
Engin Kirda engin@infosys.tuwien.ac.at
Christopher Kruegel chris@auto.tuwien.ac.at

Testing
Internet Security [1] VU

Internet Security 1 2

Admin Issues

• The exam will take place on the 28th of June
– Check web site for exam location (tentative – might change

depending on number of registrations)
– Important: Registration via TUWIS (new TUWIS

functionality)
– There will be at least one further exam during the winter

semester.
– In “urgent” cases (e.g., last exam, etc.), (oral) exam possible

any time (please contact us) .
• “Industry” Lecture on 21.06

– Joe Pichlmayr, CEO of Ikarus Anti-Virus, will give an invited
talk about viruses and malware

– His talk (basic concepts) is part of the exam topic

Internet Security 1 3

News from the Lab

• Challenge 5 will be announced Thursday (15:00)
– The servers were shut down due to general maintenance, so

there is delay (sorry).
– Crypto analysis (you need to crack real codes XOR, RSA)
– You need to write (at least one) Java program

• Quality control issues
– Once again: Obviously, copying solutions/code is not

allowed

Internet Security 1 4

Overview

• When system is designed and implemented
– correctness has to be tested

• Different types of tests are necessary
– validation

• is the system designed correctly?
• does the design meet the problem requirements?

– verification
• is the system implemented correctly?
• does the implementation meet the design requirements?

• Different features can be tested
– functionality, performance, security

Internet Security 1 5

Testing

• Edsger Dijkstra
Program testing can be quite effective for showing the presence of
bugs, but is hopelessly inadequate for showing their absence.

• Testing
– analysis that discovers what is and compares it to what should be
– should be done throughout the development cycle
– necessary process

– but not a substitute for sound design and implementation
– for example, running public attack tools against a server cannot

prove that server is implemented secure

Internet Security 1 6

Testing

• Classification of testing techniques
– white-box testing

• testing all the implementation
• path coverage considerations
• faults of commission
• find implementation flaws
• but cannot guarantee that specifications are fulfilled

– black-box testing
• testing against specification
• only concerned with input and output
• faults of omissions
• specification flaws are detected
• but cannot guarantee that implementation is correct

Internet Security 1 7

Testing

• Classification of testing techniques
– static testing

• check requirements and design documents
• perform source code auditing
• theoretically reason about (program) properties
• cover a possible infinite amount of input (e.g., use ranges)
• no actual code is executed

– dynamic testing
• feed program with input and observe behavior
• check a certain number of input and output values
• code is executed (and must be available)

Internet Security 1 8

Testing

• Automatic testing
– testing should be done continuously
– involves a lot of input, output comparisons, and test runs
– therefore, ideally suitable for automation
– testing hooks are required, at least at module level
– nightly builds with tests for complete system are advantageous

• Regression tests
– test designed to check that a program has not "regressed”,

that is, that previous capabilities have not been compromised by
introducing new ones

Internet Security 1 9

Testing

• Software fault injection
– go after effects of bugs instead of bugs
– reason is that bugs cannot be completely removed
– thus, make program fault-tolerant
– failures are deliberately injected into code
– effects are observed and program is made more robust

• Most testing techniques can be used to identify security
problems

Internet Security 1 10

Security Testing

• Design level
– not much tool support available
– manual design reviews
– formal methods
– attack graphs

• Formal methods
– formal specification that can be mathematically described and

verified
– often used for small, safety-critical programs

e.g., control program for nuclear power plant
– state and state transitions must be formalized and

unsafe states must be described
– “model checker” can ensure that no unsafe state is reached

Internet Security 1 11

Security Testing

• Attack graph

– given
• a finite state model, M, of a network
• a security property P

– an attack is an execution of M that violates P
– an attack graph is a set of attacks of M

• Attack graph generation
– done by hand

• error prone and tedious
• impractical for large systems

– automatic generation
• provide state description
• transition rules

Internet Security 1 12

Security Testing

Sandia Red Team “White Board” attack graph
from DARPA CC20008 Information battle space
preparation experiment

Internet Security 1 13

Security Testing
P = Attacker gains root access to Host 1.
4 hosts
30 actions
310 nodes
3400 edges

Internet Security 1 14

Security Testing

• Implementation Level
– detect known set of problems and security bugs
– more automatic tool support available
– target particular flaws
– reviewing (auditing) software for flaws is reasonably

well-known and well-documented
– support for static and dynamic analysis
– ranges from “how-to” for manual code reviewing to

elaborate model checkers or compiler extension

Internet Security 1 15

Static Security Testing

• Manual auditing
– code has to support auditing

• architectural overview
• comments
• functional summary for each method

– OpenBSD is well know for good auditing process
• 6 -12 members since 1996
• comprehensive file-by-file analysis
• multiple reviews by different people
• search for bugs in general
• proactive fixes

– Microsoft also has intensive auditing processes
• Every piece of written code has to be reviewed by another developer

Internet Security 1 16

Static Security Testing

• Manual auditing
– tedious and difficult task
– some initiatives were less successful

• Sardonix (security portal)
“Reviewing old code is tedious and boring and no one wants to do it,”
Crispin Cowan said.

• Linux Security Audit Project (LSAP)
Statistics for All Time

Lifespan | Rank|Page Views|D/l|Bugs|Support|Patches|Trkr|Tasks

1459 days|0(0.00)| 4,887| 0|0(0)| 0(0)| 0(0)|0(0)| 0(0)

Internet Security 1 17

Static Security Testing

• Syntax checker
– parse source code and check for functions that have known

vulnerabilities, e.g., strcpy(), strcat() (as we will see in the
buffer overflows lecture)

– also limited support for arguments (e.g., variable, static string)
– only suitable as first basic check
– cannot understand more complex relationships
– no control flow or data flow analysis

– Examples
• flawfinder
• RATS (rough auditing tool for security)
• ITS4

Internet Security 1 18

Static Security Testing

• Annotation-based systems
– programmer uses annotations to specify properties in the source

code (e.g., this value must not be NULL)
– analysis tool checks source code to find possible violations
– control flow and data flow analysis is performed
– problems are “undecidable” in general, therefore trade-off between

“correctness” and “completeness”
• Decidable: there exists an algorithm that is guaranteed to return the

correct answer in a finite amount of time
• Undecidable: Problem for which there cannot exist an algorithm that is

guaranteed to terminate.
– Examples

• SPlint
• Eau-claire
• UNO (uninitialized vars, null-ptr dereferencing, out-of-bounds access)

Internet Security 1 19

Static Security Testing

• Model-checking
– programmer specifies security properties that have to hold
– models realized as state machines
– statements in the program result in state transitions
– certain states are considered insecure
– usually, control flow and data flow analysis is performed
– example properties

• drop privileges properly
• race conditions
• creating a secure chroot jail

– examples
• MOPS (an infrastructure for examining security properties of software)

Internet Security 1 20

Static Security Testing

• Meta-compilation
– programmer adds simple system-specific compiler extensions
– these extensions check (or optimize) the code
– flow-sensitive, inter-procedural analysis
– not sound, but can detect many bugs
– no annotations needed
– example extensions

• system calls must check user pointers for validity before using them
• disabled interrupts must be re-enabled
• to avoid deadlock, do not call a blocking function with interrupts

disabled

– examples
• Dawson Engler (Stanford)

Internet Security 1 21

Static Security Testing

• Model-checking versus Meta-compilation (Engler ‘03)

• General perception
– static analysis: easy to apply but shallow bugs
– model checking: harder, but strictly better once done

• ccNUMA (Cache Coherent Non-Uniform Memory Access) with
cache coherence protocols in software
– 1 bug deadlocks entire machine
– code with many ad hoc correctness rules

• WAIT_FOR_DB_FULL must precede MISCBUS_READ_DB
– but they have a clear mapping to source code
– easy to check with compiler

Internet Security 1 22

Static Security Testing

• Meta-compilation
– scales
– relatively precise
– statically found 34 bugs, although code tested for 5 years
– however, many deeper properties are missed

• Deeper properties
– nodes never overflow their network queues
– sharing list empty for dirty lines
– nodes do not send messages to themselves

• Perfect application for model checking
– bugs depend on intricate series of low-probability events
– self-contained system that generates its own events

Internet Security 1 23

Static Security Testing

• The (known) problem
– writing model is hard
– someone did it for a similar protocol than ccNUMA

• several months effort
• no bugs

– use correspondence to auto-extract model from code

• Result
– 8 errors
– two deep errors, but 6 bugs found with static analysis as well.

• Myth: model checking will find more bugs
– in reality, 4x fewer

Internet Security 1 24

Static Security Testing

• Where meta-compilation is superior

Static analysis Model checking

Compile Check Run Check

Don’t understand? So what. Problem.
Can’t run? So what. Can’t play.
Coverage? All paths! All paths! Executed paths.

First question: “How big is code?” “What does it do?”
Time: Hours. Weeks.

Bug counts 100-1000s 0-10s
Big code: 10MLOC 10K

No results? Surprised. Less surprised.

Internet Security 1 25

Static Security Testing

• Where model-checking is superior

• Subtle errors
– run code, so can check its implications
– static better at checking properties in code
– model checking better at checking properties implied by

code

• Difference
– static detects ways to cause error
– model checking checks for the error itself

Internet Security 1 26

Dynamic Security Testing

• Run-time checking between operating system and program
– intercept and check system calls

• Run-time checking between libraries and program
– intercept and check library functions
– often used to detect memory problems

• interception of malloc() and free() calls
• emulation of heap behavior and code instrumentation
• purify, valgrind

– also support for buffer overflow detection
• libsafe

Internet Security 1 27

Dynamic Security Testing

• Profiling
– record the dynamic behavior of applications with respect to

interesting properties

• Obviously interesting to tune performance
– gprof

• But also useful for improving security
– sequences of system calls
– system call arguments
– same for function calls

Internet Security 1 28

Dynamic Security Testing

• Penetration testing
– A penetration test is the process of actively evaluating your

information security measures
– common procedure: analysis for design weaknesses,

technical flaws and vulnerabilities; the results delivered
comprehensively in a report (to Executive, Management and
Technical audiences)

• Why penetration testing: Why would you want it?
– E.g., banks, gain and maintain certification (BS7799, NATO

etc.)
– Assure your customers that you are security-aware
– Sink costs (yes, security bugs may cost you more)

Internet Security 1 29

Penetration Testing

• OK… so how do people do it?
– general tool support available

• nessus

• ISS Internet Scanner

• nmap

– also tools for available that can test a particular protocol
• Whisker (web, CGI-scanner)

• Internet Security Systems (ISS) Database
scanner

Internet Security 1 30

Penetration Testing

• Different types of services
– External penetration testing (traditional)

• Testing focuses on services and servers available from outside
– Internal security assessment

• Typically, testing performed on LAN, DMZ, network points
– Application security assessment

• Applications that may reveal sensitive information are tested

Internet Security 1 31

Penetration Testing

• Different types of services
– Wireless / Remote access assessment

• E.g., wireless access points, configuration, range, etc.
– Telephony security assessment

• E.g., mailbox deployment and security, PBX systems, etc.
– Social engineering

• E.g., passwd security, “intelligence” of users, etc.

Internet Security 1 32

Special Tips when choosing supplier

• Who should do the penetration testing?
– Do they have the necessary background?

• Technical sophistication, good knowledge of the field, literature,
certification, etc.?

– Does the supplier employ ex-”hackers”?
– Beware of “consultants” (let’s be a little critical and

provocative ;-))
• Junior = Person who has just started and who doesn’t

necessarily know your domain better then you do
• Senior = Person who manages, can present well, but has little

technical knowledge

Internet Security 1 33

Conclusion

• Testing
– important part of regular software life-cycle
– but also important to ensure a certain security standard

• Important at design and implementation level
– design

• attack graphs, formal methods, manual reviews
– implementation

• static and dynamic techniques

• Static techniques
– code review, syntax checks, model checking, meta-compilation

• Dynamic techniques
– system call and library function interposition, profiling

