Internet Security [1]
VU 184.216

Engin Kirda engin@infosys.tuwien.ac.at
Christopher Kruegel chris@auto.tuwien.ac.at

« Challenge 2
— deadline is tomorrow
— 177 correct solutions

« Challenge 4
— will be issued next week (around 10th May)
— first “real programming” assignment (Java)
— simple SMTP engine
— demonstrates how easily email information can be spoofed

Internet Application Security

Traditional services
— emerged to satisfy needs from the beginning of the Internet
— often no (or little) security in mind

— mail transfer (SMTP)

— name resolution (DNS)

— file transfer (FTP)

— remote access (telnet, rservices)

Secure replacements
— introduced to address problems in traditional protocols

— remote access (ssh)
— file transfer (scp)

Simple Mail Transfer Protocol (SMTP)

initially specified in RFC 821

de facto standard for email transmission

simple, text-based protocol

MIME used to encode binary files (attachments)

listens on port 25

push protocol (used to exchange emails between servers)

clients have to retrieve emails via other protocols such as IMAP or POP

SMTP Session

o naoaaoaaoaaoaaaaaahaghagnagnan

220 www.example.com ESMTP Postfix

: HELO mydomain.com

250 Hello mydomain.com

: MAIL FROM: sender(@mydomain.com

250 Ok

: RCPT TO: friend@example.com

250 Ok

DATA

354 End data with <CR><LFEF>.<CR><LF>
Subject: test message

From: sender@mydomain.com

To: friend@example.com

Hello,
This 1s a test.
Goodbye.

250 Ok: queued as 12345
QUIT
221 Bye

Security Issues

— mail servers have wide distribution base and are publicly
accessible

software vulnerabilities
configuration errors

— sendmail

one of the first SMTP implementations (MTASs)

long history of vulnerabilities

complicated configuration (M4 macro language)

e.g., buffer overflow in Sendmail 8.12.9 and before (2003)

— postfix, gmail

secure replacements

— no authentication of sender is performed

huge problem
makes unsolicited email such a problem

« Lack of authentication
— everyone can connect to a SMTP server and transmit a message
— server cannot check sender identity (besides IP address)

« Mail relay
— server accepts message that does not appear to be either for a
local address or from a local sender

e Solutions for authentication

- SMTH-AUTH
« access control list with explicit login
+ clients must be aware of SMTP-AUTH

— POP-before-SMTP
* logins are simulated by POP request (which require a login)
« when a client performs a POP request, its IP address is authenticated with the
SMTP server for some time (e.g., 30 minutes)

« Unsolicited email message

« Gather destination email addresses
— brute force guessing
— harvesting (web pages, mailing lists, news groups, ...)
— verified address are more valuable (social engineering, web bug)

« Delivering spam messages
— own machine (not very smart)
— other machines
« open mail relays
e open proxies
» web forms
« zombie nets (compromised machines)

« Countermeasures

— client
« filter tools (e.g., SpamAssassin)

automatic report systems

— blacklists

identify origins of spam messages and quickly distribute this
information

— infrastructure

Sender ID

resulted from a merge between SPF (sender policy framework) and
Caller-1D

works by adding “reverse MX” records for a domain
only listed machines can send email from this domain

10

Domain Name Service (DNS)

initially specified in RFC 1034/1035

distributed database that maps names into IP addresses and vice versa
name space is hierarchically divided in domains

each domain is managed by a name server

clients access name server resolution services through the
resolver library

uses mostly UDP

sometimes TCP for long queries and TCP for zone transfers between
name servers

11

DNS

.example.com. .amazon.com.

.subdomain.example.com.

12

« Name servers are responsible for mapping names of a domain
— example

* subdomain.domain.com is managed by dns.subdomain.domain.com
« domain.com is managed by master.domain.com

« Root name servers

13 machines distributed around the world

— associated with the top level of the hierarchy
— dispatch queries to the appropriate domains

« Server types

primary (authorative for the domain, loads data from disk)
secondary (backup servers, get data through zone transfers)
caching-only (relies on other servers but caches results)
forwarding (simply forwards query to other servers)

13

A server that cannot answer a query forwards the query up in
the hierarchy

Then, the search is following the correct branch in the hierarchy
down to the authorative server

The results are usually maintained in a local cache

Reverse lookup
— mapping from IP addresses to names
— also called pointer queries
— use dedicated branch in name space starting with ARPA.IN-ADDR

— example
« if128.131.172.79 is resolved, this is mapped into 79.172.131.128.in-addr.arpa

14

At least one name server has to be specified
— e.g., Linux uses /etc/resolv.conf

Queries can be
— recursive
* require a name server to find the answer to the query itself

— iterative

* instead of the resolved name another server‘s address is returned,
which can be asked

Lookup can be performed with
— nslookup, host, dig

15

« unique message format for requests and replies
« contains questions, answers, authorative information

« DNS data is structured in Resource Records, which store the
information.

« Different types of RR exist:

A defines an IP address for domain name
HINFO host information (CPU, OS)
NS authorative name server for domain

MX mail server for domain

16

Zone Transfer Info

» nslookup

» 1s -d infosys.tuwien.ac.at.

[tunamea.tuwien.ac.at]

SORIGIN infosys.tuwien.ac.at.

@ 1D IN SOA

hostmaster.noc.tuwien.ac.at.

1D
1D
1D
amd01 1D
amd02 1D
amd03 1D

IN
IN
IN
IN
IN
IN

NS
NS
MX

h

uhura.kom.tuwien.ac.at.

1985
8H
2H
1w
1D)

tunamea.
tunameb.

25 nfsl
128.131

tuwien.ac.
tuwien.ac.

.172.56
128.131.
128.131.

172.68
172.69

serial
refresh
retry
expiry
minimum
at.

at.

17

DNS often provides rich information
— |P addresses
— HINFO records
- WKS
— can be gathered via exhaustive queries or via zone transfers
— [P scanning is not necessary in many cases

DNS hijacking
Simple DNS spoofing
DNS cache poisoning

Daemon vulnerabilities
— BIND named has a bad security history
— latest problem was a buffer overflow in 2002

18

Relies on the fact the UDP is used
Usually, attacker has to see DNS requests
Respond to a request with incorrect data
Respond faster than legitimate server

It is possible to perform DNS Hijacking by
— racing with the server with respect to a client
— racing with a server with respect to another server

,Blind“ DNS hijacking
— requires to guess the request ID
— many implementations use sequential numbers

19

« Used when authentication is performed based

on DNS names with reverse lookup
— e.g. trusted.example.com may login using rlogin
without specifying a username/password

« Concept

— a DNS query is forwarded to the authorative DNS server for
the IP address that logs in (under control of the attacker)

— this DNS server replies with the (faked) trusted name

20

128.130.2.1
Gateway

128.130.2.10
Host C

128.130.2.2

DNS Server

Internet

172.111.0.11

Host A

Gateway

172.111.0.2

DNS Server

Host B

21

Host C (128.130.2.10) opens a TCP connection to Host A
(172.111.0.11)

Server A asks its DNS server (172.111.0.2) to look up the
address 128.130.2.10

A‘s DNS server can‘t resolve this address and forwards the
query

C's DNS server (128.130.2.3) gets the request and returns a
reply with a wrong name (e.g. trusted.example.com)

A gets from its DNS server the answer that 128.130.2.10 is
trusted.example.com and allows C to log in without password

22

Simple DNS Spoofing

Countermeasure

— use double reverse lookup

— given the IP address i obtain the name n
— using name n, obtain |IP address |

— check if iF]

23

This attack exploits a bug in some implementations of BIND

A server stores in the cache anything that is contained in a DNS reply

A malicious DNS server returns additional answers that are stored in
the cache (preferably with a long TTL)

Some implementations will even accept answer records in DNS
requests, caching the information

Attacker can control IP address mappings

Traffic redirection and man-in-the-middle attacks possible

24

File Transfer Protocol (FTP)
initially specified in RFC 542
provides file transfer service
based on TCP

client / server architecture
— client (ftp) sends a connection request to the server (ftpd)
— server is listening on port 21
— client provides username and password to authenticate
— client uses the GET and PUT commands to transfer files

25

Control stream and data streams are used
— control stream for commands
— data stream for the actual data that is transmitted

Client tells the server to connect to one of its local
ports using the PORT command

Server opens a connection from port 20 to the port
specified by the client

Transfer is executed and the connection is closed

26

Client
(a.b.c.d)

e*256+f

username

enter password

password

OK

PORT a,b,c,d,e.f

200 Port OK

RETR file name

file data

21

21

21

21

21

21

21

20

Server
(g.h.i.j)

27

Client
(a.b.c.d)

X

password

OK

PASV

PASSIVE g,h,ijk,l

open connection

RETR file name

file data

Server
T (g.h.ij)

21
21

21

k*256+I

21

k*256+I

28

Can be abused to write files into home directories that are
normally used for authentication (e.g. rhosts)

If an anonymous user is allowed to put such a file in the home
directory he can get access to the computer, using a file that
contains “+ +°

ftp to a site, put the file dummy in the home directory (as
.rhosts) and then

rlogin -1 ftp target.com
ftp@target.com:/usr/local/ftp> 1s

In general, the access of the file system via ftp should be
minimized

29

Attacker can connect to port that was opened by server before
the legitimate client does

Since the command connection is still established, client
commands lead to file transfers between attacker and server

30

« The PORT command is used by the client to tell the
server the address and port to be used when
opening a data connection

* According to the RFC 959 the address does not
have to be the same as the one the client has

— idea is to allow transfers between two hosts without having
to go through the client

* Therefore it is possible to instruct a server to open a
connection to a third host

31

« Can be used to perform a TCP portscan
— The host running ftpd appears to be the source of the scan

— Itis possible to scan ,behind” a firewall (suppose that only
port 21 and 20 are open at the firewall)

« Can be used to send data to arbitrary ports

— if an FTP writable directory exists, a file can be transferred
to a third host

— can be used to bypass restrictions (IP based authentication)
— connection laundry

32

 telnet, rlogin

— horrible security
 plaintext passwords
« connection hijacking (hunt)

— fortunately, it is virtually not used anymore

e sSsh
— secure replacement

— ssh version 1
* insecure because of possibility to insert data into remote
stream

— ssh version 2 is current, and should be used

33

Traditional Internet applications

not built with security in mind
some could be easily replaced (telnet, rservices)
others cause significant problems

SMTP
» sender authentication

DNS

» simple UDP-based request / reply structure
 root server bottleneck (denial of service danger)

FTP
 transfer modes using different connections and port combination
« difficult to firewall
« connection laundry and bouncing attacks

34

