Internet Security [1] VU 184.216

Engin Kirda
Christopher Kruegel
engin@infosys.tuwien.ac.at
chris@auto.tuwien.ac.at

News from the Lab

- Challenge 4
- deadline is next week (31st May)
- 1/3 of the students have successfully submitted so far
- we have observed many programming problems
- please start early
- Challenge 5
- issued next week (probably on 31st May)
- deciphering encrypted texts
- both private and public key schemes

Administration

- DIMVA 2005
(Detection of Intrusions and Malware \& Vulnerability Assessment)
- security conference co-organized by Engin and myself
- held in Vienna on 7.-8. July 2005
- early registration until 2. June 2005
- student fee is 75 Euro
- Benefits
- listen to security research talks given by international experts
- proceedings book
- dinner reception at the Rathaus
- food and gimmicks
- Information and Registration
http://www.dimva.org/dimva2005/

Cryptography

Cryptography

- (One) definition of cryptography

Mathematical techniques related to aspects of information security such as

- confidentiality
- keep content of information from all but authorized entities
- integrity
- protect information from unauthorized alteration
- authentication
- identification of data or communicating entities
- non-repudiation
- prevent entity from denying previous commitments or actions

History

- Classic cryptography
- Ancient Egypt
- non-standard hieroglyphs
- Hebrew scholars
- Atbash - mono-alphabetic substitution (reverse of Hebrew alphabet)
- Greek
- Steganography (under wax on table, hair of slaves)
- Roman
- Caesar cipher - mono-alphabetic substitution (letters are shifted by fixed offset)
- Alberti (1465)
- poly-alphabetic substitution

Terminology

- Alphabet of definition A
- finite set of symbols, e.g., binary alphabet $\{0,1\}$
- Message space M
- set that contains strings from symbols of an alphabet A_{1}
- elements of M are called plaintext messages
- Ciphertext space C
- set that contains strings from symbols of an alphabet A_{2}
- elements of C are called ciphertext messages
- Key space K
- each element $e \in K$ uniquely determines bijective mapping $E_{e}: M \rightarrow C$ (called encryption function)
- each element $d \in K$ uniquely determines bijective mapping $D_{d}: M \rightarrow C$ (called decryption function)

Terminology

- Keys (e,d)
- not necessarily identical
- referred to as key pair
- Fundamental
- all alphabets and the encryption/decryption functions are public knowledge
- only the selection of the key pair remains secret
- System is breakable
- if a third party can (without the knowledge of the key pair) systematically recover plaintext from corresponding ciphertext within some appropriate time frame
- exhaustive key search must be made impossible
- Cryptanalysis
- study of techniques to defeat cryptographic techniques

Taxonomy

- Unkeyed primitives
- hash functions
- random sequences
- Symmetric-key primitives
- block ciphers
- stream ciphers
- signatures
- pseudorandom sequences
- Public-key primitives
- public-key ciphers
- signatures

Symmetric-key Cryptography

- Consider an encryption scheme with key pair (e,d)
- scheme is called a symmetric-key scheme
if it is "relatively" easy to obtain d when e is know
- often $\mathrm{e}=\mathrm{d}$
- Block cipher
- break up plaintext into strings (blocks) of fixed length t
- encrypt one block at a time
- uses substitution and transposition (permutation) techniques
- Stream Cipher
- special case of block cipher with block length $t=1$
- however, substitution technique can change for every block
- key stream $\left(e_{1}, e_{2}, e_{3}, \ldots\right)$

Block Ciphers

- Simple (mono-alphabetic) substitution cipher
- for each symbol $m_{k} \in A$ of the plaintext, substitute another symbol $e\left(m_{k}\right)$ according to the permutation p defined by the key e
$-E_{e}(m)=\left(p\left(m_{1}\right), p\left(m_{2}\right), p\left(m_{3}\right), \ldots\right)$
- Example
- p: map each letter to the letter three positions on the right in the alphabet

A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z
D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C

plaintext: THISC IPHER ISCER TAINL YNOTS ECURE
ciphertext: WKLVF LSKHU LVFHU WDLQO BQRWV HFXUH

Block Ciphers

- Poly-alphabetic substitution (Vigenere) cipher
- for each symbol $m_{k} \in A$ of the plaintext, substitute another symbol $e\left(m_{k}\right)$
according to one of several permutations p_{i} defined by the key e
- for two permutations p_{1} and $p_{2}: E_{e}(m)=\left(p_{1}\left(m_{1}\right), p_{2}\left(m_{2}\right), p_{1}\left(m_{3}\right), \ldots\right)$
- Example
- using three permutations (mappings)
- p_{1} : map to letter that is three positions to the right
- p_{2} : map to letter that is seven positions to the right
- p_{3} : map to letter that is ten positions to the right
plaintext: THISC IPHER ISCER TAINL YNOTS ECURE
ciphertext: WOSVJ SSOOU PCFLB WHSQS IQVDV LMXYO

Block Ciphers

- Transposition cipher
- for each block of symbols $\left(m_{1}, \ldots, m_{t}\right) \in A$ of the plaintext, the key e defines a permutation on the set $\{1, \ldots, t\}=\{p(1), p(2), \ldots, p(t)\}$
$-E_{e}(m)=\left(m_{p(1)}, m_{p(2)}, \ldots, m_{p(t)}\right)$
- Example
$-t=5$, permutation is $\{3,4,5,1,2\}$
plaintext: THISC IPHER ISCER TAINL YNOTS ECURE
ciphertext: ISCTH HERIP CERIS INLTA OTSYN UREEC

Block Ciphers

- Product cipher
- combination of substitution and transposition (permutation)
- often organized in multiple rounds of alternating techniques called a SPN (substitution-permutation-network) or Feistel network
- aims to achieve confusion and diffusion
- Confusion
- refers to making the relationship between the key and the ciphertext as complex and involved as possible (achieved via substitution)
- Diffusion
- refers to the property that redundancy in the statistics of the plaintext is dissipated in the statistics of the ciphertext (via transposition)

Block Ciphers

- Many block ciphers are based on the SPN design
- Data Encryption Standard (DES) is most well-known
- 64 bit block size
- 56 bit keys
- 16 rounds
$-S_{1}-S_{8}$
- S-Boxes
- non-linear mapping
- P
- permutation network

Stream Ciphers

- Block ciphers with $t=1$
- $\quad E_{e}(m)=\left(e_{1}\left(m_{1}\right), e_{2}\left(m_{2}\right), e_{1}\left(m_{3}\right), \ldots, e_{i}\left(m_{i}\right)\right)$
- Sequence of keys $e_{1}, e_{2}, \ldots, e_{i} \in K$ is a called a keystream
- Vernam cipher
$-m_{1}, m_{2}, \ldots, m_{t} \in\{0,1\}$
$-e_{1}, e_{2}, \ldots, e_{t} \in\{0,1\}$
$-c_{i}=m_{i} \oplus e_{i}$
- when e_{i} are generated randomly and used only once \rightarrow one-time pad
- in practice, keystream is often generated from a pseudo-random generator, using a secret seed as the actual key
- RC4
- used in 802.11 networks for WEP (Wired Equivalent Privacy)

Public-key Cryptography

- Consider an encryption scheme with key pair (e,d)
- scheme is called a public-key scheme
if it is computationally infeasible to determine d when e is known
- In public-key schemes, E_{e} is usually a trapdoor one-way function and d is the trapdoor
- One-way function
- A function $f: X \rightarrow Y$ is called a trapdoor function, if $f(x)$ is "easy" to compute for all $x \in X$, but for most $y \in Y$, it is infeasible to find a x such that $f(x)=y$.
- calculating the exponentiation of an element a in a finite field [$a^{p}(\bmod n)$]
- multiplication of two large prime numbers [$n=p^{*} q$]

Public-key Cryptography

- Trapdoor one-way function
- A trapdoor function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ with the additional property that given some additional information (called the trapdoor information) it becomes feasible for all $y \in Y$ to find $a x$ such that $f(x)=y$.
- No longer necessary to transfer a secret key over a secure channel
- Significant problem is binding of public key to a certain person (authentication)
- otherwise, an attacker can substitute his own public key for the victim's key
- Key certificates are needed
- public key infrastructure (PKI)
- idea is to cryptographically bind a public key to a certain entity via certificates
- certificates commonly issued by certification authorities (CAs)
- chain of trust is traced to a root CA (whose public key must be known by all participants)

RSA

RSA (named after its inventors Rivest, Shamir, and Adleman)

- \quad Suppose user Alice wishes to allow Bob to send her a private message over an insecure transmission medium. She takes the following four steps to generate a public key and a private key:

1. Choose two large prime numbers p, q randomly and independently of each other. Compute $N=p$ * .
2. Compute $\varphi(\mathrm{N})=(p-1)(q-1)$
3. Choose an integer $1<e<\varphi(N)$ that is coprime to $\varphi(N)$
4. Compute d such that $d{ }^{*} e \equiv 1(\bmod \varphi(N))$

- \quad Public key $=(\mathrm{e}, \mathrm{N})$
- \quad Private key $=(\mathrm{d}, \mathrm{N})$
- $\quad \varphi(N)$ cannot be easily computed from n, but easy from p and q

RSA

The 4 Steps of RSA

1. Choose two large prime numbers p, q randomly and independently of each other. Compute $N=p^{*} q$.
Can be efficiently done by choosing random numbers of appropriate size and applying fast prime tests.
2. Compute $\varphi(N)=(p-1)(q-1)$

Trivial, given p and q.
3. Choose an integer $1<e<\varphi(N)$ that is coprime to $\varphi(N)$

Enumerate small prime numbers and check if they divide $\varphi(N)$.

RSA

4. Compute d such that $d{ }^{*} e \equiv 1(\bmod \varphi(N))$

Can be done using the extended Euclidian algorithm, which calculates the greatest common divisor (gcd) of two numbers a and b (with $a \geq b$)

Rounds	r	q	s	t
0	a	-	1	0
1	b	a / b	0	1
i	$\bmod \left(\mathrm{r}_{\mathrm{i}-2}, \mathrm{r}_{\mathrm{i}-1}\right)$	$\mathrm{r}_{\mathrm{i}-1} / \mathrm{r}$	$\mathrm{s}_{\mathrm{i}-2}-\mathrm{q}_{\mathrm{i}-1}{ }^{*} \mathrm{~s}_{\mathrm{i}-1}$	$\mathrm{t}_{\mathrm{i}-2}-\mathrm{q}_{\mathrm{i}-1}{ }^{*} \mathrm{t}_{\mathrm{i}-1}$

- $\quad \bmod (a, b)$ is defined as the positive remainder such that $0 \leq \bmod (a, b)<b$
- algorithm terminates when $r_{n+1}=0$
$\rightarrow \quad$ then, $\operatorname{gcd}(a, b)=r_{n}=s_{n}{ }^{*} a+t_{n}{ }^{*} b$

RSA

Example for extended Euclidian algorithm for $a=23, b=5$

Rounds	r	q	s	t
0	23	-	1	0
1	5	4	0	1
2	3	1	1	-4
3	2	1	-1	5
4	1	2	2	-9
5	0			

$\operatorname{gcd}(23,5)=1=23 * 2+(-9) * 5$
here is where the magic happens!
$\rightarrow \quad$ when $\operatorname{gcd}(a, b)=1$, then $t_{n}{ }^{*} b \equiv 1(\bmod a)$

In our case: $(-9) * 5 \equiv 14 * 5 \equiv 1(\bmod 23)$, and 14 is the inverse of 5 modulo 23

- Encrypting messages
- Suppose Bob wishes to send a message m to Alice. He turns m into a number $n<N$. So Bob has n, and knows N and e, which Alice has announced. He then computes the ciphertext c corresponding to n. $c=n^{e}(\bmod N)$
- e can be large. Nevertheless, the calculation can be done quickly using the method of exponentiation by squaring.

RSA

- Exponentiation by squaring
$545^{503}(\bmod 943)=545^{256+128+64+32+16+4+2+1}(\bmod 943)=545^{256} \cdot 545^{128} \cdots 545^{1}(\bmod 943)$

$545^{1}(\bmod 943)=545(\bmod 943)$	$=545$
$545^{2}(\bmod 943)=545 \cdot 545(\bmod 943)$	$=923$
$545^{4}(\bmod 943)=923 \cdot 923(\bmod 943)$	$=400$
$545^{8}(\bmod 943)=400 \cdot 400(\bmod 943)$	$=633$
\ldots	$=324$
$545^{256}(\bmod 943)=18 \cdot 18(\bmod 943)$	$=3$

$$
545^{503}(\bmod 943)=324 \cdot 18 \cdot 215 \cdot 795 \cdot 857 \cdot 400 \cdot 923 \cdot 545(\bmod 943)=35(\bmod 943)
$$

- Decrypting messages
- Alice receives ciphertext c from Bob. She knows her own private key d and can recover the message, which is encoded as n, using

$$
n=c^{d}(\bmod N)
$$

- Why does this work?
- Fermat-Euler theorem: $a^{\varphi(N)} \equiv 1(\bmod N)$
- Decoded ciphertext can be written as

$$
c^{d}=\left(n^{e}\right)^{d}=n^{e d}=n^{1+k \varphi(N)}=n \cdot\left(n^{\varphi(N)}\right)^{k}
$$

- Applying the Fermat-Euler theorem yields

$$
n \cdot\left(n^{\varphi(N)}\right)^{k} \equiv n \cdot(1)^{k} \equiv n(\bmod N)
$$

Cryptanalysis

- Different model (power) of adversary assumed
- Known-Ciphertext Attack (KCA)
- you only know the ciphertext
- requires you know something about the plaintext (e.g., it's English text, an MP3, C source code, ...)
- this is the model for the Sunday cryptograms which use substitution
- Known-Plaintext Attack (KPA)
- you have some number of plaintext-ciphertext pairs, but you cannot choose which plaintexts you would like to see
- Chosen-Plaintext Attack (CPA)
- you get to submit plaintexts of your choice to an encryption oracle (black box) and receive the ciphertexts in return

Cryptanalysis

- Known-Ciphertext Attack (KCA)
- weak attack model
- works only when weak ciphers are used (simple substitution algorithms)
- Attacker can use frequency analysis
- assumption is that symbols (letters) do not appear with the same frequency in the plaintext
- this assumption holds with high probability if natural language texts are encrypted
- in the English language, most frequent letters are ETNROAS (in this order)
- Attack
- analyze frequency of symbols in ciphertext
- assume that symbols with high frequency correspond to frequent letters
- try to reconstruct plaintext

Cryptanalysis

- Frequency analysis has to be adapted when poly-alphabetic substitution is used
- in this case, the number of different permutations is most difficult part to find out
- once the number N of different permutations is known, the ciphertext can be divided into N groups
- apply frequency analysis individually for each group
- Example with 3 permutations (from the Vigenere cipher)
plaintext: THISC IPHER ISCER TAINL YNOTS ECURE ciphertext: WOSVJ SSOOU PCFLB WHSQS IQVDV LMXYO

Group 1: W, V, S, U, F, W, Q, Q, V, X Group 2: O, J, O, P, L, H, S, V, L, Y Group 3: S, J, O, C, B, S, I, D, M, O

V(S), W(T), Q(N)
O(H)
| S(I), O(E)

Cryptanalysis

- Better ciphers require more advanced attack techniques
- Two well-known techniques against secret-key block ciphers are
- linear cryptanalysis
- developed 1993 by Matsui
- differential cryptanalysis
- discovered three times by NSA, IBM, and Biham and Shamir
- We use a simple four round SPN as example
- 16 bit key, 16 bit block size
- S-Box with the following mapping (4 bit input $\rightarrow 4$ bit output)

0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
E	4	D	1	2	F	B	8	3	A	6	C	5	9	0	7

Cryptanalysis

Cryptanalysis

- Linear cryptanalysis
- known plaintext attack
- exploits high probability occurrences of linear relationships between plaintext, ciphertext, and key bits
- linear with regards to bitwise operation modulo 2 (i.e., XOR)
- expressions of form $X_{i 1} \oplus X_{i 2} \oplus X_{i 3} \oplus \ldots \oplus X_{i u} \oplus Y_{j 1} \oplus Y_{j 2} \oplus \ldots \oplus Y_{j v}=0$
$X_{i}=i$-th bit of input plaintext [$\left.X_{1}, X_{2}, \ldots\right]$
$Y_{j}=j$-th bit of output ciphertext $\left[Y_{1}, Y_{2}, \ldots\right]$
- for a perfect cipher, such relationships hold with probability 1/2
- for vulnerable cipher, the probability p might be different from $1 / 2$
\rightarrow a bias $|p-1 / 2|$ is introduced

Linear Cryptanalysis

- 2 steps
- analyze the linear vulnerability of a single S-Box
- connect the output of an S-Box to the input of the S-Box in the next round and "pile up" probability bias
- To analyze a single S-Box, check all possible linear approximations

Linear Cryptanalysis

X 1	X 2	X 3	X 4	Y 1	Y 2	Y 3	Y 4	$\mathrm{X} 1 \oplus \mathrm{X} 3 \oplus \mathrm{X} 4=\mathrm{Y} 2$	$\mathrm{X} 2=\mathrm{Y} 2 \oplus \mathrm{Y} 4$
0	0	0	0	1	1	1	0	F	F
0	0	0	1	0	1	0	0	T	F
0	0	1	0	1	1	0	1	T	T
0	0	1	1	0	0	0	1	T	F
0	1	0	0	0	0	1	0	T	F
0	1	0	1	1	1	1	1	T	F
0	1	1	0	1	0	1	1	F	T
0	1	1	1	1	0	0	0	T	F
1	0	0	0	0	0	1	1	F	F
1	0	0	1	1	0	1	0	T	T
1	0	1	0	0	1	1	0	F	F
1	0	1	1	1	1	0	0	T	F
1	1	0	0	0	1	0	1	T	F
1	1	0	1	1	0	0	1	T	T
1	1	1	0	0	0	0	0	T	F
1	1	1	1	0	1	1	1	T	F

Linear Cryptanalysis

- Linear approximations with many true or many false entries are interesting

$$
\begin{array}{ll}
p(X 1 \oplus X 3 \oplus X 4=Y 2)=12 / 16=0.75 & {[\text { bias }=0.25]} \\
p(X 2=Y 2 \oplus Y 4)=4 / 16=0.25 & {[\text { bias }=-0.25]}
\end{array}
$$

- How to connect probabilities between different rounds?
consider the following equations, when bias of $X 1$ is $b 1$, and bias of $X 2$ is b2

$$
\begin{aligned}
p(X 1 \oplus X 2=0) & =p(X 1)^{*} p(X 2)+(1-p(X 1))^{*}(1-p(X 2)) \\
& =(1 / 2+b 1)^{*}(1 / 2+b 2)+(1 / 2-b 1)^{*}(1 / 2-b 2) \\
& =1 / 2+2^{*} b 1 * b 2
\end{aligned}
$$

Linear Cryptanalysis

- Now, we show how we can eliminate intermediate variables

$$
\begin{aligned}
p(\mathrm{X} 1 \oplus \mathrm{X} 2=0) & =1 / 2+\mathrm{b} 1,2 \\
\mathrm{p}(\mathrm{X} 2 \oplus \mathrm{X} 3=0) & =1 / 2+\mathrm{b} 2,3 \\
\mathrm{p}(\mathrm{X} 1 \oplus \mathrm{X} 3=0) & =p([\mathrm{X} 1 \oplus \mathrm{X} 2] \oplus[\mathrm{X} 2 \oplus \mathrm{X} 3]=0) \\
& =p(\mathrm{X} 1 \oplus \mathrm{X} 3=0) \\
& =1 / 2+2^{*} \mathrm{~b} 1,2 * b 2,3
\end{aligned}
$$

- Let $\mathrm{U}_{\mathrm{i}}\left(\mathrm{V}_{\mathrm{i}}\right)$ represent the 16-bit block of bits at the input (output) of the S-Box of round i. Then, let $U_{i, k}$ denote the k-th bit of the i-th round of the cipher. Similarly, let K_{i} represent the key of round i .

Linear Cryptanalysis

Linear Cryptanalysis

- With probability 0.75 (and bias $=0.25$), we have

$$
\begin{aligned}
\mathrm{V} 1,6 & =\mathrm{U} 1,5 \oplus \mathrm{U} 1,7 \oplus \mathrm{U} 1,8 \\
& =(\mathrm{P} 5 \oplus \mathrm{~K} 1,5) \oplus(\mathrm{P} 7 \oplus \mathrm{~K} 1,7) \oplus(\mathrm{P} 8 \oplus \mathrm{~K} 1,8)
\end{aligned}
$$

- For the second round, we obtain with probability 0.25 (bias $=-0.25$)

$$
\mathrm{V} 2,6 \oplus \mathrm{~V} 2,8=\mathrm{U} 2,6 \oplus \mathrm{~K} 2,6
$$

- Because U2,6 = V1,6, we can connect these two equations and get $\mathrm{V} 2,6 \oplus \mathrm{~V} 2,8=(\mathrm{P} 5 \oplus \mathrm{~K} 1,5) \oplus(\mathrm{P} 7 \oplus \mathrm{~K} 1,7) \oplus(\mathrm{P} 8 \oplus \mathrm{~K} 1,8) \oplus \mathrm{K} 2,6$ which can be rewritten as $\mathrm{V} 2,6 \oplus \mathrm{~V} 2,8 \oplus \mathrm{P} 5 \oplus \mathrm{P} 7 \oplus \mathrm{P} 8 \oplus \mathrm{~K} 1,7 \oplus \mathrm{~K} 1,8 \oplus \mathrm{~K} 2,6=0$

This holds with a probability (see before) of $1 / 2+2^{*} 0.25^{*}(-0.25)=0.375$

Linear Cryptanalysis

- We continue to eliminate intermediate variables in intermediate rounds to obtain
$\mathrm{U} 4,6 \oplus \mathrm{U} 4,8 \oplus \mathrm{U} 4,14 \oplus \mathrm{U} 4,16 \oplus \mathrm{P} 5 \oplus \mathrm{P} 7 \oplus \mathrm{P} 8 \oplus \Sigma=0$
where Σ is a constant factor (either 0 or 1 that depends on a number of key bits)

This equation holds with a probability of $15 / 32$ (with a bias of $-1 / 32$).

Because \sum is fixed, we know the following linear approximation of the cipher that holds with probability $15 / 32$ or $17 / 32$ (depending on whether \sum is 0 or 1): $\mathrm{U} 4,6 \oplus \mathrm{U} 4,8 \oplus \mathrm{U} 4,14 \oplus \mathrm{U} 4,16 \oplus \mathrm{P} 5 \oplus \mathrm{P} 7 \oplus \mathrm{P} 8=0$

Linear Cryptanalysis

- Given an equation that relates the input to the last round of S-Boxes to the plaintext, how can we get the key?
- We attack parts of the key (called target subkey) of the last round, in particular those bits of the key that connect the output of our S-Boxes of interest with the ciphertext

Given the equation $\mathrm{U} 4,6 \oplus \mathrm{U} 4,8 \oplus \mathrm{U} 4,14 \oplus \mathrm{U} 4,16 \oplus \mathrm{P} 5 \oplus \mathrm{P} 7 \oplus \mathrm{P} 8=0$, we look at the 8 bits $\mathrm{K} 5,5-\mathrm{K} 5,8$ and $\mathrm{K} 5,13-\mathrm{K} 5,16$

Linear Cryptanalysis

- Idea
- for a large number of ciphertext and plaintext pairs, we first feed the ciphertext back into the active S-Boxes S_{42} and S_{44}
- because we do not know the target subkey, we have to repeat this feedback procedure for all possible 256 key
- for each subkey, we keep a count on how often the linear equation holds
- when the wrong subkey is used
- the equation will hold with probability $1 / 2$ (similar to using random values)
- when the correct subkey is used
- the equation will hold with more or less often than $1 / 2$ (depending on the bias)
\rightarrow after all pairs of plaintext and ciphertext are checked, we take the subkey with the count that differs most from $1 / 2$

Differential Cryptanalysis

- Similar in spirit to linear cryptanalysis
- Chosen plaintext attack
- Instead of linear relationships, sensitivity to modifications of the input are analyzed
- when certain bits of the input are changed, how does the output change
- for an ideal cipher, a single bit flip in the input makes all output bits change with a probability of $1 / 2$
- not always the case
- probabilistic attack that targets the key of the last round

Conclusion

- Cryptographic schemes
- symmetric-key cryptography
- block ciphers
- DES, SPN, Feistel networks
- stream ciphers
- public-key cryptography
- RSA
- Cryptanalysis
- frequency analysis
- linear and differential cryptanalysis tutorial on this topic available under http://www.engr.mun.ca/~howard/

