OSoftware reuse

must be recognized as

having the same cost
and risk features as
any financial
investment.

This article suggests
analytical approaches
for making good

reuse inuvestments.

Making

Reuse

Cost-Effective

BRUCE H. BARNES, National Science Foundation
TERRY B. BOLLINGER, Contel Technology Center

here has been
quite a bit of debate in the last few years
on the merits of software reuse. One rea-
son for this continuing debate has been a
question of scope: Should software reuse
e defined narrowly in terms of one or a
few specific methods (such as libraries of
scavenged parts), or should it be defined
broadly so it includes widely differing
methods and processes?

The question of scope is important,
since it really asks whether the concept
of software reuse provides any major in-
sight into the software-development
process. A narrow definition implies that
reuse is simply another development
technique that, like many other tech-
niques, is helpful in some contexts and
inappropriate in many others. A broad
definition implies that reuse incorpo-
rates one or more general principles that
should be recognized and addressed ex-

plicitly in the software-development
process.

We believe that reuse is in fact one of
the fundamental paradigms of develop-
ment and that, until it is better under-
stood, significant reductions in the cost
of building large systems will simply not
be possible. We base this assertion pri-
marily on our belief that:

The defining characteristic of good reuse
is mot the reuse of software per se, but the
reuse of human problem solving.

A SCARCE RESOURCE

By “human problem solving,” we mean
those nonrepettive, nontrivial aspects of
software development and maintenance
that cannot easily be formalized or auto-
mated using current levels of expertise.
Unlike many other hardware and soft-
ware resources used in development,

IEEE SOFTWARE

0740-7458/981,/0100,/0013/%$01.00 © IEEE

human problem solving cannot readily be
muldplied, multplexed, accelerated, or
enhanced. Problem solving thus shares
many of the characteristics of precious
metals in the materials-processing indus-
try: Tt must be used judi-
ciously, replaced by less

work product is any explicit, physical re-
sult of a work activity in the development
and maintenance process.)

Examples of potendally reusable work
products are requirements specifications,
designs, code modules,
documentation, test data,

]
expensive resources when . and customized tools.
possible, and recovered PTOblem SO|Vlﬂg Thisidea of broad-spec-
for further use whenever trum reuse! is particularly
feasible. Shares mﬂny important because it has

If human problem
solving is viewed as a
scarce resource then the
three techniques of judi-
cious use, replacement,
and recovery correspond
fairly closely to project
planning, automation,
and reuse:

* Good planning re-
duces the loss of human
problem solving by mini-
mizing redundant and
dead-end work, by en-
hancing communication
of solutions among devel-
opers, and by helping development
groups select environments that support
worker productvity.

* Automation is the classic process of
tool building, in which well-understood
work activities such as the conversion of
formulas into assembly code are replaced
with less costly automated tools such as
compilers.

* Reuse muldplies the effectiveness of
humnan problem solving by ensuring that
the extensive work or special knowledge
used to solve specific development prob-
lems will be transferred to as many similar
problems as possible. Reuse differs from
judicious planning in that it can actually
amplify available problem-solving re-
sources, just as automation can amplify the
effect of well-understood, formally de-
fined work activities.

Broad-spectrum reuse. If the key feature of
effective software reuse is the reuse of
problem-solving skills, it follows that
reuse should not be restricted to source
code. Any work product that makes prob-
lem solutions readily accessible to later
projects is a good candidate for reuse. (A

characteristics of
precious metals. It
must be used
judiciously, replaced
by less expensive
resources when
possible, and
recovered for further
use whenever feasible.

the potential to reduce
costs substantially. It can
reduce costs because re-
using an early work prod-
uct can greatly increase
the likelihood of reuse of
later work products de-
veloped from it.

For example, although
reusing code modules
from a custom database
system can certainly re-
duce costs, reusing the
system’s overall func-
tional specification could
lead to the reuse of the en-
tire set of designs, code modules, docu-
mentation, test data, and associated user
experience that were developed from that
specification. The chances of cost-effec-
tive reuse are much higher, both because
more work products are reused and be-
cause the effort needed to adapt and inte-
grate those work products into a new en-
vironment is greatly diminished.

Curiously, informal reuse of early work
products is actually very common, but it
often is not recognized because it mas-
querades as code-level reuse. Informal
reuse of early work products occurs pri-
marily when highly experienced develop-
ers use their familiarity with the
functionality and design of a code module
set to adapt those modules to new, similar
uses.’

"This powerful form of reuse is feasible
only when developers can use their famil-
iarity with early work products to zero in
on the code modules that were derived
from those products. The fact that these
early work products may reside entirely

within the developers’ memories does not
diminish their importance. Indeed, such |
situations point out the importance of au-

tomated support for reuse early in the life
cycle. You need only have those develop-
ers retire or quit to discover how ineffi-
cient true code-level reuse is by compari-
son!

Reuse and automation. Thinking of effec-
tive software reuse as problem-solving
reuse provides a good general heuristic for
judging a work product’s reuse potental.
For example, modules that solve difficult
or complex problems (like hardware-
driver modules in an operating system) are
excellent reuse candidates because they in-
corporate a high level of problem-solving
expertise that is very expensive to repli-
cate.

In contrast, a set of Unix date-and-time
routines that differ only in their output
formats are generally poor reuse candi-
dates. You can program such format vari-
ants easily in Unix by using a stream editor
such as Sed to modify the output of the
standard date-and-time function. This ap-
proach is very flexible, and it requires litdle
problem-solving skill beyond specifying
the desired output formats and familiarity
with a standard Unix tool. Trying to antic-
ipate all the possible variants of date-and-
time formats would in effect place a costly
reuse technique (building a large library of
variants) in direct competition with an ex-
isting automated method (generating
variants by directly specifying output for-
mats).

This example leads to a general rule:

Reuse should complement automation, not
compete with it.

Automation and reuse are comple-
mentary in that automation tries to trans-
fer as much work as possible to the com-
puter, while reuse tries to make the most
efficient use of work activides that cannot
be fully automated.

Automated problem solving may one
day help reduce the need for the human
variety, but until that day arrives, software
reuse offers a practical, high-potential ap-
proach to stretching the critical develop-
ment resource of human problem solving.

REUSE AS AN INVESTMENT

If reuse is a vital component of the de-
velopment process, what then is the best

14

JANUARY 1991

approach to understanding it and increas-
ing its efficiency? First and foremost, we
must recognize that reuse has the same
costand risk characteristics as any financial
investment. Figure 1 illustrates why reuse
should be viewed as an investment and in-
troduces the reuse-investment relation.

Reuse-investment relation. The left side of
this relation, the producer side, represents
all the investments made to increase
reusability. Reuse investments are any
costs that do notdirectly support the com-
pletion of an activity’s primary develop-
ment goals but are instead intended to
make one or more work products of that
activity easier to reuse. For example, labor
hours devoted specifically to classifying
and placing code components in a reuse
library are a reuse investment, since those
hours are intended primarily to benefit
subsequent activities.

Reuse investments should not be con-
fused with the costs of making software
maintainable, since maintainability costs
are an integral part of building deliverable
products. Instead, the completion of
maintenance investtnents is the starting
point for reuse investments. This distinc-
ton is particularly important because
maintenance technology overlaps exten-
sively with reuse technology. The thresh-
old between these two costs is best defined
in terms of global objectives, rather than in
terms of specific technologies.

The rightside of the reuse-invesunent
relation, the consumer side, shows the cost
benefits accrued as a result of earlier reuse
investments. For each activity that applies
reuse, the benefit is simply a measure in
dollars of how much the earlier invest-
ment helped (or hurt) the activity’s effec-
dveness.

"To calculate the reuse benefit, you must
first esdmate the activity’s cost without
reuse and compare that to its cost with
reuse. For example, if an activity placed
several reusable components in a library, a
subsequent activity would estimate its
reuse benefit by comparing total develop-
ment costs without reusing those compo-
nents to total development costs when the
reusable components are fully exploited.

You find the total reuse benefit by esti-

mating the reuse benefit for 2/ subsequent
activities that profit from the reuse invest-
ment, even if those activities occur in the
distant future. It is vital thatyou include all
activities that benefit from a reuse invest-
ment, because it is this total benefit that
determines the maximum level of reuse
investment that you can apply economi-
cally to a set of work products.

In short, reuse investment is cost effec-
tive only when

R<B

where R is the total reuse investment
and B is the total cost benefits. Bis in turn
defined as

n n
B= 2 b; = 2 le;=]
i=1 =1
where b, is the benefit from reuse invest-
ment for activity , ¢; is the estimated cost
of activity i without exploiting reuse, ¢; is
the cost of activty when reuse investment
is exploited, and 7 is the number of activi-
des affected by the investment.

If an early estimate of the total reuse
benefit indicates that it will be very small,
you should make only a very limited in-
vestment in reuse technologies (beyond
those needed to meet maintenance re-
quirements). If estimates indicate that the
total benefit will be very great, you should
make substantal investments in advanced
reuse technologies.

In either case, the failure of a develop-
ment group to acknowledge the con-
straints of the reuse-investment relation
could be disastrous from a cost perspec-
tive. After all, of what use is a very impres-
sive, very advanced suite of reusable soft-
ware if no one ever gets around to reusing
it?

Producers and consumers. In Figure 1, ac-
tivities that work to increase the
reusability of work products are called
reuse producer activities and activities that
seek to reduce costs through reuse of work
products are called reuse consumer activi-
ties. We intentionally used terminology
with strong commercial implications be-
cause the underlying processes behind
software reuse and commercial software
marketing are strikingly similar.

Vendors of commercial software
achieve net cost benefits only when their
products are purchased (reused) enough
times to cover development costs, just as
reuse producers achieve a net benefit only
when their work products are reused
enough times to cover investment costs.
Most reuse producers (vendors) and reuse
consumers (buyers) differ from their com-
mercial counterparts primarily in that the
transfer of products between them takes
place within a single company or project,
rather than across company or organiza-

Reuse investments

FIGURE 1. REUSEINVESTMENT RELATION.

Activity 1 Activity n
Estimated cost oo e Estimated cost
w/out reuse w/out reuse
Cost Cost
w/ reuse w/ reuse

I § savings I

§ savings

IEEE SOFTWARE

tional boundaries.

The producer/consumer reuse model
is rich in both managerial and technical
implications. One obvious managerial im-
plication is that organizations that fail to
provide some form of payback incentives
to producer projects are unlikely to suc-
ceed at reuse, since producers will, in ef-
fect, be penalized for making overhead ex-
penditures that do not directly contribute
to their development project.

Indeed, it is likely that one of the most
significant inhibitors of reuse in the soft-
ware industry is a lack of incentive strate-
gies to encourage coordinated reuse in-
vestments. Without such incentives, reuse
becomes a scavenger hunt, where each
reuse customer must bear the full cost of
finding, understanding, and modifying
work products to meet his needs.

Scavenging is an extremely inefficient
form of reuse because it duplicates reen-
gineering costs each time the product is
reused. Well-planned investments made
up front by producers can make it much
easier for consumers to find, understand,
and customize the parts they need. Also,
reuse producers can build in reusability,
which avoids the significantly more costly
task of reengineering reusability into ex-
isting work products.

MAKING REUSE COST-EFFECTIVE

Another way to express the reuse-in-
vestment relation is to define a quality-of-
investment measure, Q, which is simply the
ratio of reuse benefits to reuse invest-
ments:

Q=B/R
where R is the total reuse investment and
B is the total cost benefits resulting from
reuse investment.

The Q measure is just another way of
saying, “Iry to get the most for your
money.” If Qis less than 1 forareuse effort,
there was a net financial loss; if Q is signif-
icantly greater than 1, the reuse invest-
ment provided good returns.

In the case of commercial products, Q
can become very large due to the many
reuses (sales) afforded by commercial
marketing. The commercial-marketing
comparison again points out an important
issue: Reuse investments are most likely to

pay off when they are applied to high-
value work products. Applying expensive
reuse technologies to low-value work
products is not at all likely to produce
reuse winners, although in some cases
such a strategy may result in particularly
spectacular failures.

Ifthe key to making reuse cost-effective
is to increase the Q measure, how is such an
increase bestaccomplished? The variablesin
the reuse-investment relation suggest three
major strategies for increasing Q:

¢ Increase the level of reuse.

¢ Reduce the average cost of reuse.

¢ Reduce the investment needed to
achieve a given reuse benefit.

We have developed ways to implement
these strategies, and in the process we un-
covered a few surprising implications
about how reuse is closely linked to the
general problem of developing high-qual-
ity software.

|
One of the most
significant inhibitors of
reuse is a lack of
incentive. Without

INCREASING REUSE

The first strategy for
increasing Q is to increase
the level of consumer
reuse. However, the likely
level of consumer reuse

whenever a work product is actually re-
used in a subsequent development activity.
Due to the strong (roughly linear) depen-
dence of on the overall level of reuse, if
you have low expectations for the number
of reuse instances, you should keep the
average level of reuse investment per unit
of code low. But if you expect many reuse
instances, the project may merit much more
extensive reuse investments per unitof code.

In estimating reuse instances, an im-
portant first step is simply to ask questions.
Often, if you ask the specifiers and archi-
tects of a new system to make an order-of-
magnitude guess of the number of reuse
instances (one? 10? 1,0007), they can do so
with little difficulty. Even such rough ap-
proximations can help you avoid costly
overinvestments.

Reuse and competition. The process of es-
timating reuse instances for a software
component is linked to
the much broader prob-
lem of understanding the
commercial software
market. This is because all

orms of reuse are essen-
tially competitive: Any
group that wants to reuse
software must decide

for a work product de- InCenTIVGS , reuse whether to take that soft-
s S o savenger T
Sl hnueseod S
unique expertise are far reuse cusfomer must extensive adaptation, or if

more likely to have a large
reuse market than are
weak products that lack
distinctive features.
Increasing the number
of actual instances of
reuse thus should be
viewed primarily as an
analysis task, to identify
the relative merit of in-
vesting in a set of work products. By per-
forming such an analysis early in develop-
ment, you can avoid low-value invest-
ments and more accurately determine the
potential of high-value products.

Reuse instances. A reuse instance occurs

bear the full cost
of finding,
understanding, and
modifying work
producfs.

1

itis poorly documented, it
is entrely possible that a
similar commercial prod-
uctwith an initially higher
cost could in the long run
prove to be less costly
than the equivalent “free”
software.

This means that reuse
investors should be care-
ful not to inflate instance estimates with
reuse opportunities that are real but that
are likely to be filled by products from
other sources. As an extreme example,
very few developers should seriously con-
sider making a custom file system reus-

! able, since this would place them in direct

competition with a very advanced com-

16

JANUARY 1981

mercial market for database-management
systems. A realistic estimate of the number
of reuse instances in this case should be
very low, perhaps zero.

You can greatly reduce the risks of mis-
takenly competing with external markets if
you apply the principle that good software
reuse is actually good problem-solving
reuse. Most companies are particularly
skilled in one or more problem-solving
areas, which gives them important com-
petitive advantages. A company that builds
software for the National Aeronautics and
Space Administration may have special ex-
pertise in flight-dynamics algorithms, for
example. If a persistent need for this type
of expertise is expected, the company
might well find it profitable to build
reusability into its flight-dynamics soft-
ware. A rule of thumb summarizes such
situations:

Build veusable pavts for local expertise; buy
reusable parts for outside expertise.

Variants analysis. Estimating reuse in-
stances is the simplest form of a more gen-
eral type of analysis that we call variants
analysis. Variants analysis is to reusable
software what requirements analysis is to
traditional once-only software. Its objec-
tive is to quantfy requirements for reuse
investment up front, just as requirements
analysis attempts to quantify requirements
for functionality up front.

As in reuse-instance estimation, vari-
ants analysis in its simplest form consists
simply of asking questions — explicitly ex-
amining how future development or
maintenance efforts may use updated or
altered versions of the current project’s
funcdonal requirements.

More elaborate forms of variants anal-
ysis require a structured format to record
such information. By analogy with re-
quirements specifications, these reposito-
ries of information about likely future
variants are called variants specifications.

Variants specifications. A variants specifica-
tion is a requirements specification ex-
tended to include the best available infor-
mation on how the activity’s work
products are likely to be reused.

"To help designers translate these speci-
fications into reusable products, they are

stated in terms of product variants — func-
tional variations of the primary product.
Product variants can be described in many
ways, ranging from explicit descriptions of
multiple products to parameterized, ge-
neric requirements.

Unlike a requirements
specification, a variants
specification tries to de-
scribe an objective that is
inherently heurisdc — it
must express a set of best
guesses as to which of a
potentially infinite range
of product variants is
most likely to be needed
in the future.

This likelihood of use
can be described in terms
of a probability percent-
age, which may range
from 100 percent for
products thatare specific-
ally required as part of the
product delivery, through
moderate values (10 per-
cent) for variants that are
fairly good reuse candi-
dates, to potentially very
low values (0.01 percent)
for product variants that
are notlikely to be needed
but that could be very
valuable if they are ever actually reused.

You can also use such likelihood-of-use
percentages to set priorities, where a 100-
percent rating would indicate a customer
requirement that must be met to fulfill
contractual obligations, while lower rat-
ings would determine the relative value of
variants.

Because variants specifications de-
scribe sets of software products, you can
make them as simple or as elaborate as you
want. If you describe only one product (all
requirements have 100-percent priority),
the variants specification is identical to a
(simplistic) requirements specification.
Better is a group of variants specifications
that correspond to a typical requirements
specification.

Although requirements specifications
are not usually viewed in terms of reuse,
they normally contain some variants re-
quirements phrased in terms of modular-

L]
(reating a
well-designed system
is fundomentally o
problem of
anticipating its most
likely variants and of
applying design
techniques that will
ensure that the most
likely variants will also
be the least expensive
to build during
maintenance.

ity and portability. For example, a require-
ment that a product must be portable
across Digital Equipment Corp., IBM,
and Sun computers is a variants require-
ment, because it says in effect that there is
a very high probability that the customer
will reuse (port) the prod-
uct to one or more envi-
ronments.

Reuse, maintenance, and good
design. Besides reusability,
there is another intri-
guing reason explicit vari-
ants analysis could be a
usefu] addition to the de-
velopment process.

A key feature of a well-
designed architecture is
thatit be easy to maintain,
since such systems are
more likely to have a long
useful life span and less
likely to be expensive to
support. However, soft-
ware maintenance is itself
a form of reuse-with-re-
placement, in which new
variants of endre systems
are created and then sub-
stituted for the original
systems.

From this perspective,
the problem of creating a well-designed
system is fundamentally a problem of an-
ticipating its most likely variants and of
applying design techniques that will en-
sure that the most likely variants will also
be the least expensive to build during
maintenance — in other words, variants
analysis. Current design approaches apply
general rules that, while they usually result
in designs that support the necessary vari-
ants, lack the specificity provided by an
explicit variants analysis.

If variants analysis is in fact a hidden
dimension of good software design, thena
better understanding of how to build
highly reusable software could simulta-
neously lead to a more quantitative under-
standing of what makes a particular design
“good” or “bad.” It would also imply that
good design may be a more relative con-
ceptthan is generally recognized. A design

thatsupports long-term maintenance very

IEEE SOFTWARE

17

Si:sx't;;reﬁ» ;iﬁﬂium
Hibrarias) of
genarit components

Rey:

inteltigent front-ends
vith Fbrgries of
muftilevel generics

Application- progeam E

generuiors

Very low

well in one corporate environment could
sinultaneously be badly mismatched o
the long-term needs of a different corpo-
Fate envIrGNMment.

REDUCING COST

The second technique for increasing
the investment-quality measure (J s tore-
duce the average cost of reusing work
products hy making them easy and inex-
pensive w reuse. Just as commercial ven-
dors oy to make their packages easy w
adapt to the environments of many
customers, reuse producers need 1o en-
conrage reuse of their products by making
them to find, adaps, and integrate into
new
How mucha reuse producer canin
in such efforts will depend both on ex-
pected levels of reuse and the availability of
appropriate reuse technologies. Reducing
the cost of reuse thus depends to a large
degree on selecting technologies thaty
{%iiﬂti‘,]\' support the iwulx of reuse
customners while constraining reuse in-
vestment costs 1o acceptable ke

Classitying reuse fedmologies by ast. To se-

Jead

»]

fect reuse technologies on the basis of cost
versus power, vou first must compare
them in these terms, Figure 2 shows some
balipark approximations of hov i
code-specific reuse technologie
in tern TSUS POWE ompa-
rable sets of v nologies for non-
ende work products such as designs and
requirements specifications do ot yet
exist. Thisis a curious deficiency, since the
development of such broad-spectram
se technologi y eventaally prove
tobea pmﬁt; g
has three dimension
s, corponent ge

OTPAre

nd cost 1o

Reuse ivestment cosh. T he reuse investment
cost is the total cost to the producer to
make parts readily available for reuse,
(,umpczmm{ technole sgies along this di-
mension alone will help climinate major
s of reuse tec%}rm].ogies as too costly.

I

1%;{-{1 1‘\ npmml \
v{nm) are very power Ful and

b
jus
!

yate mam poterstial veuse insta

as is true for (}[}Li‘ﬂﬁliﬁi ['XSU. m ‘i}‘;ﬁ&gf‘v

HONS.

Componenf generlify. The re component-gen-
erality dlsmnxg{m mtroduces the concept
of the relative power of a reuse rechnole
expressed in ferms of how man
of & part can readily b{: (}b!:aéntd ?}\; a
that rechnolog
howwell a p areienlar ti’{.h nuinm'
the needs of an app, shication area. Be :
s parts can be reused without some
tion, g technology that provides
o-reuse, predefined
e total nomber

modific
large suites of eas
vartants greatdy increase
of reuse opportonites,
But building generality into reusable
parts tends to be expensive and labor-in-
tensive. While Ada’s generic procedures
are undeniably more flexible and reusable
than conventonal Fortran-like pr
they are also significanty harder to

dures,

huihﬁ.

erative methods are an extrenie
wnple of component generality. In ef-
¢, these methods allow the synthesis of
able parts from application-specitic
in much the same way that
allow the synthesis of object-
code modules from higher level lan-
ative methods
i 1 ease

pr
of use, they require ex
prey Iheir

thus makes them appropriace only
you anticipate very many reuse instances.

the total
sémi%ngz,

cost to the re
ad;lptimz; i
able con _
can minimnize the cost to rense by Idtnﬂh -
ing a plausible level of reuse nvestment
and choosing the corresponding reuse
schnology that has the lowest cost to

Thus, if a re geer group has
xdmutmd the need for a moderate level of
ment and has adequately char-
the likely reuse instances, it
sose to ise Ada generics, for ex-
ample, to implement its reusable corapo-
nents,

, however, s ©
The problem is

e key pl

characterized.”

quately

)

that the generality of Ada generics is com-
paratively low, because they primarily sub-
stitute data types rather than modify
functonality. If future reuse instances are
poorly characterized, this means that
highly specific generalizations could easily
miss the target of actual future needs. Al-
ternately, the total costs of generalization
could become excessive as the developers
try to use an overly restrictive technique to
cover a very broad range of conceivable
reuse instances.

REDUCING INVESTMENT COSTS

"The prospect of overextending a reuse
technology brings up the third strategy for
increasing the Q measure: reducing in-
vestment costs. Just as a reuse technology
that is not general enough can be unduly
expensive for reuse consumers, a technol-
ogy that is either overextended or more
general than necessary can result in exces-
sive costs to the reuse producer.

What you need is a way to analyze the
information provided by variants analysis
more carefully, so the level of generality
provided by reuse technologies will match
future expected needs.

The starting point for this matching is
the concept of instance spaces, which let you
define the generality level of reusable
components more precisely. The instance
space of a component or other work prod-
uct is the full set of variants that can be
retrieved at reasonable cost (defined as less
than the equivalent full development cost)
by a reuse consumer.

Figure 3 shows an instance space for an
Ada generic component. An important
feature of an instance space is that it makes
no difference whether a specific instance
of a part is actual (a part in a library) or
virtual (a potential but as-yet-unrealized
instantiation). Because they abstract out
the issue of whether a part is physical, in-
stance spaces let you compare highly di-
verse reuse technologies such as code li-
braries and generative methods.

Instance-space abstracton also takes
manual methods into account, since they
can be classified as having very large in-
stance spaces (people can program nearly
anything in time) but high consumer costs
(programming is more expensive than, say,

building new procedures with Ada gener-
ics).

Matching generality to needs. In variants
analysis, you characterize consumer needs
in terms of product variants. Characteriz-
ing variants this way lets you compare the
results of variants analysis to the instance
spaces of generalized components or work
products.

Figure 4 shows such a comparison, in-
cluding the three groups of instances that
normally result from an intersection of
variants and instance spaces. These three
groups are labeled in terms of how they are
perceived by reuse consumers: extensive-
adaptation instances, moderate- to mini-
mal-adaptation instances, and unused in-
stances.

¢ Extensive-adaptation instances are
actually accessed and used by consumers,
but they are so difficult to adapt that the
cost benefits are negligible or possibly
even negative. These instances represent
lost opportunities where a reusable part
could have provided cost benefits, but its
generalization failed to anticipate the
needs of the consumer adequately.

¢ Moderate- to minimal-adaptation
instances represent significant cost bene-
fits to one or more customers. In these
cases, the part was generalized so it was
easy to retrieve and adapt.

¢ Unused instances are a large cate-
gory that, while they should be expected in
any application, should be controlled by
reuse producers to prevent overinvest-
ment. Many low-cost unused instances are

The instante space 1{G) Generic function ADD_numeric
for the generdlization 6 4
, l Funcion ADD_FLOAT
Original port

Function ADD_INTEGER

FIGURE 3. INSTANCE SPACES.

Generalization <
{Method: Ada generics) ::>

Function ADD_LONG

Function ADD_COMPLEX

°
L+ |

/ .

| Extensive odoption

Excess cost
to consumer

Moderate adaption

Optimal reuse

* investment

Minimal adaption

bt

FIGURE 4. COST OBJECTIVES IN BUILDING HIGHLY REUSABLE SOFTWARE.

Unused instance
P

IEEE SOFTWARE

19

generally acceptable and even desirable as
insurance, but many unused instances cre-
ated with expensive technologies could
easily result in reuse-investment losses.

Comparing instance spaces to variants
analysis works best when the product is
relatively small. Otherwise, the size of the
instance space becomes so large that it be-
comes impractical to directly characterize
the moderate- to minimal-adaptation in-
stances.

Even for small components, the in-
stance spaces are typically so large that
they are better handled by specifying char-
acteristics than by explicitly enumerating
all possible instances. Thus, you would
characterize the moderate- to minimal-
adaptation instance space for the Ada ge-
neric example of Figure 3 by specifying
key constraints, such as the potential need
for any legal scalar variant of the routine,
the exclusion of matrix-algebra variants,
and the need for a particular range of com-
putational accuracies.

Again, the most important reason to
perform such characterizations is to en-
courage reuse investment decisions based
explicitly on expected needs, instead of on
habit or what’s easiest to do. For example,
if you could firmly establish that the ge-
neric addition routine in Figure 3 would
never be reused in any applications requir-
ing complex algebra, you could avoid the
extra expense of generalizing that routine
to include complex addition. Conversely,
if the routine was part of a larger package
for which conversion to matrix algebra
was plausible, the extra effort to add hooks
for such conversion might be worthwhile.

Mixing reuse tecinologies. You need not
pick just one reuse technology for a set of
components. In fact, it is more likely that
the best and most economical coverage of
consumer needs will be provided by two
or more reuse technologies.

The reason for this is related to risk
reduction. In most cases, you will be able
to describe likely consumer variants only
in broad terms. While you may be able to
state firmly that there will be many in-
stances of reuse within a broad set of vari-
ants, you may not know where in that set
those instances will fall. Ada generics are a
simple example of this situation, since they

involve cases where the need for new data
types is well established but the exact defi-
nition of those data types cannot be known
until the consumer actually needs a new
routine.

Such late-binding situations are best
covered by reuse technologies that pro-
vide a high level of generality, but they are
relatively costly to the consumer. An ex-
ample of such a technology is reuse-ori-
ented documentation, which amounts to
simply ensuring that the results of variants
analysis are embedded as documentation
throughout a development effort’s work
products.

On the other hand, instances that are
very good candidates for reuse should be
handled using technologies that pass the
lowest possible cost to the reuse consumer.
Moving costs to the producer for such
sure-bet cases is nearly al-
ways appropriate, since

made more tractable. Modular reuse strat-
egies should take a divide-and-conquer
approach that supports both the design of
new, highly reusable systems and the anal-
ysis of existing, potentially reusable sys-
tems.

The starting point is to recognize that
you can view reuse (and development) as
the construction of new systems by com-
bining two forms of functionality:

¢ Invariant functionality, which is the
set of components (or component frag-
ments) that are used without change.
Mathematical routines are common ex-
amples. By definition, invariant
functionality alone cannot create a new
system, since it lacks the customization
needed to meeta new set of requirements.

4 Variant functionality, which is the set
of new functionality (software) that must

be added to customize in-
variant components.

the developer of a system R Variant functionality may
can usually generalize its 1 be as simple as a set of ar-
work products far more PGmeXICG"y’ guments passed to a pa-
cheaply than later reuse reuse-mfenswe rameterilzed p;illiagf;:, or
consumers can reengin- . as complex as full, from-
eer them. development IS beSt scratch, new-system de-
i ey b OCOMpIS by clopme

Inappropriate to invest in focusing more on how 'Mixing v:;;um ond invari-
large amounts of costly ant functionality. Regardless
generality, because the fo Chunge SOﬁWﬂre of how simple or complex
target reuse instances are effec‘hvely fhun on a system is, it will always

already well character-
ized. An extreme example
is a reuse variant that is
fully specified and is 100-
percent certain to be
needed. In this case, the
ideal reuse strategy would be to build the
reuse instance at the same time the pri-
mary product is built.

REUSE STRATEGIES

Although instance spaces help repre-
sent the diversity and quality of reusable
parts, they rapidly become intractably
large and difficult to characterize as the
complexity of reusable components in-
creases.

What we need is a way to introduce
modularity into the design of reusable sys-
tems so the instance-space size can be

how fo keep it from
changing.

contain some mix of these
two functionality types.
Invariant functionality
provides the kernel of
functionality around
which new systems are
constructed; variant functionality provides
the novel functionality that lets a system
address a new set of needs.

"The objective of reuse-intensive devel-
opment is not to do away with the variant
component, since that would, in effect,
prevent any new needs from being ad-
dressed. The objective of effective reuse-
intensive development is the creation of
invariant components that help focus the
development of variant functionality into
very precise, succinct statements of the
differences between the old and new sys-
tems.

Paradoxically, then, reuse-intensive

20

JANUARY 1981

Structure A

Struc-

ture
Structure B C

| Structure D

Structure F |

A

Structure E

Structure F

Structure 6

Key:
1 Reused code

e oW code

FIGURE 5. FUNDAMENTAL REUSE STRATEGIES.(A) ADAPTIVE REUSE; (B) COMPOSITIONAL REUSE.

development is best accomplished by fo-
cusing more on how to change software
effectively than on how to keep it from
changing. Well-focused mechanisms for
expressing variant functionality will do far
more to keep large sections of code invari-
ant than will arbitrary attempts to build
around existing code components.

The concept of variant and invariant
functionality can readily be extended to
noncode work products by analyzing how
they can be built by combining baseline
components of various sizes and types. As
with executable code, the objective in
building, say, a highly reusable system
specification is to develop a set of baseline
components thatsupport concise, succinct
descriptions of how new specifications dif-
fer from existing ones. Technologies such
as hypertext are being applied toward this
type of objective,® but far more work on
characterizing the features of “good” vari-
ant and invariant components of noncode
work products must be done.

Two fundamental strategies. If reusable sys-
tems are always constructed from some
mix of invariant and variant functionality
then the way in which they are combined
is an important criterion for evaluating a
system’s reuse characteristics. This obser-
vation leads immediately to the definition
of two broad, complementary reuse strat-
egies, which are shown in Figure 5:

¢ Adaptive reuse uses large frame
structures as invariants and restricts vari-
ability to low-level, isolated locations
within the overall structure.® Examples in-
clude changing arguments to parameter-
ized modules, replacing low-level /O
modules, and altering individual lines of
code within modules. Adaptive reuse is
similar to maintenance in that both try to
isolate changes to minimize their system-
wide impact.

+ Compositional reuse uses small parts
as invariants and variant functonality as

the glue that links those parts.”® Examples
include constructing systems from parts in
a reuse library and programming in high-
level languages. As its name implies, com-
positional reuse is similar to conventional
programming, in which individual func-
tions of moderate complexity are com-
posed according to some grammar to cre-
ate new, more powerful functions.

Differences. In terms of cost and compo-
nent-generality characteristics, adaptive
and compositional reuse are strikingly dif-
ferent. For example, because adaptive
reuse tries to keep most of the overall
structure invariant, it tends to be applica-
tion-specific and comparatively inflexible,
but it helps keep both producer and con-
sumer reuse costs under control.

By contrast, compositional reuse can
be very flexible if the initial set of reusable
components is sufficiently rich and gener-
alized. However, constructing such a gen-
eralized component set (such as the func-
tions in an application-specific language)
can be very expensive for the reuse pro-
ducer. Also, consumer costs for composi-
tional reuse tend to rise rapidly as the com-
plexity of the constructed software
increases; when compositional reuse is ex-
tended too far, it begins to look more and
more like conventional programming,

Coverage level. For compositional reuse,
we make a further distinction based on the
coverage level of part sets. Coverage level
refers to the ability of a set of parts to ad-
dress an application area without forcing
the consumer to use a lower level language
such as Ada or Cobol. There are two
major coverage types:

¢ Full-coverage sets are sufficienty
rich and complete to let you solve new
problems within a well-defined applica-
tion area using only those reusable parts.
Examples of full-coverage sets include ap-
plication-specific languages and abstract

data types implemented with Ada pack-
ages.

¢ Partial-coverage sets provide repre-
sentative parts that act as examples of the
component types needed to solve prob-
lems in an application area. However, par-
tial-coverage sets are not sufficiently gen-
eralized to let you solve all problems in
that application area without resorting to
the use of lower level languages. A library
isa good example of a partial-coverage set,
because the parts in it usually are neither
highly generalized nor complete in their
coverage of a problem area.

Partial-coverage sets are likely to be
much less expensive to produce, but they
are also more likely to be expensive to
reuse because the parts they contain are
hard to understand, modify, and test.

Combining strategies. By themselves, nei-
ther adaptive nor compositional reuse
strategies are general enough to cover the
full range of potentially reusable struc-
tures. However, the structured combina-
tion of these two approaches creates hy-
brid strategies much broader in coverage.
Figure 6 shows the two major hybrid ap-
proaches.

¢ Full-coverage hybrid reuse uses an
adaptive framework to keep overall costs
down and “bubbles” of full-coverage
compositional sets at key locations to pro-
vide flexibility.

Unix’s "Termcap package demonstrates
this concept nicely, even though it was not
designed asa reuse technology. With Term-
cap, you build drivers for new terminal
types using interface descriptions written
in the special-purpose Termcap language.
These interface definitions are actually ex-
amples of compositional reuse, since the
"Termcap language allows ready access to
(reuse of) a complex suite of general-pur-
pose driver routines. Because you can
handle hardware variations with a special-
ized minilanguage that strongly encapsu-

IEEE SOFTWARE

21

lates such variations, you can transfer
(adaptively reuse) higher level programs
that use Termcap among systems with few
or no changes.

¢ Partial-coverage hybrid reuse is very
similar to the full-coverage hybrid, but it
allows the bubbles to be either full-cover-
age or partial-coverage — they need not
be fully generalized for handling the prob-
lem area they address.

Many types of maintenance are equiv-
alent to partial-coverage hybrid reuse,
since they are based on localized modifica-
tion of components that have never been

fully generalized.

Cutting costs. Partial-coverage hybrid
reuse provides the best overall framework
for defining the divide-and-conquer ap-
proach that is our motive for exploring
reuse strategies. Partial-coverage hybrid
reuse keeps the overall structure invariant,
so producers can focus on smaller, more
precisely defined problem areas. Reuse in-
vestments in those problem areas then can
produce minilanguage sets that permit the
flexibility consumers need.

When variants analysis indicatesaneed
for extensive generalizaton (Termcap’s
terminal-interface problem, for example),
producers can invest in expensive technol-
ogies such as application-specific lan-
guages or program generators. When
needs are clearly identified but full gener-
alizations are not justified due to poor
characterizations or limited numbers of
expected reuse instances, producers can
provide partial-coverage sets such as local-

ized libraries.

It is the ability to combine such tech-
niques within the partial-coverage hybrid
framework that makes it a good strategy
for keeping producer costs in check.

REUSE AND PARAMETERIZATION

When we say that highly generalized
parts define minilanguages for solving
specialized problems, we don’t mean to
imply that these languages are true gen-
eral-purpose languages — they are not.
But designers use them in a way similar to
general-purpose languages. Thus, sets of
reusable graphics routines are a
minilanguage for constructing and modi-
fying diagrams; libraries of mathematical
routines are minilanguages for dealing
with mathematical problems.

From this perspective, good sets of re-
usable parts should possess the same gen-
eral characteristics of expressive power
and ease of composition that are the hall-
marks of good programming languages.

Producers and consumers can further
reduce reuse costs by designing appropri-
ate, well-structured minilanguages. While
this language design is identical to the task
of generalizing parts, the language-design
perspective places a much stronger em-
phasis on the integration of parts. The
minilanguages that result should define
clear and succinct problem solutions
through the composition of a relatvely
small number of objects and operators.

The design of optimal minilanguages
can be assisted by recognizing a curious

equivalence that has significant conse-
quences. The equivalence is this:

All parameterizations can be interpreted as
minilanguages, and all minilanguages can be
interpreted as parameterizations.

Parameters as programs. At first glance,
the statement that parameterizations and
languages are in some way equivalent
seems outlandish, particularly if it encom-
passes data parameterizations. After all,
what does the passing of two complex
numbers to a Fortran subroutine for com-
plex division have to do with expressing a
problem in a minilanguage?

Actually, quite a bit. A Fortran com-
plex-division subroutine is a formal system
for solving problems in a very small, very
precisely defined domain: division of com-
plexnumbers. There are only two terms in
this domain’s minilanguage, which may be
paraphrased as “define the dividend to be
(value)” and “define the divisor to be
(value).”

These terms are “coded” with a simple
positional notation, but the semantic in-
terpretation implied by the paraphrased
versions most definitely must be met to
obtain valid results.

Tronically, such routines are not usually
thought of as defining small languages
precisely because of their effectiveness:
They are very succinct and directly ad-
dress the key variability (new data values)
needed to solve problems in their do-
mains. In Ada, you can make this equiva-
lence more obvious through the use of
named parameters that help preserve such

FIGURE 6. HYBRID REUSE STRATEGIES.(A] FULL-COVERAGE HYBRID; (B} PARTIAL-COVERAGE HYBRID.

22

JANUARY 1891

semantic implications.

Programs as parameters. Looking at the
equivalence from the other side, you can
view a compiler as a formal system for in-
terpreting program parameter values.
Like any other parameter, a program con-
sists of a string of binary data that has a
specific meaning when passed to the for-
mal system (compiler) for which it was
constructed.

The key way in which a program differs
from a traditional set of parameter values
is that instead of defining a problem solu-
tion in terms of many relatively indepen-
dent terms, a program uses comparatively
few highly interrelated terms.

There is no rigid boundary between
low-complexity schemes in which param-
eters are fairly independent and high-
complexity cases in which they are highly
interrelated. For example, some applica-
tion-specific languages such as database-
report generators often provide ways to
specify common “programs” (reports)
with very simple, parameter-like specifica-
tions.

Also, conventional parameterization
schemes may include language-like fea-
tures to reduce the number of necessary
parameters. For example, many Unix tools
such as Grep and Sed use parameteriza-
tions that range in complexity from the
passing of simple flags for commonly
needed variants of their functionality to
the passing of complicated, program-like
character strings for customizing their be-
havior in very specific ways.

Limits of parameterization. Figure 7 shows
that extreme parameterization does not
necessarily lead to a more understandable
or reusable system, since extreme parame-
terization is functionally equivalent to de-
veloping a highly generalized mini-
language.

Very high levels of parameterization
tend to approach what we call the Turing
limit, the point at which the parameteriza-
tion becomes so extensive thatitis compa-
rable in power to a general-purpose lan-
guage. “Turing” refers to the fact that a
fully generalized minilanguage permits
construction of any desired program, and
thus is akin to a Turing machine. Atbest, a

Application based

the Turing limit will be as complex as a
general-purpose language, and it could
easily be far more complex.

At that point, the reuse potential of a
component effectively becomes nil, since
it would probably be easier and less costly
to redevelop the component in the origi-
nal language.

As Figure 7 shows, the best payoff in
parameterization comes from finding
combinations of parameters that cover
common application variabilities while si-
multaneously requiring the least possible
specification efforts from consumers. Just
as many manufacturing disciplines have
developed sets of complementary parts
that can be adjusted and combined to pro-
duce wide ranges of useful products, good
software-parameterization schemes
should provide versatile tool kits of op-
tions by which the needs of later consum-
ers can be succinctly specified.

Options that are very likely to be
needed should be made as simple to spec-
ify as possible, while increasingly less likely
variations should be made to require pro-
portionally larger specification efforts. At
the lower end of this domain-specificity
continuum is the language itself, in which
variations with very low priorities can be

coded directly.

Under parameterization s/wrong/right/ Over parameferization
Foriin 1 .. 3200 loop; DataStructure = File
If file(i) = * * then Format = Sequential,
I file(i+1) = "w' then CharType = Ascii,
L If file(i+2) = 'r" then RAMBuHfered = Yes;
: Operation = FineReplace,
'g P!
= filefi+1)="r"; BeginDelim = *,
gg mmrman ,m’ EmLDelim =
c ... Find = "wrong’,
= End If; pﬂn;lllﬁ for Replace = "right"
End If; m:t*
End If; prof
End Loop;
Low
Very low Very high
("ane-shot” code) (the "Turing Limit")
Degree of perameterization
]
FIGURE 7. LIMITS OF PARAMETERIZATION IN REUSE.
parameterization scheme that has reached | WHAT'S NEXT?

We need consistent, broad-spectrum
methodologies that integrate reuse analy-
sis and development methods across the
development life cycle.

In fact, life-cycle integration is likely to
be one of the key factors that makes reuse
truly effective. After all, if the first thing
developers see in their programming en-
vironments are compilers, the first thing
they will be tempted to do is to write code.
If the first thing they see are lists of existing
parts that may match their needs, the first
thing they will be tempted to do is reuse.
Put more colloquially, if you want to lose
weight you should put the healthy food at
the front of the fridge and the junk food at
the back.

Reuse-oriented automation. Figure 8
shows the broad structure of a tool that
would use instance spaces as the basis for
presenting reusable components to reuse
consumers’ and that would implement
separation concepts similar to those of Vie
Basili and Dieter Rombach’s reuse fac-
tory.!0

The idea is to deemphasize how reus-
able parts are retrieved or created and em-
phasize the cost of retrieving them. Incor-
porating cost issues at such a fundamental
level would let the system take a much

IEEE SOFTWARE

23

Request for a reusable part

® Requests are in the form of instance
descriptions, which are based on
predefined domain languages.

 Domain languages are sefs of terms that
collectively describe the inferesfing
variations of components.

© Instance descriptions may be formal or
informal. Formal destriptions permit use
of formal instantiation methods; informal
descriptions provide greater flexibility in
choosing parts.

© The requestor receives an instantiation cost
estimate prior o actual instantiation of the
requested part,

 Consumer must “accept charges” to initiate
instantiation of the part.

Retrieved part

Instance cost estimator
o Estimates likely cost of instantiating a part.

 Works by determining type of instantiation
method(s).

® Lets the consumer evaluate relative costs of
requests.

Instantiation methods

May be formal {algorithmic) or informal
{manual). Formal methods are generally less
expensive to the consumer.

Maijor classes of methods are:

o Direct (library} retrieval

Retrieval plus assembly (Sysgens)

* Simple generative (Ada generics)

o Complex generative (program generators)

© Human-ossisted (library retrieval plus

manual adaption)

o Human-dominated (full development in
application-oriented languages).

FIGURE B. REUSE ABSTRACTION: SEPARATING REQUESTS FROM METHODS.

more active role in making reuse deci-
sions. For example, consumers who reuse
early work products such as specifications
or designs would receive cost quotes that
would indicate the strong relative cost ad-

vantages for their selections. This type of
“shop around” approach would encourage
reuse consumers to select development
paths that make the best possible use of
existing work products.

References

Maryland, College Park, Md., Dec. 1988.

w

March 1987, pp. 41-49.

e

1986, pp. 402-416.

[V

-

pp- 354-363.

1989, pp. 34-42.

o

1. M.D. Lubars, “Wide-Spectrum Support for Software Reusability,” in Software Reuse: Emerging Technology,
Will Tracz, ed., CS Press, Los Alamitos, Calif., 1988, pp. 275-281.

2. VR. Basili and H.D. Rombach, “Towards a Comprehensive Framework for Reuse: A Reuse-Enabling
Software Evolution Environment,” Tech. Report CS-TR-2158, Dept. of Computer Science, Univ. of

. T. Biggerstaff and C. Richter, “Reusability Framework, Assessment, and Directions,” [EEF, Software,
EJ. Polster, “Reuse of Software through Generation of Partial Systems,” IEEE Trans. Software Eng., March

. L. Latour and E. Johnson, “Seer: A Graphical Retrieval System for Reusable Ada Software Modules,”
Third Int’l Conf- Ada Applications and Envivonments, IEEE, Piscataway, N J., May 1988, pp. 105-113.

6. PG. Bassett, “Frame-Based Software Engineering,” IEEE Software, July 1987, pp. 9-16.

. MA. Simos, “The Domain-Oriented Software Life Cycle: Towards an Extended Process Model for
Reusability,” in Software Reuse: Emerging Technology, Will Tracz, ed., CS Press, Los Alamitos, Calif., 1988,

8. M. Lenz, H.A. Schmid, and PE. Wolf, “Software Reuse through Building Blocks,” IEEE Software, July

. T. Bollinger and B.H. Barnes, “Reuse Rules: An Adaptive Approach to Reusing Ada Software,” Proc. Artifi-
cial Intelligence and Ada Conf., George Mason Univ., Fairfax, Va., 1988, pp. 14-1-14-8.

10. VIR. Basili and H.D. Rombach, “The TAME Project: Towards Improvement-Oriented Software Environ-

ments,” IEEE Trans. Software Eng., June 1988, pp. 758-773.

For some time, reuse has suffered from
an image problem. Anyone who has
ever gone to an auto salvage yard to pick
up a spare part for his old car “knows”
what reuse is, and the image that it thus
invokes is not altogether favorable.

The theme we most want to convey is
that reuse is not a trivial concept. As a
mechanism for preserving and guiding the
use of that most expensive of resources,
human creativity and ingenuity, software
reuse is a field that merits careful attenton
both from managers interested in the bot-
tom line and from researchers interested
in better understanding that most curious
of symbiotic relationships, the one that ex-
ists between humans and computers. ¢

Bruce H. Barnes is deputy
director of the division of
computer and computation
research at the National Sci-
ence Foundation. His main
research interest is software
research.

Barnes received a BS,
MS, and PhD in mathemat-
ics from Michigan State Uni-
versity. He is a member of
the American Mathematies Society, [EEE Computer
Socicty, and ACM.

Terry B. Bollinger is a se-
nior member of the techni-
cal staffat the Contel Tech-
nology Center. He works in
the software-cngineering
laboratory on applied soft-
ware research topics rang-
ing from reuse and software

maintenance to cost-ori-
L\ ented modeling of software

processes.

Bollinger received a BS and MS in computer sci-

ence from the University of Missouri at Rolla. Heis a

member of the IEEE.

Address questions about this article to Barnes at
Division of Computer and Computation Research,
NSEF, 1800 G St. NW, Washington, D.C., 20550,
Internet bbarmes@note.nsf.gov, or Bollinger at Contel
Technology Center, 15000 Conference Center Dr.,
Chantilly, VA 22021-3808; Internet terry@cte.con-

tel.com.

24

JANUARY 1891

