
Communication in Distributed Systems –

Fundamental Concepts

Hong-Linh Truong

Distributed Systems Group,

Vienna University of Technology

truong@dsg.tuwien.ac.at
dsg.tuwien.ac.at/staff/truong

1DS WS 2013, Last revised:

09.10.2013

Distributed Systems, WS 2013

Learning Materials

 Main reading:

 Tanenbaum & Van Steen, Distributed Systems:

Principles and Paradigms, 2e, (c) 2007 Prentice-Hall

 Chapters 3 & 4

 Others

 George Coulouris, Jean Dollimore, Tim Kindberg,

„Distributed Systems – Concepts and Design“, 2nd

Edition

 Chapters 3,4, 6.

 Craig Hunt, TCP/IP Network Administration, 3edition,

2002, O‘Reilly.

 Test the examples in the lecture
DS WS 2013 2

Outline

 Programs, interfaces, systems, and

communication

 Key issues in communication in distributed

systems

 Protocols

 Processing requests

 Summary

DS WS 2013 3

Programs, interfaces, systems and

communication (1)

DS WS 2013 4

Program, interface and systems in typical machines

Program, interface and systems in typical virtual machines

Figures source: Andrew S. Tanenbaum

and Maarten van Steen, Distributed

Systems – Principles and Paradigms,

2nd Edition, 2007, Prentice-Hall

introduce

virtualization

interfaces

leads to

leads to

Q: Why virtualization techniques are useful?

Programs, interfaces, systems and

communication (2)
Hardware (CPU, Memory,
Network)

Operating System

Middleware/Libary/Runtime
system

Application

DS WS 2013 5

Software stack
Programs

 C/C++/Java, Python,

…

 Different types of

programs: systems

versus applications;

sequential versus

parallel ones; clients

versus

servers/services

Ethernet

Programs, interfaces, systems and

communication (3)

DS WS 2013 6

OS Processes

Middleware 1
Processes

Application 1
Processes

Application 2
processes

Middleware2
Processes

Middleware3
Processes

Application n
Processes

OS Processes

Middleware 1
Processes

Application 1
Processes

Application 2
processes

Middleware 2
Processes

Application
Processes

Communication Networks

Communication in distributed systems

 between processes within a single application/middleware/service

 among processes belonging to different applications/middleware/services

KEY ISSUES

DS WS 2013 7

Communication networks in

distributed systems

 Maybe designed for specific types of environments

 High performance computing, M2M, building/home, etc.

 Voices, documents, sensory data, etc.

 Distributed, different network spans

 Personal area networks (PANs), local area networks (LANs),

campus area networks (CANs), metropolitan area networks

(MANs), and wide area networks (WANs)

 Different layered networks for distributed systems

 Physical versus overlay network topologies (virtual network

topologies atop physical networks)

DS WS 2013 8

Communication

Networks

Layered communication

DS WS 2013 9

End-to-end process to process

communication

e.g., email abc@tuwien.ac.at to

ab@gmail.com

P1 P2

sender/client receiver/server

message

In the view of P1 and P2

Pk

Holistic system view
Pm

End-to-end process to

process communication

mailto:abc@tuwien.ac.at
mailto:ab@gmail.com

Communication Patterns

DS WS 2013 10

P1

P2

P3

P4

P1 P2

Q: What are the benefits of group communication, give some examples?

One-to- one/client-server

Group communication

sender/client receiver/server

P1

P2

P3

P4

Identifiers of entities particiapting

in communication

 Communication cannot be done without knowing

identifiers (names) of participating entities

 Local versus global identifier

 Individual versus group identifier

 Multiple layers/entities different forms of identifiers

 Process ID in an OS

 Machine ID: name/IP address

 Access point: (machine ID, port number)

 A unique communication ID in a communication network

 Emails for humans

 Group ID

DS WS 2013 11

Examples of communication

patterns (1)

 A User Agent wants to find a Service Agent

 Different roles and different communication patterns

 Get http://jslp.sourceforge.net/ and play samples to see

how it works

DS WS 2013 12

Service Location Protocol

http://tools.ietf.org/html/rfc2608

User Agent Service Agent
listenmulticast

Network

one-to-one

Service Agent

listen

http://jslp.sourceforge.net/

Communication world

Examples of communication

patterns (2)

 MPI (Message

Passing

Interface)

DS WS 2013 13

http://geco.mines.edu/workshop/cla

ss2/examples/mpi/c_ex04.c

source

MPI_Comm_size(MPI_COMM_WORLD,&numprocs);

MPI_Comm_rank(MPI_COMM_WORLD,&myid);

source=0;

count=4;

if(myid == source){

for(i=0;i<count;i++)

buffer[i]=i;

}

MPI_Bcast(buffer,count,MPI_INT,source,MPI_COMM_WORLD);$sudo apt-get install mpich

$mpicc c_ex04.c

$mpirun –np 4 ./a.out

Connection-oriented or connection

less communication

DS WS 2013 14

P1 P2

Connection-oriented communication between P1 and P2

requires the setup of communication connection between

them first – no setup in connectionless communication

The message: „there is a party tonight“

Write the message in a letter

Go to the post office

Send the letter to P2

Find the phone number of P2

Call P2

Tell P2 the message

Q: What are the pros/cons of connection-oriented/connectionless

communications? Is it possible to have a connectionless communication

between (P1,P2) through some connection-oriented connections?

Blocking versus non-blocking

communication calls

DS WS 2013 15

send()

Sending message buffer

msg

Receiving message buffer

receive()

 Blocking: the process

execution is suspended until

the message transmission

finishes

 Non-blocking: the process

execution continues without

waiting until the finish of the

message transmission

Send: transmitting a message is finished, it does not necessarily mean

that the message reaches its final destination.

Individual process/machine boundary Individual process/machine boundary

Q: Analyze the benefits of non-blocking communication. How non-blocking

receive() works?

Persistent and transient

communication

 Persistent communication

 Messages are kept in the communication system

until they are delivered to the receiver

 Often storage is needed

 Transient communication

 Messages are kept in the communication temporary

only if both the sender and receiver are live

DS WS 2013 16

Asynchronous versus

synchronous communication

 Asynchronous: continues after sending

messages

 Non blocking send

 Receive may/may not be blocking

 Callback mechanisms

 Synchronous: the sender waits until it knows

the messages delivered to the receiver

 Blocking send/blocking receive

 Typically utilize connection-oriented and keep-alive

connection

 Blocking request-reply styles

DS WS 2013 17

Different forms of communication

DS WS 2013 18

Q: How can we achieve the „persistence“? What are possible problems

if a server sends a accepted/replied/ACK message before processing

the request?

Source: Andrew S. Tanenbaum and

Maarten van Steen, Distributed Systems

– Principles and Paradigms, 2nd Edition,

2007, Prentice-Hall

Stateful versus Stateless Server

DS WS 2013 19

P1 P2

sender/client receiver/server

P1 P2

sender/client receiver/server

req1

req2

P2 has no information

about P1 before

Does P2 keep

information about P1

from the previous

request?

Stateless server Soft State Stateful Server

Does not keep client‘s

state information

Keep some limited

client‘s state information

in a limited time

Maintain client‘s state

information

permanently

T0

T1

Handling out of band data

DS WS 2013 20

P1 P2

sender/client receiver/server

Req2, Req1
All messages come to

P2 in the same port, no

clear information about

priority

Normal case

P1 P2

sender/client receiver/server

Req1

Out of band

data with a

separate

transmission port

Req2

Out-of-band data

and communication

channel for

important data

Q: How can out-of-band data and normal data be handled by using the

same transmission channel?

COMMUNICATION

PROTOCOLS

DS WS 2013 21

Some key questions – Protocols

DS WS 2013 22

P1 P2

A communication protocol will describe rules

addressing these issues

The message: „there is a party“ tonight

 Communication patterns

Can I use a single sending command to send the message

to multiple people?

 Identifier/Naming/Destination

How do I identify the guys I need to send the message

 Connection setup

Can I send the message without setting up the connection

 Message structure

Can I use German or English to write the message

 Layered communication

Do I need other intermediators to relay the message?

...

Applications and Protocols

DS WS 2013 23

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems – Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall

Application-specific protocols Application-independent protocols

Layered Communication Protocols

 Complex and open communication requires

multiple communication protocols

 Communication protocols are typically organized

into differ layers: layered protocols/protocol

stacks

 Conceptually: each layer has a set of different

protocols for certain communication functions

 Different protocols are designed for different

environments/criteria

 A protocol suite: usually a set of protocols used

together in a layered model

DS WS 2013 24

OSI – Open Systems

Interconnection Reference Model

DS WS 2013 25

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems – Principles and Paradigms, 2nd

Edition, 2007, Prentice-Hall

OSI Layers

Application • Support application-specific needs

Presentation
• Process information format and deliver the

information for the application layer (e.g., serializing
and encryption)

Session
• Managing communication sessions between

applications

Transport
• Provide an end-to-end communication for

applications by delivering data among applications

Network • Routing data packets among senders/receivers

Data Link
• Deal with sending data frames (units of bits) and

detecting/correcting data frames

Physical Layer
• Transferring binary data (bits) over physical

interfaces (e.g., fiber optics)

DS WS 2013 26

How layered protocols work –

message exchange

DS WS 2013 27

 Principles of constructing messages/data

encapsulation

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems – Principles and Paradigms, 2nd

Edition, 2007, Prentice-Hall

Examples of Layered Protocols

DS WS 2013 28

IEEE 802.3
(Ethernet)

Ethernet
CSMA/CD

IP

TCP

FTP

BACNet

BACNet

CSMA/CA

LonWorks

PL-20

P-persistent
CSMA

ModBus KNX (Konnex)

KNX (Konnex)

TP

Application

Layer

Presentation

Layer

Session Layer

Transport

Layer

Network Layer

Data Link

Layer

Physical

Layer
ZigBee

IEEE 802.11
(Wifi)

X.21 ATM

RUDPUDP SCTP

CoAPHTTP

TCP/IP

 The most popular protocol suite used in the

Internet

 Four layers

DS WS 2013 29

http://tools.ietf.org/html/rfc1122

Link Layer

Internet Layer

Transport Layer

Application Layer

Most network
hardware

Internet Protocol (IP)

UDP, TCP

SMTP, HTTP, Telnet,
FTP, etc.

Protocol suite

Internet Protocol (IP)

 Define the datagram as the

basic data unit

 Define the Internet address

scheme

 Transmit data between the

Network Access Layer and

Transport Layer

 Route datagrams to

destinations

 Divide and assemble

datagrams

DS WS 2013 30

Figure source:

http://en.wikipedia.org/wiki/Internet_protocol_suite

TCP/IP – Transport Layer

 Host-to-host transport features

 Two main protocols: TCP (Transmission Control

Protocol) and UDP (User Datagram Protocol)

DS WS 2013 31

Layer\Protocol TCP UDP

Application layer Data sent via

Streams

Data sent in

Messages

Transport Layer Segment Packet

Internet Layer Datagram Datagram

Link Layer Frame Frame

TCP operations

$sudo nast -d -T iptest >ip.out

$wget www.tuwien.ac.at

DS WS 2013 32

---[TCP]---

192.168.1.7:46023(unknown) -> 128.130.35.76:80(http)

TTL: 64 Window: 14600 Version: 4 Length: 60

FLAGS: -S----- SEQ: 3308581872 - ACK: 0

Packet Number: 16

---[TCP]---

128.130.35.76:80(http) -> 192.168.1.7:46023(unknown)

TTL: 54 Window: 14480 Version: 4 Length: 60

FLAGS: -S--A-- SEQ: 3467332359 - ACK: 3308581873

Packet Number: 17

---[TCP]---

192.168.1.7:46023(unknown) -> 128.130.35.76:80(http)

TTL: 64 Window: 115 Version: 4 Length: 52

FLAGS: ----A-- SEQ: 3308581873 - ACK: 3467332360

Packet Number: 18

---[TCP]---

192.168.1.7:46023(unknown) -> 128.130.35.76:80(http)

TTL: 64 Window: 115 Version: 4 Length: 166

FLAGS: ---PA-- SEQ: 3308581873 - ACK: 3467332360

Packet Number: 19

---[TCP Data]--

GET / HTTP/1.1

---[TCP]---

128.130.35.76:80(http) -> 192.168.1.7:46023(unknown)

TTL: 54 Window: 114 Version: 4 Length: 52

FLAGS: ----A-- SEQ: 3467332360 - ACK: 3308581987

Packet Number: 20

---[TCP]---

128.130.35.76:80(http) -> 192.168.1.7:46023(unknown)

TTL: 54 Window: 114 Version: 4 Length: 1500

FLAGS: ----A-- SEQ: 3467332360 - ACK: 3308581987

Packet Number: 21

---[TCP Data]--

HTTP/1.1 200 OK

Source: Andrew S. Tanenbaum and Maarten

van Steen, Distributed Systems – Principles

and Paradigms, 2002, Prentice-Hall, Inc.

http://www.tuwien.ac.at/

Communication protocols are not

enough

 We need more than just communication

protocols

 E.g., resolving names, electing a communication

coordinator, locking resources, and synchronizing

time

 Middleware

 Including a set of general-purpose but application-

specific protocols, middleware communication

protocols, and other specific services.

DS WS 2013 33

Middleware Protocols

DS WS 2013 34

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems – Principles and Paradigms, 2nd

Edition, 2007, Prentice-Hall

HANDLING COMMUNICATION

MESSAGES/REQUESTS

DS WS 2013 35

Process versus thread

DS WS 2013 36

Within a non distributed OS

 Process – the program being

executed by the OS

 Threads within a process

 Switching thread context

is much cheaper than that

for the process context

 Blocking calls in a thread do

not block the whole process

Program

executed

P P

PP P

Distributed

processes of the

same service

(coded in the same

program)

Thread of

execution

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed

Systems – Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall

Where communication tasks take

place?

 Message passing – send/receive

 Processes send and receive messages

 Sending process versus receiving process

 Communication is done by using a set of functions for

communication implementing protocols

 Remote method/procedure calls

 A process calls/invokes a (remote) procedure in

another process

 Local versus remote procedure call, but in the same manner

 Remote object calls

 A process calls/invokes a (remote) object in another

process

DS WS 2013 37

Network

Basic send/receive communication

DS WS 2013 38

Echo client program

import socket

HOST = 'daring.cwi.nl' # The remote host

PORT = 50007 # The same port as

used by the server

s = socket.socket(socket.AF_INET,

socket.SOCK_STREAM)

s.connect((HOST, PORT))

s.send('Hello, world')

data = s.recv(1024)

s.close()

print 'Received', repr(data)

Echo server program

import socket

HOST = '' # Symbolic name meaning the

local host

PORT = 50007 # Arbitrary non-privileged

port

s = socket.socket(socket.AF_INET,

socket.SOCK_STREAM)

s.bind((HOST, PORT))

s.listen(1)

conn, addr = s.accept()

print 'Connected by', addr

while 1:

data = conn.recv(1024)

if not data: break

conn.send(data)

conn.close()

Python source: http://docs.python.org/release/2.5.2/lib/socket-example.html

Remote procedure calls

DS WS 2013 39

void

hello_prog_1(char *host)

{

CLIENT *clnt;

char * *result_1;

char *hello_1_arg;

#ifndef DEBUG

clnt = clnt_create (host, HELLO_PROG, HELLO_VERS, "udp");

if (clnt == NULL) {

clnt_pcreateerror (host);

exit (1);

}

#endif /* DEBUG */

result_1 = hello_1((void*)&hello_1_arg, clnt);

if (result_1 == (char **) NULL) {

clnt_perror (clnt, "call failed");

}

#ifndef DEBUG

clnt_destroy (clnt);

#endif /* DEBUG */

printf("result is: %s\n",(*result_1));

}

int

main (int argc, char *argv[])

{

char *host;

if (argc < 2) {

printf ("usage: %s server_host\n", argv[0]);

exit (1);

}

host = argv[1];

hello_prog_1 (host);

exit (0);

}

char **

hello_1_svc(void *argp, struct svc_req *rqstp)

{

static char * result ="Hello";

/*

* insert server code here

*/

return &result;

}

Network

Procedure in a remote server

Remote object calls

DS WS 2013 40

public class ComputePi {

public static void main(String args[]) {

if (System.getSecurityManager() == null) {

System.setSecurityManager(new SecurityManager());

}

try {

String name = "Compute";

Registry registry = LocateRegistry.getRegistry(args[0]);

Compute comp = (Compute) registry.lookup(name);

Pi task = new Pi(Integer.parseInt(args[1]));

BigDecimal pi = comp.executeTask(task);

System.out.println(pi);

} catch (Exception e) {

System.err.println("ComputePi exception:");

e.printStackTrace();

}

}

}

public interface Compute extends Remote {

<T> T executeTask(Task<T> t) throws RemoteException;

}

….

public class ComputeEngine implements Compute {

public ComputeEngine() {

super();

}

public <T> T executeTask(Task<T> t) {

return t.execute();

}

public static void main(String[] args) {

if (System.getSecurityManager() == null) {

System.setSecurityManager(new SecurityManager());

}

try {

String name = "Compute";

Compute engine = new ComputeEngine();

Compute stub =

(Compute) UnicastRemoteObject.exportObject(engine, 0);

Registry registry = LocateRegistry.getRegistry();

registry.rebind(name, stub);

System.out.println("ComputeEngine bound");

} catch (Exception e) {

System.err.println("ComputeEngine exception:");

e.printStackTrace();

}

}

}

Java source:

http://docs.oracle.com/javase/tutorial/rmi

/overview.html

Objects in a remote server

Processing multiple requests

 How to deal with multiple, concurrent messages

received?

 Problems:

 Different roles: clients versus servers/services

 A large number of clients interact with a small number of

servers/services

 A single process might receive a lot of messages at the

same time

 Impacts

 performance, reliability, cost, etc.

DS WS 2013 41

Iterative versus concurrent

processing

DS WS 2013 42

Receive a
request

Process the
request

Return the
result

Request handling flow

Receive a
request

Ask another
process/thre
ad to process
the request

Wait for new
requests

Request handling flow

Process the request Return the result

Iterative

processing

Concurrent

processing

Using replicated processes

DS WS 2013 43

Often

loadbalancing

mechanisms are

needed

Q: How this model helps to improve performance and fault-tolerance? What

would be a possible mechanism to reduce costs based on the number of client

requests?

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems – Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall

Example

DS WS 2013 44

HAProxy

SimpleHelloHTTPServer

(ID=tuwien)

SimpleHelloHTTPServer

(ID=univie)

SimpleHelloHTTPServer

(ID=uibk)

http://haproxy.1wt.eu/

 Get a small test

Download haproxy, e.g.

$sudo apt-get install haproxy

 Download SimpleHelloHTTPServer.java and haproxy configuration

 http://bit.ly/19xFDRC

 Run 1 haproxy instance and 3 http servers

 Modify configuration and parameters if needed

 Run a test client

Using multiple threads

DS WS 2013 45

Q: How this architectural model would be applied/similar to worker

processes or the super-server model?

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems

– Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall

Using message brokers/space

repository

DS WS 2013 46

TupleSpace

Obj
Obj

Obj

ObjObj

P1

put

P2

get

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems

– Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall

Example

DS WS 2013 47

cloudamqp.com

Test sender

 Get a free instance of RabbitMQ from cloudamqp.com

 Get code from: https://github.com/cloudamqp/java-amqp-example

 First run the test sender, then run the receiver

Test receiver

channel.queueDeclare(QUEUE_NAME, false, false, false, null);

for (int i=0; i<100; i++) {

String message = "Hello distributed systems guys: "+i;

channel.basicPublish("", QUEUE_NAME, null, message.getBytes());

System.out.println(" [x] Sent '" + message + "'");

new Thread().sleep(5000);

}

while (true) {

QueueingConsumer.Delivery delivery = consumer.nextDelivery();

String message = new String(delivery.getBody());

System.out.println(" [x] Received '" + message + "'");

}

Note: i modified the code a bit

https://github.com/cloudamqp/java-amqp-example

Summary

 Complex and diverse communication patterns,

protocols and processing models

 Choices are based on communication

requirements and underlying networks

 Understand their pros/cons

 Understand pros and cons of their technological

implementations

 Dont forget to play some simple examples to

understand existing concepts

DS WS 2013 48

49

Thanks for
your attention

Hong-Linh Truong

Distributed Systems Group

Vienna University of Technology

truong@dsg.tuwien.ac.at

http://dsg.tuwien.ac.at/staff/truong

DS WS 2013

