
Time and Synchronization in Distributed

Systems

Hong-Linh Truong

Distributed Systems Group,

Vienna University of Technology

truong@dsg.tuwien.ac.at
dsg.tuwien.ac.at/staff/truong

1DS WS 2013, Last revised:

21.10.2013

Distributed Systems, WS 2013

Learning Materials

 Main reading:

 Tanenbaum & Van Steen, Distributed Systems: Principles and

Paradigms, 2e, (c) 2007 Prentice-Hall

 Chapter 6

 Roberto Baldoni, Michel Raynal: Fundamentals of Distributed

Computing: A Practical Tour of Vector Clock Systems. IEEE

Distributed Systems Online 3(2) (2002)

http://www.dis.uniroma1.it/~baldoni/baldoni-112865.pdf

 Others

 George Coulouris, Jean Dollimore, Tim Kindberg, „Distributed

Systems – Concepts and Design“, 2nd Edition

 Chapter 10

 Sukumar Ghosh, Distributed Systems: An Algorithmic

Approach,Chapman and Hall/CRC, 2007, Chapters 6, 7, 11

DS WS 2013 2

Outline

 Clock synchronization

 Physical clock

 Logical clock

 Vector Clock

 Distributed coordination

 Mutual exclusion

 Leader election

 Summary

DS WS 2013 3

PHYSICAL CLOCK

SYNCHRONIZATION

DS WS 2013 4

Why do we need clock/time

synchronization?

DS WS 2013 5

 Some reasons

 Accountability of processes

 Consistency in processing messages

 Validity of important messages

 Fairness in processing requests

https://www.greyware.com/software/domaintime/i

nstructions/quickstart/regulatory-nyse.asp

Real clock synchronization

 Establish/Decide reference physical clocks to provide

an accurate timing system

 Coordinated Universal Time (UTC)

 Based on atomic time produced by the most

accurate physical clocks using atomic oscillators

 Operate/Utilize accuracy physical clocks providing UTC

time

 Synchronize other physical clocks using time

synchronization algorithms

DS WS 2013 6

Challenging issue: it is impossible to guarantee timers/clocks

in different computers due to the clock drift problem

Time provided by real physical

clocks

 Computer clocks/timers

 Every computer has a clock/timer

 Radio clocks receiving time codes via radio

wave

 Radio transmitter connects to an accuracy time

source based on UTC time standard

 GPS (Global Positioning System) - a system of

satellites, each broadcasts

 its positions and the time stamps, based on its local

time

DS WS 2013 7

Cristian‘s Algorithm

DS WS 2013 8

msg

max((𝑡𝑒 𝐴 , (𝑡𝑒 𝐵 +
𝑅𝑇𝑇

2
))

𝑅𝑇𝑇 = (𝑡𝑒 𝐴 − 𝑡𝑠(𝐴)) − (𝑡𝑒(𝐵) − 𝑡𝑠(𝐵))
A B: reference clock

𝑡𝑠(𝐴)

𝑡𝑒(𝐴)

𝑡𝑒(𝐵)

msg 𝑡𝑒(𝐵)

𝑡𝑠(𝐵)

The most simple case: Assume that times

spent in sending messages are the same

and that the processing time at B is 0 then

𝑅𝑇𝑇 = (𝑡𝑒 𝐴 − 𝑡𝑠(𝐴))

𝑡′𝑒 𝐴 = (𝑡𝑒 𝐵 + 𝑅𝑇𝑇/2)

Based on B‘s clock the message should

arrive at A at

Q1: RTT is varying, how to improve the accuracy?

Q2: Drawbacks of this algorithm?

Q3: Assume we know the minimum time required for sending a message,

Can you estimate the accuracy?

A‘s clock:

Machine n

Machine j

Berkeley Algorithm

DS WS 2013 9

Reference time

server

Machine 1

𝑇𝑑𝑖𝑓𝑓(𝑖))

𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑐𝑙𝑜𝑐𝑘

𝑇𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 𝑖 =
 𝑘=1
𝑛 𝑇𝑑𝑖𝑓𝑓(𝑖))

𝑛
− 𝑇𝑑𝑖𝑓𝑓(𝑖)

 𝑘=1
𝑛 (𝑇𝑑𝑖𝑓𝑓(𝑖))

𝑛

𝑇𝑑𝑖𝑓𝑓 𝑖
= 𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑐𝑙𝑜𝑐𝑘 𝑖
− 𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑐𝑙𝑜𝑐𝑘

𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑐𝑙𝑜𝑐𝑘 𝑖
= 𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑐𝑙𝑜𝑐𝑘
+ 𝑇𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡(𝑖)

Berkeley Algorithms

Q: Why it is not good to use it outside LAN?

DS WS 2013 10

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems – Principles and Paradigms, 2nd

Edition, 2007, Prentice-Hall

Example: Network Time Protocol

(NTP)

www.ntp.org

DS WS 2013 11

Secondary

NTP Server

Primary NTP

Server

Secondary

NTP Server

Secondary

NTP Server

Secondary

NTP Server

Client UTC (e.g.,

atomic clock,

GPS, ESA

Galileo)

Protocol variants using unreliable communication (UDP):

 Multicast (servers send the time), client/server (similar to

Cristina’s algorithm), symmetric (between high and

lower level server)

LOGICAL CLOCKS

DS WS 2013 12

Logical clocks

 In many cases: we do not need an exact

physical timing, as long as we able to maintain

the physical causality

DS WS 2013 13

Logical clock: using physical causality model for ordering

events among distributed processes

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems –

Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall

a1

a2

b1

b2

Intention:

We just need

(a1,a2) being executed

before (b1,b2) or

another way around

P1

Happen-before relation

DS WS 2013 14

Time

a b a b

P1

a

P2

b

sendTo (P2, msg)

receiveFrom (P1, msg)

a1

b1

IF THEN

IF THEN

a b

a1 ? b1

b1 ? a1

concurrent

Happen-before () relation between a and b indicates that

event a occurs before b logically. It is possible that a affects b

Lamport‘s logical clock

DS WS 2013 15

𝐶𝑖 ++

𝑃𝑖

𝑃𝑗

𝐶𝑗 ++

𝐶𝑖 ++

msg𝑃𝑖 𝑡𝑠 = 𝐶𝑖

Step 1

Step 2

Step 1 𝐶𝑗 = max 𝐶𝑗 , 𝑡𝑠

𝐶𝑗 ++Step 2

Step 3: process the message

Increase the clock before

executing an event

 Used to synchronize a logical clock 𝐶𝑖 of

process 𝑃𝑖

Example of Lamport‘s logical clock

DS WS 2013 16

Without Lamport‘s logical clock With Lamport‘s logical clock

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems – Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall

Message interception and logical

clock adjustment implementation

DS WS 2013 17

Source: Andrew S. Tanenbaum and Maarten van

Steen, Distributed Systems – Principles and

Paradigms, 2nd Edition, 2007, Prentice-Hall

Home work: work out on in detail how Lamport‘s logical

clock could be used for the update problem with replicated

database

Limitation of Lamport‘s logical clock

recv(m4) < send(m5):

Maybe m5 is

dependent on m4

(causality)

Recv (m1) < send

(m2):

We do not know their

relationship

DS WS 2013 18

C(a) < C(b) =! a b, We

miss causality information

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed

Systems – Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall

Vector Clocks

A process 𝑃𝑖 maintains a vector clock 𝑉𝐶𝑖 where

 𝑉𝐶𝑖 𝑖 is the number of events happened in 𝑃𝑖
 𝑉𝐶𝑖 𝑗 = 𝑘 means that 𝑃𝑖 knows there were k

events occurred in 𝑃𝑗 that have causal relation

with 𝑃𝑖
Implementation

 Each message is associated with a 𝑉𝐶

 For event a and b, it is possible that a affects b,

then a.VC <b.VC
DS WS 2013 19

Goal: a vector clock (VC) allows us to interpret if VC(a) <

VC(b) then a causally precedes b

Vector Clocks

DS WS 2013 20

𝑉𝐶𝑖 𝑖 + +

𝑃𝑖

𝑃𝑗
𝑉𝐶𝑗 𝑗 + +

𝑉𝐶𝑖 𝑖 + +

msg𝑃𝑖 𝑡𝑠 = 𝑉𝐶𝑖

Step 1

Step 2

Step 1 𝑉𝐶𝑗 𝑘 = max 𝑉𝐶𝑗 𝑘 , 𝑡𝑠 𝑘

𝑉𝐶𝑗 𝑗 + +Step 2

Step 3: process the message

Example of vector clocks

DS WS 2013 21

Source: Roberto Baldoni, Michel Raynal: Fundamentals of

Distributed Computing: A Practical Tour of Vector Clock

Systems. IEEE Distributed Systems Online 3(2) (2002)

Applications of logical/vector

clocks

 Replication by using totally order multicast

 atomic multicast in which all members accept

messages in the same order

 Multimedia real-time applications,

teleconferencing using causal multicast

 If multicast(m1) multicast(m2), then (m1) must be

delivered before m2 for all processes

DS WS 2013 22

Causal broacast example

DS WS 2013 23

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems – Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall

Note

Upon sending a message 𝑃𝑖 𝑜𝑛𝑙𝑦 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑠𝑉𝐶𝑖 𝑖 𝑏𝑦 1
When receiving a message only adjust 𝑉𝐶𝑗 𝑘 𝑡𝑜max(𝑉𝐶𝑗 𝑘 , 𝑡𝑠[𝑘])

MUTUAL EXCLUSION

DS WS 2013 24

Mutual exclusion in distributed

systems
 Multiple processes might access the same resource

 Mutual exclusion: prevent them to use the resource at the

same time to avoid making resource inconsistent/corrupted

DS WS 2013 25

Bank Account

Salary

Payment

Housing

Payment

Overdue

Check

 Approaches:

 Token-based

 Permission-based

Centralized Model

DS WS 2013 26

Permission-based approach: a deciated server gives permission, emulating

the execution of critical section

private static Lock lock =new ReentrantLock();

public void criticalSection(){

System.out.println("This is a critical section: access only with permission");

System.out.println("======== I am "+id+" Waiting for the lock===========");

lock.lock();

System.out.println("I am "+id+" I got the lock now");

System.out.println(id + " doing some work ");

try {

Thread.sleep(5000);

} catch (InterruptedException e) {

}

System.out.println("======== I am "+id+" releasing the lock=============");

lock.unlock();

}

http://www.infosys.tuwien.ac.at/teaching/courses/VerteilteSysteme/exs/CriticalSectionExample.java

Centralized Model

DS WS 2013 27

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems – Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall

Example

 A very simple code

 for a single resource using TCP communication

 http://www.infosys.tuwien.ac.at/teaching/courses/Ver

teilteSysteme/exs/CentralizedMutualExclusion.java

DS WS 2013 28

Q1: What are main problems with this centralized model?

java

at.ac.tuwien.dsg.dsexamples.Centr

alizedMutualExclusion localhost

4001 no tuwien

java

at.ac.tuwien.dsg.dsexamples.

CentralizedMutualExclusion

localhost 4001 yes null

Distributed algorithm (Ricart,

Agrawala, Lamport)
Given a set of processes {𝑃1, 𝑃2, …, 𝑃𝑛}

If 𝑷𝒊wants to access a resource R, 𝑷𝒊 broadcast a

message msg(R, 𝑷𝒊, ts)

If 𝑷𝒋 receives msg(R, 𝑷𝒊, ts) then

 No interest, no access return „OK“

 Already access R then does not reply by putting the

msg into the queue

 If already sent msg(R, 𝑃𝑗, tsj) but has not accessed R:

 If ts < tsj then returns „OK“, otherwise put it in queue

If 𝑷𝒊 gets all OK then it can access the resource after

that it sends an OK to all

DS WS 2013 29

Source: Andrew S. Tanenbaum and Maarten van Steen,

Distributed Systems – Principles and Paradigms, 2nd

Edition, 2007, Prentice-Hall

Example

DS WS 2013 30

Source: Andrew S. Tanenbaum and Maarten van Steen,

Distributed Systems – Principles and Paradigms, 2nd

Edition, 2007, Prentice-Hall

Ring algorithm

DS WS 2013 31

𝑃0

𝑃1𝑃𝑘−1

𝑃..

𝑃𝑖

𝑃…

𝑃..

token

When 𝑃𝑖 receives the token:

1. Access the resource and release resource and pass

the token

2. Otherwise just pass the token

ELECTION ALGORITHMS

DS WS 2013 32

Leader election

 In many situations we need a coordinator

 The coordinator is selected from a set of processes

 Why it is challenging to elect a coordinator?

 Distributed, multiple processes involvement

 Election algorithms

 Designed for electing leaders

 Processes are uniquely identified, e.g., using

process id

 Election process occurs when

 Initiating the systems, existing coordinator failed, etc.

DS WS 2013 33

Bully algorithm

DS WS 2013 34

𝑃𝑖

𝑃𝑘

𝑃𝑙

𝑃𝑚 Ps

𝑃𝑎

𝑃𝑏

𝑃𝑔

…

Lower rank processes Higher rank processes

ELECTION (1)

OK (1)

coordinator

ELECTION (2)

COORDINATOR

Example

DS WS 2013 35

Source: Andrew S.

Tanenbaum and Maarten

van Steen, Distributed

Systems – Principles and

Paradigms, 2nd Edition,

2007, Prentice-Hall

Ring algorithm

 From Le Lann, Chang and Roberts

 Processes are organized into a ring, initially „non-

participant“ in the election

 Election message (ELECTION) and elected message

(COORDINATION)

 Messages are forwarded or created and sent clockwise

DS WS 2013 36

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems – Principles and Paradigms, 2nd

Edition, 2007, Prentice-Hall

George Coulouris, Jean Dollimore, Tim Kindberg, „Distributed Systems – Concepts and Design“, 2nd Edition,

Chapter 10

Nancy A Lynch, Distributed Algorithms, 1996, Chapter 3.

Ring algorithm

DS WS 2013 37

𝑃𝑖 {𝑃𝑖}

{𝑃𝑖}

𝑃𝑖+1𝑃𝑖−1

𝑃𝑘
{𝑃𝑘}

𝑃𝑚𝑎𝑥

𝑃…

𝑃..

ELECTION

{𝑃𝑚𝑎𝑥}

{𝑃𝑚𝑎𝑥}

un-participant

{𝑃𝑖}> {𝑃𝑖+𝑖}

un-participant

{𝑃𝑘}> {𝑃𝑖}

participant

un-participant

{𝑃𝑚𝑎𝑥}> {𝑃𝑘}

{𝑃𝑚𝑎𝑥}

{𝑃𝑚𝑎𝑥}

{𝑃𝑚𝑎𝑥}

Dectect the leader

participant

participant

Q1: if 𝑃𝑘 receives another ELECTION

message with a smaller identifier after

becoming participant, what should it do?

COORDINATION Message

Ring algorithm

DS WS 2013 38

𝑃𝑖

𝑃𝑖+1𝑃𝑖−1

𝑃𝑘

𝑃𝑚𝑎𝑥

𝑃…

𝑃..

{𝑃𝑚𝑎𝑥}

{𝑃𝑚𝑎𝑥}

{𝑃𝑚𝑎𝑥}

{𝑃𝑚𝑎𝑥}

Dectect the leader

Non-participant

Non-participant

Simple Flooding Algorithm

Steps

 P maintains the maximum unique process

identifier (UID) it knows

 At a round, each P sends this UID to all nodes in

its outgoing edges

 After n rounds, if a process P sees its ID equal

to the maximum UID, then the process becomes

the leader

DS WS 2013 39

Source: Nancy A Lynch, Distributed Algorithms, 1996, Chapter 4.

Assumption: processes are structured into a directed graph

Summary

 Time synchronization is important in real-world

 But complex problem in distributed systems

 Different algorithms with different pros and cons

 Logical clocks are useful in many situations

 Happen-before or physical causality is the main

principle

 Distributed coordination needs both mutual

exclusion and election mechanism

 Dont forget to analyze algorithms to understand

their pros and cons

DS WS 2013 40

41

Thanks for
your attention

Hong-Linh Truong

Distributed Systems Group

Vienna University of Technology

truong@dsg.tuwien.ac.at

http://dsg.tuwien.ac.at/staff/truong

DS WS 2013

