Network Services

Domain Names & DNS

Johann Oberleitner
SS 2006
Agenda

- Domain Names
- Domain Name System
- Internationalized Domain Names
Domain Names

- Naming of Resources
- Problems of Internet's IP focus
 - IP addresses (123.25.33.44) difficult to remember
 - Event worse for IPv6
 - IPs may change
- Name resolution
 - Host name (www.myserver.com) -> IP
- Back resolution / reverse lookup
 - IP -> Host name
- Additional information about hosts
Domain Name

- www.infosys.tuwien.ac.at.

- Dots separate Labels

- Subdomains

- Top-Level Domain
HOSTS.TXT

- Original naming facility
 - RFC 810, later 952
 - Maintained by SRI NIC (Network Information Center)

- Stores address mappings
 - IP to Domains

- Disadvantage:
 - Load on central server
 - Bandwidth for distribution proportional to N^2
 - $N=$Number of hosts
 - Name clashes
 - Simultaneous updates
HOSTS.TXT - Example

NETWORK: 10.0.0.0 : ARPANET :
HOST: 10.2.0.11: SU-TIP,FELT-TIP :::

- Today different format:

 ipAddress localhost aliases
 127.0.0.1 localhost
 192.168.0.1 bar.mydomain.org bar
Domain Name System (DNS) - Design Goals

- Consistent name space
- Distributed by design
 - Multiple servers
 - Hierarchically
 - Tree structure
 - Organizations may maintain their own servers
- Names used to get
 - Host addresses
 - Mailbox Data
 - Other, yet undefined information
- Access to data critical
- Instantaneous updates less important
Domain Name System - Structure

Root Domain

Generic TopLevelDomains (gTLDs)
- .com .edu .gov .net .org .mil .arpa
- .aero .biz .coop .info .name .museum .travel

Country-Code TLDs (ccTLDs)
- .at .de ...
- (> 200 ccTLDs)
- 2 characters

Alternative Root Domains

Organizations
Introduce additional Inofficial TLDs

Disadvantage:
- Not useable for normal Internet users
- conflicts
 - .family, .med, .ngo, .men, .chem

Root domain has always an empty label!
DNS - Elements

- Resolvers
 - Programs/Routines that extract information from Name Servers

- Name Servers
 - Hold information about the domain tree’s structure
 - May cache any information of the whole domain tree
 - In general holds information about a subset
 - Name server is an AUTHORITY for this subset
 - Authoritative information organized as
 - ZONES
Resolver

- Client part of DNS
 - triggers DNS queries
 - Parts of the OS (or libraries)
 - Convert names to IP addresses
 - IP addresses to names
Resolv.conf

- Unix OS
 - In Lab environment in /etc/resolv.conf

- Configuration how to build a name

- Configuration options
 - `nameserver ip-address`
 - Which nameservers (max 3) shall be used
 - `domain localdomainname`
 - `search domainname1 ...`
 - extends names without . with names in searchlist
 - Mutual exclusive to domain keyword
Resolv.conf - Example

domain mydomain.org
nameserver 128.131.171.77
nameserver 128.131.171.212

or

search infosys.org dslab.org
nameserver 128.131.171.77
Resolver

- **Iterativ**
 - Queries the first (top-level) nameserver
 - Based on the result the next nameserver is queried

- **Rekursiv**
 - Asks the nameserver to do the whole query for the resolver

- Resolvers located at both client and server
- (Verteilte Systeme, VO)
Name Server Configuration

- Domain
 - Contains whole DNS subspace under a treenode

- Zone
 - Subdomains may be in their own zones
 - Primary/Master DNS servers have authority
 - Secondary/Slaves servers have copies of information
 - Zone files contain info about zone in resource records
Domain vs Zone
Name Servers

- Repositories that make up the domain database
- Primary task of name servers
 - Answer queries using data in its zones
 - Answer created using only local data
 - Or Referral to other name servers
 - Answers are resource records
- Name server typically supports one/more zones
- Allows partitioning at points where an organization wants control
- Root.hint already installed
 - Points to root nameservers
DNS Resource Records

- **Resource Record (RR)**
 - Different types

- **Syntax**

 Owner-domain Type class TTL RDATA

 - **Domain Name**
 Where RR is found
 May be omitted

 - **IN ... Internet**

 - **Time To Live (caching)**
SOA Resource Record

- Defines Start Of an Authority for a zone

Domain IN SOA primmastersrv contactemail (serialnumber; Serial numberrefreshetime; how often try to refreshretrytime; when to retryexpiretime; when to abandon zone info negativecaching; how long cache negative answers)
Zone Transfers

- **Multiple nameservers**
 - More robust
 - Additional servers usually slave nameservers

- **Where is zone information?**
 - Master server zone files
 - Slave server gets from another server

- **When is data updated?**
 - Controlled with numbers in SOA record
 - After RefreshTime: slave checks if serial number has changed
 - If no connection was possible after RefreshTime
 - wait retrytime and try refresh again
 - If no connection was possible after ExpireTime
 - Declare zone as invalid
 - negative caching; how long cache negative answers

- **DNS Notify**
 - RFC 1996
 - Master server triggers update to slaves when serial number has changed
SOA Example

mydom.org. IN SOA mastersrv.mydom.org.
dnsadmin.mail.mydom.org. (
2006033001; serial number
3h; refresh
1h; retry
1w; expire
1h; negative Caching TTL
)
NS RR – Nameserver

- Defines a nameserver for this zone
- Example:

 Zone IN A Nameserver

 subdom1.org. IN NS namesrv.myorg.org.
A RR - Address

- Maps a name to an IPv4 address
- Example:

 Hostname IN A ipAddress

 MyHost IN A 1.2.3.4
CNAME RR – Assign alias

- Each host has a canonical name defined with an A record
- CNAME allows definition of alias without introducing additional host with same IP
- Example:

 \[\text{Aliasname IN CNAME canonicalName} \]
 \[\text{www IN CNAME myHost} \]

- Some applications/resolvers do not work correctly with Aliases!
PTR RR – Point to

- Points to another part of the domain space
- Example:

 Hostname IN PTR Hostname

 anotherHost.org. IN PTR myHost.org.
PTR – Reverse Lookup

- How to get a name based on IP
 - How to do a Reverse lookup
- Parallel name space
 - .arpa tld
 - 4.3.2.1.in-addr.arpa.
 - For 1.2.3.4
- Example
 4.3.2.1.in-addr.arpa. IN PTR myHost
- Why is order of ip Address reversed?
 - Hierarchical structure of IP addresses
AAAA – ipv6 Address

- Maps a name to an IPv6 address
 - RFC 1886
- Example:

 Hostname IN AAAA ipv6 Address

 ip6Host.x.y. IN AAAA 0123::ab:1234
IPv6 Reverse Mapping

- New domain ip6.int
- Like .in-addr.arpa.
- Each subdomain represents 4 bits of IPv6 address, ie 1 hex character
 - No shortcut for 0s
- Example
 4.3.2.1.b.a.0.3.2.1.0.ip6.int. IN PTR ip6host
A6 – IPv6

- RFC 2874
- Another form of specifying IPv6 addresses
 - Chain of A6 records
- Only those parts need to be specified that are controlled by the nameserver
- For the remaining bits another A6 entry is consulted, probably at another nameserver
 - Supports chaining of IPv6 addresses
- Example
 ip6Host IN A6 64 ::ab:1234 parentnet.org.
DNAME – ipv6 Reverse Mapping

- Bitstring-Label
 - Parts of IPv6 Addresses
 - `[x012300000000000000000000000000000ab1234]`
 - `[x0123/16]` means bitstring with 16 significant bit

- DNAME
 - `[0x1234/16]` IN DNAME ip6.m.net.

- At each step part of the bitstring will be replaced
DNAME – Nameserver entries

Root nameserver:

\[0x123/16\] IN DNAME ip6.m.net.

ip6.m.net:

\[0x00000000/32\] IN DNAME x.y.

x.y:

\[0x00000000000000ab1234/80\] IN PTR ip6Host.x.y.
DNAME – Resolving Example

Resolving \[x0123000000000000000000000ab1234]\]
Query at root nameserver:
\[x0123000000000000000000000ab1234]\]
Returns:
\[x012300000000000000000000000000000ab1234].ip6.arpa. IN CNAME
\[x000000000000000000000ab1234].ip6.m.net.

Query to ip6.m.net:
\[x00000000000000000000000ab1234]\]
Returns:
\[x0000000000000000000000000000ab1234].ip6.m.net. IN CNAME
\[0000000000000ab1234].x.y.

Query to x.y.:
Finds \[00000000000000ab1234]\] and returns searched name.
Applications for Reverse Lookup

- Spam Prevention
 - Almost all spam emails contain forged sender addresses
 - Email sender address may easily be forged
 - It's just text!
 - Reverse Lookup off sender mail address and server mail address
DNS Security / TSIG

- Transaction Signatures (TSIG)
 - Secret Key Transaction Authentication for DNS (TSIG)
 - RFC 2845
- Authentication of DNS partners
- Data Integrity
- Secret Key
 - Known by involved DNS Servers
- Used in zone transfers, dynamic updates
- Principle
 - MD5 hash of each DNS packet
 - Stored in a TSIG Resource Record
 - NO corresponding RR in any zone file!
 - Hash verified by receiver
DNS Security / DNSSEC

- Authentication of DNS partners
- Data integrity
- Public key cryptosystem
 - KEY resource record for public key
- Private key used to digitally sign RRs
 - Creates SIG RR
- SIG-RR is delivered in each DNS transaction
Dynamic DNS

- DNS based on static database
- Dynamic Update
 - Rfc 2136
 - Allows updates of DNS from outside
 - Without intervention of administrator
- Allows Dynamic DNS (DDNS)
 - Clients have not a static IP
 - But require static name
 - After startup Dynamic Update is done on DNS server
- Updates incrementally stored in journal files
- Requires either Access Control Lists or TSIG
Server & Clients

- **DNS Server**
 - Bind 8 & 9
 - Berkely Internet Name Demon
 - Djbdns
 - Daniel J. Bernstein DNS
 - More secure than Bind
 - MS DNS included in Windows Server OS

- **Client tools**
 - nslookup
 - dig
DNS Protocol

- UDP & TCP port 53
- Header identical for query and answer
- Flags: query/response, authoritative answer
 recursion desired, recursion available

<table>
<thead>
<tr>
<th>Identification - 16 bit</th>
<th>flags - 16 bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of questions - 16 bit</td>
<td>Number answers - 16 bit</td>
</tr>
<tr>
<td>Number of authority RRs - 16 bit</td>
<td>Number of additional RRs - 16 bit</td>
</tr>
<tr>
<td>questions</td>
<td></td>
</tr>
<tr>
<td>Answers (RRs)</td>
<td></td>
</tr>
<tr>
<td>authority (RRs)</td>
<td></td>
</tr>
<tr>
<td>Additional information (RRs)</td>
<td></td>
</tr>
</tbody>
</table>
Internationalized Domain Names

- Internationalized Domain Name
 - Contains potentially non-ASCII characters
 - Eg. Österreich.at
 - Allows country-specific domain names
 - Umlaute: ä,ö,ü
 - Greek, Cyrillic, Japanese, Chinese Symbols

- Internationalizing Domain Names in Applications
 - RFC 3490
 - Based on Unicode
 - Conversion done by the application
 - DNS not involved
Internationalized Domain Names Example

- Example
 - **www.Österreich.at**
 1. Split into individual labels
 - Österreich (has non-US ASCII characters)
 2. Perform Nameprep algorithm
 - RFC 3491 based on StringPrep 3454
 - Normalizes string
 - österreich
 3. Perform Punycode algorithm (RFC 3492)
 - Removes Special Characters
 - Encodes symbol and position
 - sterreich-z7a
 - Prepends ACE label (ASCII Compatible Encoding): xn--

- Result: **www.xn--sterreich-z7a.at**
Internationalized Domain Names

- Browser support
 - Mozilla > 1.4
 - Netscape 7.1
 - Opera 7
 - IE < 7 only with plugin
 - IE 7

- Conversion Tools
 - Search for Punycode or IDN Converter