
Internet Security [1]
VU 184.216

Engin Kirda engin@infosys.tuwien.ac.at
Christopher Kruegel chris@auto.tuwien.ac.at

Internet Security 1 2

• Web Application Security, Part I
– Brief introduction to HTML and Web applications (e.g.,

scripts)
– The Top Ten Web application vulnerability risks

• SQL Injections
• Real examples ;-)
• Parameter Injections
• Broken Authentication

Outline

Internet Security 1 3

News from the Lab

• 205 (!) Registrations
• To date, 158 attempts to solve Challenge 1

– 148 successes (respect)

• One candidate submitted 40 (!) times and eventually
succeeded – brute force solving ;-)

• Challenge 2 will be announced today after the lecture
• Registration ends today (after the lecture)

Internet Security 1 4

Web Application Security

• When an organization puts up a web application, they
invite everyone to send them HTTP requests.

• Attacks buried in these requests sail past firewalls
without notice because they are inside legal HTTP
requests.

• Even “secure” websites that use SSL just accept the
requests that arrive through the encrypted tunnel
without scrutiny.

• This means that your web application code is part
of your security perimeter!

Internet Security 1 5

• The security issues related to the Web are
not new. In fact, some have been well
understood for decades.
– For a variety of reasons, major software development

projects are still making these mistakes and jeopardizing not
only their customers’ security, but also the security of the
entire Internet.

– There is no “silver bullet” to cure these problems. Today’s
assessment and protection technology is improving, but can
currently only deal with a limited sub-set of the issues at
best.

– To address the security issues, organizations will need to
change their development culture, train developers, update
their software development processes, and use technology
where appropriate.

Web Application Security

Internet Security 1 6

On a typical Web server…

• your host has an open 80/8080 port (firewall)

• following components are running
– OS
– Web Server

• main application (e.g. Apache)
• plugins
• servlets
• scripts (CGI, Perl, ...)

Internet Security 1 7

• All HTTP transactions follow the same general
format. Each client request and server response has
three parts: the request or response line, a header
section, and the entity body. The client initiates a
transaction as follows:
– GET /index.html?param=value HTTP/1.1

• After sending the request and headers, the client may
send additional data. This data is mostly used by CGI
programs using the POST method.
– Note that for the GET method, the parameters are encoded

into the URL

HTTP and Web Application Basics

Internet Security 1 8

Web Server Scripting

• allows easy implementation of functionality (also for
non-programmers – Think: Is this good?)

• Example scripting languages are Perl (e.g., used in
the InetSec challenges), Python, ASP, JSP, PHP

• Scripts are installed on the Web server and return
HTML as output that is then sent to the client

• Template engines are often used to power Web sites
– E.g., Cold Fusion, Cocoon, Zope (see TUWIS)
– These engines often support/use scripting languages

Internet Security 1 9

• Objective: To write an application that accepts a
username and password and prints (displays) them
– First, we write HTML code and use forms

<html><body>

<form action=“/scripts/login.pl” method=“post”>

Username: <input type=“text” name=“username”>

Password: <input type=“password” name=“password”>

<input type=“submit” value=“Login” name=“login”>

</form>

</body></html>

Web Application Example

Internet Security 1 10

• Second, here is the corresponding Perl script that
prints the username and password passed to it:

#!/usr/local/bin/perl

uses CGI;

$query = new CGI;

$username = $query->param(“username”);

$password = $query->param(“password”);

…

print “<html><body> Username: $username

Password: $password

</body></html>“;

Web Application Example 2

Internet Security 1 11

• The Open Web Application Security Project
(www.owasp.org)

– OWASP is dedicated to helping organizations understand
and improve the security of their web applications and web
services.

– The Top Ten vulnerability list was created to point
corporations and government agencies to the most serious
of these vulnerabilities.

– Web application security has become a hot topic as
companies race to make content and services accessible
though the web. At the same time, attackers are turning their
attention to the common weaknesses created by application
developers.

OWASP

Internet Security 1 12

• Unvalidated Input: Information from web requests is
not validated before being used by a web application.
– Attackers can use these flaws to attack backend

components through a web application.

• Broken access control: Restrictions on what
authenticated users are allowed to do are not
properly enforced.
– Attackers can exploit these flaws to access other users’

accounts, view sensitive files, or use unauthorized functions

Top Ten Web Application
Vulnerabilities

Internet Security 1 13

• Broken authentication and session management:
Account credentials and session tokens are not
properly protected.
– Attackers that can compromise passwords, keys, session

cookies, or other tokens, can defeat authentication
restrictions and assume other users’ identities.

• Cross-site scripting (XSS): The web application can
be used as a mechanism to transport an attack to an
end user’s browser.
– A successful attack can disclose the end user’s session

token, attack the local machine, or spoof content to fool the
user.

Top Ten Web Application
Vulnerabilities

Internet Security 1 14

• Buffer overflows: Web application components in
languages that do not properly validate input can be
crashed and, in some cases, used to take control of a
process.
– These components can include CGI, libraries, drivers, and

web application server components
• Injection flaws: Web applications pass parameters

when they access external systems or the local
operating system.
– If an attacker can embed malicious commands in these

parameters, the external system may execute those
commands on behalf of the web application

Top Ten Web Application
Vulnerabilities

Internet Security 1 15

• Improper error handling: Error conditions that occur
during normal operation are not handled properly.
– If an attacker can cause errors to occur that the web

application does not handle, they can gain detailed system
information, deny service, cause security mechanisms to fail,
or crash the server

• Insecure storage: Web applications frequently use
cryptographic functions to protect information and
credentials.
– These functions and the code to integrate them have proven

difficult to code properly, frequently resulting in weak
protection.

Top Ten Web Application
Vulnerabilities

Internet Security 1 16

• Denial of service: Attackers can consume web
application resources to a point where other
legitimate users can no longer access or use the
application
– Attackers can also lock users out of their accounts or even

cause the entire application to fail.

• Insecure configuration management: Having a strong
server configuration standard is critical to a secure
web application.
– These servers have many configuration options that affect

security and are not secure out of the box.

Top Ten Web Application
Vulnerabilities

Internet Security 1 17

• Web applications use input from HTTP requests (and
occasionally files) to determine how to respond.
– Attackers can tamper with any part of an HTTP request,

including the URL, query string, headers, cookies, form
fields, and hidden fields, to try to bypass the site’s security
mechanisms.

– Common input tampering attempts include XSS, SQL
Injection, hidden field manipulation, parameter injection

• Some sites attempt to protect themselves by filtering
out malicious input.
– Problem: there are so many different ways of encoding

information

Unvalidated Input

Internet Security 1 18

• A surprising number of web applications use only
client-side mechanisms to validate input
– Client side validation mechanisms are easily bypassed,

leaving the web application without any protection against
malicious parameters

• How to determine if you are vulnerable?
– Any part of an HTTP request that is used by a web

application without being carefully validated is known as a
“tainted” parameter.

– The simplest way: to have a detailed code review, searching
for all the calls where information is extracted from an HTTP
request

Unvalidated Input

Internet Security 1 19

• How to protect yourself?
– The best way to prevent parameter tampering is to ensure that all

parameters are validated before they are used.
– A centralized component or library is likely to be the most effective,

as the code performing the checking should be all in one place.

• Parameters should be validated against a “positive”
specification that defines:
– Data type (string, integer, real, etc…); Allowed character set;

Minimum and maximum length; Whether null is allowed; Whether
the parameter is required or not; Whether duplicates are allowed;
Numeric range; Specific legal values (enumeration); Specific
patterns (regular expressions)

Unvalidated Input

Internet Security 1 20

• Injection flaws allow attackers to relay malicious code
through a web application to another system
– These attacks include calls to the operating system via

system calls, the use of external programs via shell
commands, as well as calls to backend databases via SQL

• SQL injection is a particularly widespread and
dangerous form of injection attack
– To exploit a SQL injection flaw, the attacker must find a

parameter that the web application passes through to a
database.

SQL Injections

Internet Security 1 21

• By carefully embedding malicious SQL commands
into the content of the parameter, the attacker can
trick the web application into forwarding a malicious
query to the database

• The consequences are particularly damaging, as an
attacker can obtain, corrupt, or destroy database
contents.

SQL Injections

Internet Security 1 22

• Perl script that looks up username and password:

…

$query = new CGI;

$username = $query->param(“username”);

$password = $query->param(“password”);

…

$sql_command = “select * from users where
username=‘$username’ and password=‘$password’”;

$sth = $dbh->prepare($sql_command)

…

No Validation!

Simple SQL Injection Example

Internet Security 1 23

• If the user enters a ‘ (single quote) as the password,
the SQL statement in the script would become:
– select * from users where username=‘ ‘ and password = ‘‘‘
– An SQL error message would be generated

• If the user enters (injects): ‘ or username=‘john as the
password, the SQL statement in the script would
become:
– select * from users where username=‘ ‘ and password = ‘‘ or

username= ‘john‘
– Hence, a different SQL statement has been injected than

what was intended by the programmer!

Simple SQL Injection Example 2

Internet Security 1 24

Obtaining Information using Errors

• Errors returned from the application might help the
attacker (e.g., ASP – default behavior)

– Username: ' union select sum(id) from users--
Microsoft OLE DB Provider for ODBC Drivers error '80040e14'
[Microsoft][ODBC SQL Server Driver][SQL Server]Column 'users.id' is
invalid in the select list because it is not contained in an aggregate function
and there is no GROUP BY clause.
/process_login.asp, line 35

• Make sure that you do not display unnecessary
debugging and error messages to users.
– For debugging, it is always better to use log files (e.g., error

log).

Not good!

Internet Security 1 25

Some SQL Attack Examples

• select * …; insert into user values(“user”,”h4x0r”);
– Attacker inserts a new user into the database

• The attacker could use “stored procedures” (e.g., in
SQL Server)
– xp_cmdshell()
– “bulk insert” statement to read any file on the server
– e-mail data to the attacker’s mail account
– Play around with the registry settings

• select *… ; drop table SensitiveData;
• Appending “;” character does not work for all

databases. Might depend on the driver (e.g., MySQL)

Internet Security 1 26

Advanced SQL Injection

• Web applications will often escape the ‘ and “
characters (e.g., PHP).
– This will prevent most SQL injection attacks… but there

might still be vulnerabilities

• Stored procedures (might not be completely safe)
• In large applications, some database fields are not

strings but numbers. Hence, ‘ or “ characters not
necessary.

• Attacker might still inject strings into a database by
using the “char” function (e.g., SQL Server):
– insert into users values(666,char(0x63)+char(0x65)…)

Internet Security 1 27

Second Order SQL Injection

• SQL is injected into an application, but the SQL
statement is invoked at a later point in time
– e.g., Guestbook, statistics page, etc.

• Even if application escapes single quotes, second
order SQL injection might be possible
– Attacker sets user name to: john’--, application safely

escapes value to john’’– (-- is used for expressing comments
in SQL Server)

– At a later point, attacker changes password (and “sets” a
new password for victim john):

• update users set password= … where
database_handle(“username”)=‘john’--‘

Internet Security 1 28

Live demos ;-)

• Some real SQL vulnerabilities

Internet Security 1 29

• Perl script that lists (embeds in HTML) the directory
contents by calling the shell ls command:

…

$query = new CGI;

$directory = $query->param(“directory”);

#Call the ls command in the shell using back ticks

$directory_contents = `ls $directory`;

print “

<html><body>

$directory

</body></html>“;

Unvalidated input!

Simple Parameter Injection Example

Internet Security 1 30

• If the user enters a ; cat /etc/passwd as the directory,
she can gain access to the contents of the passwd
file as well!
– The shell command in the script becomes ls ; cat

/etc/passwd

• How can such a simple attack be prevented?
– Do not use shell commands directly in Web scripts
– Filter out characters such as | ; * > < etc. that have a special

meaning for the shell

Simple Parameter Injection Example 2

Internet Security 1 31

And now, a little online demo…

• Parameter injection

Internet Security 1 32

• Developers are notorious for leaving statements like
FIXME's, Code Broken, Hack, etc... inside the source
code. Always review the source code for any
comments denoting passwords, backdoors, or
something doesn't work right.

• Hidden fields (<input type=“hidden“…>) are
sometimes used to store temporary values in Web
pages. These can be changed with ease (Hidden
Field Tampering!)

Discovering “clues“ in HTML code

Internet Security 1 33

• Authentication and session management includes all
aspects of handling user authentication and
managing active sessions. Authentication is a critical
aspect of this process
– even solid authentication mechanisms can be undermined

by flawed credential management functions, including
password change, forgot my password, remember my
password, account update, and other related functions.

• Development teams frequently underestimate the
complexity of designing an authentication and
session management scheme that adequately
protects credentials in all aspects of the site.

Broken Authentication and Session
Management

Internet Security 1 34

• HTTP does not provide this capability, so web
applications must create it themselves. Frequently,
the web application environment provides a session
capability
– Many developers prefer to create their own session tokens
– If the session tokens are not properly protected, an attacker

can hijack an active or inactive session and assume the
identity of a user.

• How to protect yourself?
– Careful and proper use of custom or off the shelf

authentication and session management mechanisms

Broken Authentication and Session
Management 2

Internet Security 1 35

• Suppose you are ordering something online. You are
registered as user john. In the URL, you notice:
– www.somecompany.com/order?s=john05011978
– What is s? It is probably the session ID…
– In this case, it is possible to deduce how the session ID is

made up...
• Session ID is made up of user name and (probably)

the user‘s birthday
– Hence, by knowing a user ID and a birthday (e.g., a friend of

yours), you could hijack someone‘s session ID and order
something

• The session ID gives a false sense of protection

Broken (Weak) Session Management
Example

Internet Security 1 36

• Developers frequently underestimate the difficulty of
implementing a reliable access control mechanism.
Many of these schemes were not explicitly designed,
but have simply evolved along with the web site.
– Many of these flawed access control schemes are not

difficult to discover and exploit
• One specific type of access control problem:

administrative interfaces that allow site administrators
to manage a site over the Internet.
– Prime target for attacks

Broken Access Control

Internet Security 1 37

• Some specific access control issues:
– Insecure ID’s (should be guessable and no reliance on their

secrecy)
– Forced Browsing Past Access Control Checks (e.g., by using

a different path trough a different page)
– Path Traversal e.g. “../../target_dir/target_file“
– File Permissions (don‘t run server with root privileges!)
– Client Side Caching (sensitive pages should not be cached,

e.g., by using HTTP headers and meta-tags)

Broken Access Control 2

Internet Security 1 38

Conclusion

• In this lecture, we took a first look at “higher-level”
security issues.
– We started with the Web and will continue looking at it next

week.

• Now is the time to go and check the Web application
code you wrote :-)

• Good luck (and fun ;-)) with Challenge 2.
• See you next week!

