Internet Security [1] VU 184.216

Engin Kirda Christopher Kruegel engin@infosys.tuwien.ac.at chris@auto.tuwien.ac.at

News from the Lab

- Challenge 4
 - deadline is next week (31st May)
 - 1/3 of the students have successfully submitted so far
 - we have observed many programming problems
 - please start early
- Challenge 5
 - issued next week (probably on 31st May)
 - deciphering encrypted texts
 - both private and public key schemes

Administration

• DIMVA 2005

(Detection of Intrusions and Malware & Vulnerability Assessment)

- security conference co-organized by Engin and myself
- held in Vienna on 7.-8. July 2005
- early registration until 2. June 2005
- student fee is **75 Euro**
- Benefits
 - listen to security research talks given by international experts
 - proceedings book
 - dinner reception at the Rathaus
 - food and gimmicks
- Information and Registration

http://www.dimva.org/dimva2005/

Cryptography

Cryptography

• (One) definition of cryptography

Mathematical techniques related to aspects of information security such as

- confidentiality
 - keep content of information from all but authorized entities
- integrity
 - protect information from unauthorized alteration
- authentication
 - identification of data or communicating entities
- non-repudiation
 - prevent entity from denying previous commitments or actions

History

- Classic cryptography
 - Ancient Egypt
 - non-standard hieroglyphs
 - Hebrew scholars
 - Atbash mono-alphabetic substitution (reverse of Hebrew alphabet)
 - Greek
 - Steganography (under wax on table, hair of slaves)
 - Roman
 - Caesar cipher mono-alphabetic substitution (letters are shifted by fixed offset)
 - Alberti (1465)
 - poly-alphabetic substitution

Terminology

- Alphabet of definition A
 - finite set of symbols, e.g., binary alphabet {0,1}
- Message space M
 - set that contains strings from symbols of an alphabet A₁
 - elements of M are called plaintext messages
- Ciphertext space C
 - set that contains strings from symbols of an alphabet A₂
 - elements of C are called ciphertext messages
- Key space K
 - each element e ∈ K uniquely determines bijective mapping E_e : M → C (called encryption function)
 - each element d ∈ K uniquely determines bijective mapping D_d : M → C (called decryption function)

Terminology

- Keys (e,d)
 - not necessarily identical
 - referred to as key pair
- Fundamental
 - all alphabets and the encryption/decryption functions are public knowledge
 - only the selection of the key pair remains secret
- System is breakable
 - if a third party can (without the knowledge of the key pair) systematically recover plaintext from corresponding ciphertext within some appropriate time frame
 - exhaustive key search must be made impossible
- Cryptanalysis
 - study of techniques to defeat cryptographic techniques

Taxonomy

- Unkeyed primitives
 - hash functions
 - random sequences
- Symmetric-key primitives
 - block ciphers
 - stream ciphers
 - signatures
 - pseudorandom sequences
- Public-key primitives
 - public-key ciphers
 - signatures

Symmetric-key Cryptography

- Consider an encryption scheme with key pair (e,d)
 - scheme is called a symmetric-key scheme
 if it is "relatively" easy to obtain d when e is know
 - often e = d
- Block cipher
 - break up plaintext into strings (blocks) of fixed length t
 - encrypt one block at a time
 - uses *substitution* and *transposition (permutation)* techniques
- Stream Cipher
 - special case of block cipher with block length t = 1
 - however, substitution technique can change for every block
 - key stream ($e_1, e_2, e_3, ...$)

- Simple (mono-alphabetic) substitution cipher
 - for each symbol $m_k \in A$ of the plaintext, substitute another symbol $e(m_k)$ according to the permutation p defined by the key e
 - $E_{e}(m) = (p(m_{1}), p(m_{2}), p(m_{3}), \dots)$
- Example
 - p: map each letter to the letter three positions on the right in the alphabet

Α	В	С	D	Е	F	G	Н	I	J	K	L	Μ	Ν	0	Ρ	Q	R	S	Т	U	V	W	Х	Y	Ζ
D	Е	F	G	Н	I	J	K	L	М	Ν	0	Ρ	Q	R	S	Т	U	V	W	Х	Y	Ζ	А	В	С

plaintext :THISC IPHER ISCER TAINL YNOTS ECUREciphertext:WKLVF LSKHU LVFHU WDLQO BQRWV HFXUH

- *Poly-alphabetic substitution (Vigenere) cipher*
 - for each symbol $m_k \in A$ of the plaintext, substitute another symbol $e(m_k)$ according to one of several permutations p_i defined by the key e
 - for two permutations p_1 and p_2 : $E_e(m) = (p_1(m_1), p_2(m_2), p_1(m_3), ...)$
- Example
 - using three permutations (mappings)
 - p₁: map to letter that is three positions to the right
 - p₂: map to letter that is seven positions to the right
 - p₃: map to letter that is ten positions to the right

plaintext :THISC IPHER ISCER TAINL YNOTS ECUREciphertext:WOSVJ SSOOU PCFLB WHSQS IQVDV LMXYO

- Transposition cipher
 - for each block of symbols $(m_1, ..., m_t) \in A$ of the plaintext, the key e defines a permutation on the set {1, ..., t } = { p(1), p(2), ..., p(t) }
 - $\quad \mathsf{E}_{e}(m) = (m_{p(1)}, \, m_{p(2)}, \, \dots, \, m_{p(t)},)$
- Example
 - t = 5, permutation is { 3, 4, 5, 1, 2 }

- Product cipher
 - combination of substitution and transposition (permutation)
 - often organized in multiple rounds of alternating techniques
 called a SPN (substitution-permutation-network) or Feistel network
 - aims to achieve *confusion* and *diffusion*
- Confusion
 - refers to making the relationship between the key and the ciphertext as complex and involved as possible (achieved via substitution)
- Diffusion
 - refers to the property that redundancy in the statistics of the plaintext is dissipated in the statistics of the ciphertext (via transposition)

- Many block ciphers are based on the SPN design
- Data Encryption Standard (DES) is most well-known

Stream Ciphers

- Block ciphers with t = 1
- $E_e(m) = (e_1(m_1), e_2(m_2), e_1(m_3), ..., e_i(m_i))$
- Sequence of keys $e_1, e_2, ..., e_i \in K$ is a called a keystream
- Vernam cipher
 - $m_1, m_2, ..., m_t \in \{0, 1\}$
 - $e_1, e_2, ..., e_t \in \{0, 1\}$
 - $c_i = m_i \oplus e_i$
 - when e_i are generated randomly and used only once \rightarrow one-time pad
 - in practice, keystream is often generated from a pseudo-random generator, using a secret seed as the actual key
- RC4
 - used in 802.11 networks for WEP (Wired Equivalent Privacy)

Public-key Cryptography

- Consider an encryption scheme with key pair (e,d)
 - scheme is called a public-key scheme
 if it is computationally infeasible to determine d when e is known
- In public-key schemes, E_e is usually a *trapdoor one-way function* and d is the trapdoor
- One-way function
 - A function f: X → Y is called a trapdoor function, if f(x) is "easy" to compute for all x ∈ X, but for most y ∈ Y, it is infeasible to find a x such that f(x) = y.
 - calculating the exponentiation of an element a in a finite field [a^p (mod n)]
 - multiplication of two large prime numbers [n = p*q]

Public-key Cryptography

- Trapdoor one-way function
 - A trapdoor function f: X → Y with the additional property that given some additional information (called the trapdoor information) it becomes feasible for all y ∈ Y to find a x such that f(x) = y.
- No longer necessary to transfer a secret key over a secure channel
- Significant problem is binding of public key to a certain person (authentication)
 - otherwise, an attacker can substitute his own public key for the victim's key
- Key certificates are needed
 - public key infrastructure (PKI)
 - idea is to cryptographically bind a public key to a certain entity via certificates
 - certificates commonly issued by certification authorities (CAs)
 - chain of trust is traced to a root CA (whose public key must be known by all participants)

RSA (named after its inventors Rivest, Shamir, and Adleman)

- Suppose user Alice wishes to allow Bob to send her a private message over an insecure transmission medium. She takes the following four steps to generate a public key and a private key:
- 1. Choose two large prime numbers p, q randomly and independently of each other. Compute N = p * q.
- 2. Compute $\phi(N) = (p-1)(q-1)$
- 3. Choose an integer $1 < e < \varphi(N)$ that is coprime to $\varphi(N)$
- 4. Compute *d* such that $d * e \equiv 1 \pmod{\phi(N)}$
- Public key = (e, N)
- Private key = (d, N)
- $\phi(N)$ cannot be easily computed from n, but easy from p and q

The 4 Steps of RSA

- Choose two large prime numbers p, q randomly and independently of each other. Compute N = p * q.
 Can be efficiently done by choosing random numbers of appropriate size and applying fast prime tests.
- 2. Compute $\varphi(N) = (p-1)(q-1)$ Trivial, given p and q.
- 3. Choose an integer $1 < e < \varphi(N)$ that is coprime to $\varphi(N)$ Enumerate small prime numbers and check if they divide $\varphi(N)$.

4. Compute *d* such that $d *e \equiv 1 \pmod{\phi(N)}$

Can be done using the extended Euclidian algorithm, which calculates the greatest common divisor (gcd) of two numbers a and b (with $a \ge b$)

Rounds	r	q	S	t
0	а	-	1	0
1	b	a / b	0	1
i	mod(r _{i-2} , r _{i-1})	r _{i-1} / r	s _{i-2} - q _{i-1} *s _{i-1}	t _{i-2} - q _{i-1} *t _{i-1}

- mod(a, b) is defined as the positive remainder such that $0 \le mod(a, b) \le b$
- algorithm terminates when $r_{n+1} = 0$
- \rightarrow then, gcd (a,b) = r_n = s_n*a + t_n*b

Example for extended Euclidian algorithm for a = 23, b = 5

Rounds	r	q	S	t
0	23	-	1	0
1	5	4	0	1
2	3	1	1	-4
3	2	1	-1	5
4	1	2	2	-9
5	0			

gcd (23,5) = 1 = 23 * 2 + (-9) * 5

here is where the magic happens!

→ when gcd (a,b) = 1, then $t_n * b \equiv 1 \pmod{a}$

In our case: $(-9) * 5 \equiv 14 * 5 \equiv 1 \pmod{23}$, and 14 is the inverse of 5 modulo 23

- Encrypting messages
 - Suppose Bob wishes to send a message *m* to Alice. He turns *m* into a number *n* < *N*. So Bob has *n*, and knows *N* and *e*, which Alice has announced. He then computes the ciphertext *c* corresponding to *n*.

 $c = n^e \pmod{N}$

 e can be large. Nevertheless, the calculation can be done quickly using the method of exponentiation by squaring.

• Exponentiation by squaring

 $545^{503} \pmod{943} = 545^{256+128+64+32+16+4+2+1} \pmod{943} = 545^{256} \cdot 545^{128} \cdots 545^{1} \pmod{943}$

 $545^{1} (\mod 943) = 545 (\mod 943) = 545$ $545^{2} (\mod 943) = 545 \cdot 545 (\mod 943) = 923$ $545^{4} (\mod 943) = 923 \cdot 923 (\mod 943) = 400$ $545^{8} (\mod 943) = 400 \cdot 400 (\mod 943) = 633$... $545^{256} (\mod 943) = 18 \cdot 18 (\mod 943) = 324$

 $545^{503} \pmod{943} = 324 \cdot 18 \cdot 215 \cdot 795 \cdot 857 \cdot 400 \cdot 923 \cdot 545 \pmod{943} = 35 \pmod{943}$

- Decrypting messages
 - Alice receives ciphertext c from Bob. She knows her own private key d and can recover the message, which is encoded as n, using

 $n = c^d \pmod{N}$

- Why does this work?
 - Fermat-Euler theorem: $a^{\varphi(N)} \equiv 1 \pmod{N}$
 - Decoded ciphertext can be written as

$$c^{d} = (n^{e})^{d} = n^{ed} = n^{1+k\varphi(N)} = n \cdot (n^{\varphi(N)})^{k}$$

Applying the Fermat-Euler theorem yields

$$n \cdot (n^{\varphi(N)})^k \equiv n \cdot (1)^k \equiv n \pmod{N}$$

- Different model (power) of adversary assumed
 - Known-Ciphertext Attack (KCA)
 - you only know the ciphertext
 - requires you know something about the plaintext (e.g., it's English text, an MP3, C source code, ...)
 - this is the model for the Sunday cryptograms which use substitution
 - Known-Plaintext Attack (KPA)
 - you have some number of plaintext-ciphertext pairs, but you cannot choose which plaintexts you would like to see
 - Chosen-Plaintext Attack (CPA)
 - you get to submit plaintexts of your choice to an encryption oracle (black box) and receive the ciphertexts in return

- Known-Ciphertext Attack (KCA)
 - weak attack model
 - works only when weak ciphers are used (simple substitution algorithms)
- Attacker can use frequency analysis
 - assumption is that symbols (letters) do not appear with the same frequency in the plaintext
 - this assumption holds with high probability if natural language texts are encrypted
 - in the English language, most frequent letters are E T N R O A S (in this order)
- Attack
 - analyze frequency of symbols in ciphertext
 - assume that symbols with high frequency correspond to frequent letters
 - try to reconstruct plaintext

- Frequency analysis has to be adapted when poly-alphabetic substitution is used
 - in this case, the number of different permutations is most difficult part to find out
 - once the number N of different permutations is known, the ciphertext can be divided into N groups
 - apply frequency analysis individually for each group
- Example with 3 permutations (from the Vigenere cipher)

plaintext :THISC IPHER ISCER TAINL YNOTS ECUREciphertext:WOSVJ SSOOU PCFLB WHSQS IQVDV LMXYO

Group 1: W, V, S, U, F, W, Q, Q, V, X | V(S), W(T), Q(N) Group 2: O, J, O, P, L, H, S, V, L, Y | O(H) Group 3: S, J, O, C, B, S, I, D, M, O | S(I), O(E)

- Better ciphers require more advanced attack techniques
- Two well-known techniques against secret-key block ciphers are
 - linear cryptanalysis
 - developed 1993 by Matsui
 - differential cryptanalysis
 - discovered three times by NSA, IBM, and Biham and Shamir
- We use a simple four round SPN as example
 - 16 bit key, 16 bit block size
 - S-Box with the following mapping (4 bit input \rightarrow 4 bit output)

0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
Е	4	D	1	2	F	В	8	3	А	6	С	5	9	0	7

- Linear cryptanalysis
 - known plaintext attack
 - exploits high probability occurrences of linear relationships between plaintext, ciphertext, and key bits
 - linear with regards to bitwise operation modulo 2 (i.e., XOR)
 - expressions of form $X_{i1} \oplus X_{i2} \oplus X_{i3} \oplus ... \oplus X_{iu} \oplus Y_{j1} \oplus Y_{j2} \oplus ... \oplus Y_{jv} = 0$
 - X_i = i-th bit of input plaintext [X_1 , X_2 , ...]

 Y_j = j-th bit of output ciphertext [$Y_1, Y_2, ...$]

- for a perfect cipher, such relationships hold with probability 1/2
- for vulnerable cipher, the probability p might be different from 1/2
- \rightarrow a bias |p 1/2| is introduced

- 2 steps
 - analyze the linear vulnerability of a single S-Box
 - connect the output of an S-Box to the input of the S-Box in the next round and "pile up" probability bias
- To analyze a single S-Box, check all possible linear approximations

X1	X2	X3	X4	Y1	Y2	Y3	Y4	X1 ⊕ X3 ⊕ X4 = Y2	X2 = Y2 ⊕ Y4
0	0	0	0	1	1	1	0	F	F
0	0	0	1	0	1	0	0	т	F
0	0	1	0	1	1	0	1	т	Т
0	0	1	1	0	0	0	1	Т	F
0	1	0	0	0	0	1	0	т	F
0	1	0	1	1	1	1	1	т	F
0	1	1	0	1	0	1	1	F	т
0	1	1	1	1	0	0	0	т	F
1	0	0	0	0	0	1	1	F	F
1	0	0	1	1	0	1	0	Т	Т
1	0	1	0	0	1	1	0	F	F
1	0	1	1	1	1	0	0	т	F
1	1	0	0	0	1	0	1	т	F
1	1	0	1	1	0	0	1	т	Т
1	1	1	0	0	0	0	0	Т	F
1	1	1	1	0	1	1	1	Т	F

• Linear approximations with many true or many false entries are interesting

 $p(X1 \oplus X3 \oplus X4 = Y2) = 12/16 = 0.75$ [bias = 0.25] $p(X2 = Y2 \oplus Y4) = 4/16 = 0.25$ [bias = -0.25]

• How to connect probabilities between different rounds?

consider the following equations, when bias of X1 is b1, and bias of X2 is b2

$$p(X1 \oplus X2 = 0) = p(X1)*p(X2) + (1-p(X1))*(1-p(X2))$$
$$= (1/2+b1)*(1/2+b2) + (1/2-b1)*(1/2-b2)$$
$$= 1/2 + 2*b1*b2$$

• Now, we show how we can eliminate intermediate variables

 $p(X1 \oplus X2 = 0) = 1/2 + b1,2$

 $p(X2 \oplus X3 = 0) = 1/2 + b2,3$

 $p(X1 \oplus X3 = 0) = p([X1 \oplus X2] \oplus [X2 \oplus X3] = 0)$ = p(X1 \oplus X3 = 0) = 1/2 + 2*b1,2 *b2,3

Let U_i(V_i) represent the 16-bit block of bits at the input (output) of the S-Box of round i. Then, let U_{i,k} denote the k-th bit of the i-th round of the cipher. Similarly, let K_i represent the key of round i.

• With probability 0.75 (and bias = 0.25), we have

V1,6 = U1,5 ⊕ U1,7 ⊕ U1,8

 $= (P5 \oplus K1,5) \oplus (P7 \oplus K1,7) \oplus (P8 \oplus K1,8)$

- For the second round, we obtain with probability 0.25 (bias = -0.25)
 V2,6 ⊕ V2,8 = U2,6 ⊕ K2,6
- Because U2,6 = V1,6, we can connect these two equations and get V2,6 ⊕ V2,8 = (P5 ⊕ K1,5) ⊕ (P7 ⊕ K1,7) ⊕ (P8 ⊕ K1,8) ⊕ K2,6 which can be rewritten as V2,6 ⊕ V2,8 ⊕ P5 ⊕ P7 ⊕ P8 ⊕ K1,7 ⊕ K1,8 ⊕ K2,6 = 0

This holds with a probability (see before) of 1/2 + 2*0.25*(-0.25) = 0.375

• We continue to eliminate intermediate variables in intermediate rounds to obtain

 $U4,6 \oplus U4,8 \oplus U4,14 \oplus U4,16 \oplus P5 \oplus P7 \oplus P8 \oplus \Sigma = 0$

where \sum is a constant factor (either 0 or 1 that depends on a number of key bits)

This equation holds with a probability of 15/32 (with a bias of -1/32).

Because \sum is fixed, we know the following linear approximation of the cipher that holds with probability 15/32 or 17/32 (depending on whether \sum is 0 or 1): U4,6 \oplus U4,8 \oplus U4,14 \oplus U4,16 \oplus P5 \oplus P7 \oplus P8 = 0

- Given an equation that relates the input to the last round of S-Boxes to the plaintext, how can we get the key?
- We attack parts of the key (called target subkey) of the last round, in particular those bits of the key that connect the output of our S-Boxes of interest with the ciphertext

Given the equation U4,6 \oplus U4,8 \oplus U4,14 \oplus U4,16 \oplus P5 \oplus P7 \oplus P8 = 0, we look at the 8 bits K5,5 - K5,8 and K5,13-K5,16

- Idea
 - for a large number of ciphertext and plaintext pairs, we first feed the ciphertext back into the active S-Boxes S_{42} and S_{44}
 - because we do not know the target subkey, we have to repeat this feedback procedure for all possible 256 key
 - for each subkey, we keep a count on how often the linear equation holds
 - when the wrong subkey is used
 - the equation will hold with probability 1/2 (similar to using random values)
 - when the correct subkey is used
 - the equation will hold with more or less often than 1/2 (depending on the bias)
 - → after all pairs of plaintext and ciphertext are checked, we take the subkey with the count that differs most from 1/2

Differential Cryptanalysis

- Similar in spirit to linear cryptanalysis
- Chosen plaintext attack
- Instead of linear relationships, sensitivity to modifications of the input are analyzed
 - when certain bits of the input are changed, how does the output change
 - for an ideal cipher, a single bit flip in the input makes all output bits change with a probability of 1/2
 - not always the case
 - probabilistic attack that targets the key of the last round

Conclusion

- Cryptographic schemes
 - symmetric-key cryptography
 - block ciphers
 - DES, SPN, Feistel networks
 - stream ciphers
 - public-key cryptography
 - RSA
- Cryptanalysis
 - frequency analysis
 - linear and differential cryptanalysis

tutorial on this topic available under http://www.engr.mun.ca/~howard/