens
– keys
– passwords

• Many violations of this principle
– especially proprietary cryptography



Internet Security 1 16

Separation of Privilege

• Access depends on more than one condition
– for example, two keys are required to access a resource
– two privileges can be (physically) distributed
– more robust and flexible

• Classic examples
– launch of nuclear weapons requires two people
– bank safe

• Related principle
– compartmentalization



Internet Security 1 17

Separation of Privilege

• Compartmentalization
– break system in different, isolated parts and
– minimize privileges in each part
– don’t implement all-or-nothing model

→ minimizes possible damage

• Sandbox
– traditional compartmentalization technique
– examples

• Java sandbox (bytecode verifier, class loader, security manager)
• virtual machines
• paper -- Goldberg et al., 

A secure environment for untrusted helper applications, 
USENIX Security Symposium,1996



Internet Security 1 18

Least Privilege

• Operate with least number of rights to complete task
– minimize damage
– minimize interactions between privileged programs

• reduce unintentional, unwanted use

– when misuse occurs, only few potential sources need auditing

• Minimize granted privileges
– avoid setuid root programs (UNIX/Linux)

• use groups and setgid (e.g., group games for high scores)
• use special user (e.g., nobody for web server)

– make file owner different from setuid user
• taking control of process does not allow to modify program images



Internet Security 1 19

Least Privilege

• Minimize granted privileges
– database restrictions

• limit access to needed tables
• use stored procedures

• Minimize time that privilege can be used
– drop privileges as soon as possible
– make sure to clear saved ID values

• Minimize time that privilege is active
– temporarily drop privileges



Internet Security 1 20

Least Privilege

• Minimize modules that are granted privilege
– optimally, only single module uses privileges and drops them
– two separate programs

• one can be large and untrusted
• other is small and can perform critical operations
• important for GUI applications that require privileges

• Limit view of system
– limit file system view by setting new root directory

chroot() – on UNIX
– more complete virtual machine abstraction

BSD system call jail(2)
– Honeypot



Internet Security 1 21

Least Privilege

• Do not use setuid scripts
– “race condition” problems
– Linux drops setuid settings

• Minimize accessible data
– CGI scripts

• place data used by script outside document root

• Minimize available resources
– quotas

• Paper -- Provos et al., Preventing Privilege Escalation., 12th USENIX 
Security Symposium, Washington DC, 2003



Internet Security 1 22

Least Common Mechanisms

• Minimize shared mechanisms
– reduce potentially dangerous information flow
– reduce possible interactions

• Problems
– beware of “race conditions” (more in InetSec 2)
– avoid temporary files in global directories



Internet Security 1 23

Psychological Acceptability

• Easy-to-use human interface
– easy to apply security mechanisms routinely
– easy to apply security mechanisms correctly
– interface has to support mental model

• do what is expected intuitively (e.g., personal firewalls)

• Authentication
– passwords

• enforce minimum length (what is the minimum length?)
• enforce frequent changes

– PKI (public key infrastructure)
• overhead vs. security



Internet Security 1 24

One more Design Principle

•• Separate data and controlSeparate data and control
– failed separation is reason for many security vulnerabilities

• from buffer overflows to macro viruses
– distinction between control information and data has to be clear

• Problematic
– with automatically executing code in data files

• Javascript in web pages
• automatic preview of web pages in emails
• macros in Word

– when using mobile code
• code that is downloaded and executed locally



Internet Security 1 25

Using Quality Attribute Scenarios

• Scenarios are used to model and create the 
architecture, “Software Architecture in Practice”, 2003
– e.g., Availability, Modifiability… and Security
– Designer considers (in scenarios)

• Source of stimulus
• Stimulus
• Artifact
• Environment
• Response
• Response measure

– Security is treated as an architectural quality



Internet Security 1 26

An Attribute Scenario Example

Source:
Correctly
Identified
Individual

Stimulus:
Tries to
modify
information

Artifact:
Data within
The 
System

Environment:
Under normal
Operations

Response:
System
Maintains
Audit
Trail

Response
Measure:
Correct data
is restored



Internet Security 1 27

Retrofitting Applications

• Applying security techniques to existing applications
– element of overall system design
– when no source code available or
– complete redesign too complicated

• Wrappers
– move original application to new location and
– replace it with small program or script that

• checks (and perhaps sanitizes) command-line parameters,
• prepares a restricted runtime, and 
• invokes the target application from its new location

– can provide logging



Internet Security 1 28

Retrofitting Applications

• Example wrappers
– AusCERT Overflow Wrapper

• exits when any command line argument exceeds a certain 
length

– TCP Wrappers
• replaces inetd (for telnet, ftp, finger, …)
• access control
• logging

– sendmail restricted shell (smrsh, replacement for /bin/sh)
• sendmail known for security problems
• smrsh restricts accessible binaries



Internet Security 1 29

Retrofitting Applications

• Interposition
– insert program that we control between two pieces of 

software that we do not control
– filtering of data

• add security checks and constraints

– network proxy
• application policy enforcement
• SYN flood protection

– input sanitization



Internet Security 1 30

Designing for Survivability

• In the context of computer security, survivability is the 
capability of a system to fulfill its mission in time
– Despite attacks, failures, accidents
– CERT principles

• Survivability is an enterprise-wide concern
– As concept and practice, survivability should be strived for in 

all levels of an organization.

• Everything is data
– Helps understand and manage what needs to be protected
– InfoSec triad: confidentiality, integrity, availability



Internet Security 1 31

Designing for Survivability

• Not all data is of equal value
– Information security risk evaluation

• Identification of users, computer systems, network 
infrastructure components is critical
– Secure access is granted based upon user identification
– No matter how strong the information access technology, it’s 

useless if based on weak identification

• Challenge assumptions to understand risks
– “Thinking like an intruder”



Internet Security 1 32

Bad Practice

• Being too specific too soon
– without having a design, solve technical problems and start 

implementation

• Focus only on functionality
– security must be built in from the beginning

• Not considering economic factors
– ignoring the cost of security features



Internet Security 1 33

Bad Practice

• Not considering the human factor
– propose solutions that users strongly dislike

• biometric scanners instead of passwords

– propose solutions that are annoying
• change passwords to frequently
• terminate idle sessions too fast

– propose solutions that require considerable additional effort
• producing too many alerts (e.g., snort -- “useless”)
• require checking of many different log-files



Internet Security 1 34

Conclusion

• Security must be considered from the start
– security architecture
– keep costs to fix problems low – obviously ;-)

• Security design and architecture
– process cannot be automated
– ask important questions such as

• what to protect (assets)
• what to protect against (threat model)
• how to protect (architecture)

• Most important design principles
– least privilege
– separate data and control

• See you next time!


