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« Challenge 4
— deadline is next week (31st May)
— 1/3 of the students have successfully submitted so far

— we have observed many programming problems
— please start early

« Challenge 5
— issued next week (probably on 31st May)
— deciphering encrypted texts
— both private and public key schemes




DIMVA 2005

(Detection of Intrusions and Malware & Vulnerability Assessment)
— security conference co-organized by Engin and myself
— held in Vienna on 7.-8. July 2005
— early registration until 2. June 2005
— student fee is 75 Euro

Benefits
— listen to security research talks given by international experts
— proceedings book
— dinner reception at the Rathaus
— food and gimmicks

Information and Registration
http://www.dimva.org/dimva2005/




Cryptography




(One) definition of cryptography

Mathematical techniques related to aspects of information
security such as

— confidentiality
» keep content of information from all but authorized entities

— integrity
» protect information from unauthorized alteration

— authentication

« identification of data or communicating entities

— non-repudiation
« prevent entity from denying previous commitments or actions




Classic cryptography

— Ancient Egypt
* non-standard hieroglyphs

— Hebrew scholars
» Atbash - mono-alphabetic substitution (reverse of Hebrew alphabet)

— Greek
« Steganography (under wax on table, hair of slaves)

— Roman
» Caesar cipher - mono-alphabetic substitution (letters are shifted by
fixed offset)

— Alberti (1465)
« poly-alphabetic substitution




Alphabet of definition A
— finite set of symbols, e.g., binary alphabet {0,1}

Message space M
— set that contains strings from symbols of an alphabet A,
— elements of M are called plaintext messages

Ciphertext space C
— set that contains strings from symbols of an alphabet A,
— elements of C are called ciphertext messages

Key space K
— each element e € K uniquely determines bijective mapping E,: M — C
(called encryption function)

— each element d € K uniquely determines bijective mapping Dg;: M — C
(called decryption function)




Keys (e,d)
— not necessarily identical
— referred to as key pair

Fundamental
— all alphabets and the encryption/decryption functions are public knowledge
— only the selection of the key pair remains secret

System is breakable

— if a third party can (without the knowledge of the key pair) systematically
recover plaintext from corresponding ciphertext within some appropriate
time frame

— exhaustive key search must be made impossible

Cryptanalysis
— study of techniques to defeat cryptographic techniques




* Unkeyed primitives
— hash functions
— random sequences

«  Symmetric-key primitives
— block ciphers
— stream ciphers
— signatures
— pseudorandom sequences

* Public-key primitives
— public-key ciphers
— signatures




Symmetric-key Cryptography

Consider an encryption scheme with key pair (e,d)
— scheme is called a symmetric-key scheme
if it is “relatively” easy to obtain d when e is know
— oftene=d

Block cipher
— break up plaintext into strings (blocks) of fixed length t
— encrypt one block at a time
— uses substitution and transposition (permutation) techniques

Stream Cipher
— special case of block cipher with block length t = 1
— however, substitution technique can change for every block
— key stream (eq, €5, €5, ... )
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Simple (mono-alphabetic) substitution cipher

— for each symbol m, € A of the plaintext, substitute another symbol e(m,)
according to the permutation p defined by the key e

— E¢(m) = (p(m,), p(my), p(my), ... )

Example

— p: map each letter to the letter three positions on the right in the alphabet

A|B

C

D|E

FIGIH|I]|J|K|L[M|N]|O

P1Q

R

S

T

U

\Y

W

D|E

F

G|H

JIK|LIM|IN|O|[P|Q|R|S

T

U

\Y

W | X

Y

Z

plaintext :
ciphertext:

THISC IPHER ISCER TAINL YNOTS ECURE
WKLVF LSKHU LVFHU WDLQO BQRWV HFXUH
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Poly-alphabetic substitution (Vigenere) cipher

— for each symbol m, € A of the plaintext, substitute another symbol e(m,)
according to one of several permutations p; defined by the key e

— for two permutations p,; and p,: E,(m) = (p;(m,), p,(m,), p;(ms), ... )

Example
— using three permutations (mappings)
* p,: map to letter that is three positions to the right
* p,: map to letter that is seven positions to the right
* p,;: map to letter that is ten positions to the right

plaintext : THISC IPHER ISCER TAINL YNOTS ECURE
ciphertext: WOSVJ SSOOU PCFLB WHSQS IQVDV LMXYO
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Transposition cipher

— for each block of symbols (m,, ... , m,) € A of the plaintext, the key e
defines a permutation on the set {1, ..., t} ={p(1), p(2), ..., p(t) }
= Be(m) = (M), M), -y Myy,)
Example

— t=35, permutationis {3,4,5,1,2}

plaintext : THISC IPHER ISCER TAINL YNOTS ECURE

ciphertext: ISCTH HERIP CERIS INLTA OTSYN UREEC
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* Product cipher
— combination of substitution and transposition (permutation)
— often organized in multiple rounds of alternating techniques
called a SPN (substitution-permutation-network) or Feistel network
— aims to achieve confusion and diffusion

« Confusion

— refers to making the relationship between the key and the ciphertext as
complex and involved as possible (achieved via substitution)

« Diffusion

— refers to the property that redundancy in the statistics of the plaintext is
dissipated in the statistics of the ciphertext (via transposition)

14



Block Ciphers

Many block ciphers are based on the SPN design

Data Encryption Standard (DES) is most well-known
— 64 bit block size

Half Block (32 bits) Subkey (48 bits)
— 56 bit keys l
— 16 rounds .
s
Sl
- S¢-Sg
 S-Boxes
. non_linear mapplng S1 S2 S3 S4 S5 S6 S7 S8
- P
« permutation network P
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« Block ciphers with t = 1

* Edm)=(e4(my), e5(m,), €4(my), ..., e(m;))
« Sequence of keys e,, e,, ..., e € Kis a called a keystream

* Vernam cipher
- my, My, ..., m € {0,1}
- €46, ...,6E{0,1}
— ¢ =m® e,
— when e, are generated randomly and used only once — one-time pad

— in practice, keystream is often generated from a pseudo-random generator,
using a secret seed as the actual key

« RC4
— used in 802.11 networks for WEP (Wired Equivalent Privacy)
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Consider an encryption scheme with key pair (e,d)
— scheme is called a public-key scheme
if it is computationally infeasible to determine d when e is known

In public-key schemes, E_ is usually a trapdoor one-way function and d
is the trapdoor

One-way function
— Afunction f: X — Y is called a trapdoor function, if f(x) is “easy” to compute
for all x € X, but for mosty €Y, it is infeasible to find a x such that f(x) =y.
— calculating the exponentiation of an element a in a finite field [ aP (mod n) ]
— multiplication of two large prime numbers [ n = p*q]
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Trapdoor one-way function

A trapdoor function f: X — Y with the additional property that given some

additional information (called the trapdoor information) it becomes feasible

forally €Y to find a x such that f(x) = y.

No longer necessary to transfer a secret key over a secure channel

Significant problem is binding of public key to a certain person (authentication)

otherwise, an attacker can substitute his own public key for the victim’s key

Key certificates are needed

public key infrastructure (PKI)
idea is to cryptographically bind a public key to a certain entity via certificates
certificates commonly issued by certification authorities (CAs)

chain of trust is traced to a root CA (whose public key must be known by all
participants)
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RSA (named after its inventors Rivest, Shamir, and Adleman)

Suppose user Alice wishes to allow Bob to send her a private message over
an insecure transmission medium. She takes the following four steps to
generate a public key and a private key:

Choose two large prime numbers p, g randomly and independently of each
other. Compute N=p *q.

Compute ¢(N) = (p-1)(g-1)
Choose an integer 1 < e < ¢(N) that is coprime to @(N)
Compute d such that d *e = 1 (mod ¢@(N))

Public key = (e, N)
Private key = (d, N)
¢@(N) cannot be easily computed from n, but easy from p and q
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The 4 Steps of RSA

1. Choose two large prime numbers p, q randomly and independently of
each other. Compute N =p *q.

Can be efficiently done by choosing random numbers of appropriate
size and applying fast prime tests.

2. Compute @(N) = (p-1)(q-1)
Trivial, given p and q.

3. Choose an integer 1 < e < @(N) that is coprime to @(N)
Enumerate small prime numbers and check if they divide ¢(N).
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Compute d such that d *e = 1 (mod ¢@(N))
Can be done using the extended Euclidian algorithm, which

calculates the greatest common divisor (gcd) of two numbers
a and b (witha = b)

Rounds r q S
0 a - 1 0
1 b alb 0
i mod(ri, f;.4) rq /T S~ Uit "Si1 tio- Oiq "t

mod(a, b) is defined as the positive remainder such that 0 < mod(a, b) < b

algorithm terminates whenr,,, =0

then, gcd (a,b) =r, =s,"a+t,*b
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Example for extended Euclidian algorithm fora =23, b =5

Rounds r q s t
0 23 - 1 0
1 5 4 0 1
2 3 1 1 -4
3 2 1 -1 5
4 1 2 2 -9
5 0

gcd (23,5)=1=23*2+(-9)*5

here is where the magic happens!
- whengcd (a,b) =1,thent *b =1 (mod a)

In our case: (-9)*5=14*5=1 (mod 23), and 14 is the inverse of 5 modulo 23
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Encrypting messages

— Suppose Bob wishes to send a message m to Alice. He turns minto a
number n < N. So Bob has n, and knows N and e, which Alice has
announced. He then computes the ciphertext ¢ corresponding to n.

c=n° (mod N)

— e can be large. Nevertheless, the calculation can be done quickly using the
method of exponentiation by squaring.
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« Exponentiation by squaring

545503 (mOd 943) _ 545256+128+64+32+16+4+2+1 (mOd 943) — 545256 . 545128 .. 5451 (mOd 943)

545' (mod 943) = 545(mod 943) | 545
545 (mod 943) = 545- 545 (mod 943) = 923
545* (mod 943) = 923- 923 (mod 943) = 400
545* (mod 943) = 400- 400 (mod 943)|= 633

545%° (mod 943) = 1818 (mod 943) |= 324

545> (mod 943) = 324 -18-215- 795857 - 400 - 923 545 (mod 943) = 35(mod 943)
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Decrypting messages

— Alice receives ciphertext ¢ from Bob. She knows her own private key d and
can recover the message, which is encoded as n, using

n=c’ (mod N)

Why does this work?
— Fermat-Euler theorem: a”"’ =1 (mod N)

— Decoded ciphertext can be written as

l+ke(N) (p(N))k

cl'=n) =n“"=n =n-(n

— Applying the Fermat-Euler theorem yields
n- (™™ =n-1)" =n (modN)
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Different model (power) of adversary assumed

— Known-Ciphertext Attack (KCA)
» you only know the ciphertext

* requires you know something about the plaintext (e.g., it's English text, an
MP3, C source code, ...)

this is the model for the Sunday cryptograms which use substitution

— Known-Plaintext Attack (KPA)

* you have some number of plaintext-ciphertext pairs, but you cannot
choose which plaintexts you would like to see

— Chosen-Plaintext Attack (CPA)

you get to submit plaintexts of your choice to an encryption oracle
(black box) and receive the ciphertexts in return
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Known-Ciphertext Attack (KCA)
— weak attack model
— works only when weak ciphers are used (simple substitution algorithms)

Attacker can use frequency analysis
— assumption is that symbols (letters) do not appear with the same frequency
in the plaintext
— this assumption holds with high probability if natural language texts are encrypted
— in the English language, most frequent letters are E TN R O A S (in this order)

Attack
— analyze frequency of symbols in ciphertext
— assume that symbols with high frequency correspond to frequent letters
— try to reconstruct plaintext
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Frequency analysis has to be adapted when poly-alphabetic substitution is used
— in this case, the number of different permutations is most difficult part to find out

— once the number N of different permutations is known, the ciphertext can be divided
into N groups
— apply frequency analysis individually for each group

Example with 3 permutations (from the Vigenere cipher)
plaintext : THISC IPHER ISCER TAINL YNOTS ECURE
ciphertext: WOSVJ SSOOU PCFLB WHSQS IQVDV LMXYO

| V(S), W(T), Q(N)
| O(H)
| S(I), O(E)

Group1: w, v, S, U
Group2: o, J, O, P
Group3: s, J, 0, C

-

wphj
(DEE:E:
HED}O
UfilO
EF‘<§
O K X

’
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« Better ciphers require more advanced attack techniques

« Two well-known techniques against secret-key block ciphers are

— linear cryptanalysis

» developed 1993 by Matsui

— differential cryptanalysis
 discovered three times by NSA, IBM, and Biham and Shamir

 We use a simple four round SPN as example

— 16 bit key, 16 bit block size
— S-Box with the following mapping (4 bit input — 4 bit output)
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Cryptanalysis
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Linear cryptanalysis
— known plaintext attack

— exploits high probability occurrences of linear relationships between
plaintext, ciphertext, and key bits

— linear with regards to bitwise operation modulo 2 (i.e., XOR)

— expressions of form Xy @ Xp; @ X3 @ ... @ X, @Y1 @ Y;, @ ... @Y, =0
X, = i-th bit of input plaintext [ X,, X, , ...]
Y; = j-th bit of output ciphertext [ Y4, Yy, ... ]

— for a perfect cipher, such relationships hold with probability 1/2
— for vulnerable cipher, the probability p might be different from 1/2
—> abias |p - 1/2| is introduced
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2 steps
— analyze the linear vulnerability of a single S-Box

— connect the output of an S-Box to the input of the S-Box in the next round
and “pile up” probability bias

To analyze a single S-Box, check all possible linear approximations
[X']a X2a X3a X4]
[
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X2=Y2® Y4

X1® X3 ®X4=Y2

Y4

Y3

Y2

Y1

X4

X3

X2

X1
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Linear approximations with many true or many false entries are interesting

P(X1®X3®X4=Y2)=12/16=0.75 [bias= 0.25]
P(X2=Y2 ® Y4) = 4/16 = 0.25 [ bias = -0.25 ]

How to connect probabilities between different rounds?

consider the following equations, when bias of X1 is b1, and bias of X2 is b2

p(X1 ® X2 =0) =p(X1)*p(X2) + (1-p(X1))*(1-p(X2))
= (1/2+b1)*(1/2+b2) + (1/2-b1)*(1/2-b2)
= 1/2 + 2*b1*b2
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Now, we show how we can eliminate intermediate variables

p(X1 ®X2=0) =1/2 +b1,2
P(X2 ® X3 =0) =1/2+b2,3

p(X1 ® X3 =0) =p([X1® X2] ® [X2 ® X3] = 0)
= p(X1 @ X3 = 0)
= 1/2 + 2*b1,2 *b2,3

Let U,(V,) represent the 16-bit block of bits at the input (output) of the S-Box of
round i. Then, let U, , denote the k-th bit of the i-th round of the cipher. Similarly,
let K, represent the key of round i.
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Linear Cryptanalysis
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Linear Cryptanalysis

With probability 0.75 (and bias = 0.25), we have
V1,6 =U15® U1,7® U1,8
= (P5®K1,5)® (P7 ® K1,7) ® (P8 ® K1,8)

For the second round, we obtain with probability 0.25 (bias = -0.25)
V2,6 ®V2,8=U26®K2,6

Because U2,6 = V1,6, we can connect these two equations and get
V2,6 ®V2,8 =(P5®K1,5) ® (P7T®K1,7)® (P8 ® K1,8) ® K2,6
which can be rewritten as

V26 ®V28dP50P7T®P8®K1,7®K1,8®K26=0

This holds with a probability (see before) of 1/2 + 2*0.25*(-0.25) = 0.375
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We continue to eliminate intermediate variables in intermediate rounds to obtain

U46oU480 U414 U416 2 PSOP7T®P8® ) =0

where 3 is a constant factor (either O or 1 that depends on a number of key bits)

This equation holds with a probability of 15/32 (with a bias of -1/32).

Because ) is fixed, we know the following linear approximation of the cipher
that holds with probability 15/32 or 17/32 (depending on whether ) is 0 or 1):

U46dU48d U414 U416 @ PS®P7T®P8=0
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Given an equation that relates the input to the last round of S-Boxes to the
plaintext, how can we get the key?

We attack parts of the key (called target subkey) of the last round, in particular
those bits of the key that connect the output of our S-Boxes of interest with the
ciphertext

Given the equation U4,6 @ U4,8 ® U4,14 @ U4,16 @ P5 ® P7 ® P8 =0, we
look at the 8 bits K5,5 - K5,8 and K5,13-K5,16
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|dea

for a large number of ciphertext and plaintext pairs, we first feed the
ciphertext back into the active S-Boxes S,, and S,

because we do not know the target subkey, we have to repeat this
feedback procedure for all possible 256 key

for each subkey, we keep a count on how often the linear equation holds

when the wrong subkey is used
+ the equation will hold with probability 1/2 (similar to using random values)

when the correct subkey is used
» the equation will hold with more or less often than 1/2 (depending on the bias)

after all pairs of plaintext and ciphertext are checked, we take the subkey
with the count that differs most from 1/2
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Similar in spirit to linear cryptanalysis
Chosen plaintext attack

Instead of linear relationships, sensitivity to modifications of the

input are analyzed
— when certain bits of the input are changed, how does the output
change
— for an ideal cipher, a single bit flip in the input makes all output bits
change with a probability of 1/2
— not always the case
— probabilistic attack that targets the key of the last round

41



Conclusion

Cryptographic schemes
— symmetric-key cryptography
» block ciphers
 DES, SPN, Feistel networks
» stream ciphers

— public-key cryptography
« RSA

Cryptanalysis
— frequency analysis
— linear and differential cryptanalysis
tutorial on this topic available under http://www.engr.mun.ca/~howard/
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