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Consistency & replication

• Introduction (what’s it all about)
• Data-centric consistency
• Client-centric consistency
• Replica management
• Consistency protocols
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What is Consistency and Replication?
Some good enough definitions

• Replication is the process of maintaining several copies of an
data item at different locations.

• Consistency is the process of keeping data item copies the
same when changes occur.
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Performance vs Scalability Tradeoff

Benefits

• More replicas can serve more client requests.
• Replicas close to the client improves response time/reduces

bandwidth.
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Performance vs Scalability Tradeoff

Drawbacks

• Keeping replicas up to date consumes bandwidth
• Updates to replicas are not immediately propagated (stale data)
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A cure potentially worse than the
disease

Replication - pick any two:

• Performance: low response time (for reading and writing)
• Scalability: support a lot of clients
• Consistency: any update should be reflected at all replicas else

before any subsequent operation takes place

Synchronous Replication issue

Updates performed as a single atomic operation (transaction)
requires agreement of all replicas when to perform the update.
Becomes extremely costly very quickly.

Mitigation

Avoid (instantaneous) global synchronization
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Maintaining Performance and
Scalability

Main issue

To keep replicas consistent, we generally need to ensure that all
conflicting operations are done in the the same order everywhere

Conflicting operations

From the world of transactions:

• Read–write conflict: a read operation and a write operation act
concurrently

• Write–write conflict: two concurrent write operations

Issue

Guaranteeing global ordering on conflicting operations may be a
costly operation, downgrading scalability
Solution: weaken consistency requirements so that hopefully global
synchronization can be avoided
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Data-centric consistency models

Consistency model

A contract between a (distributed) data store and processes, in which
the data store specifies precisely what the results of read and write
operations are in the presence of concurrency.

Essential

A data store is a distributed collection of storages:

Distributed data store

Process Process Process

Local copy
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Continuous Consistency

Observation

We can actually talk a about a degree of consistency:
• replicas may differ in their numerical value
• replicas may differ in their relative staleness
• there may be differences with respect to (number and

order) of performed update operations

Conit

Consistency unit⇒ specifies the data unit over which
consistency is to be measured.

Conit examples

webpage, table entry, entire table in DB, ...
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Continuous Consistency Example

Conit Example

Consistency unit in our example is the price of a particular
stock.

Example constraints

Specify degree of consistency for stock price:
• Local value may differ in numerical value from other replica

by 10 cents
• Local value needs to be checked for staleness at least

every 10 seconds
• There may be no more than 3 unseen performed update

operations
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Example: Conit
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Example: Conit

DS WS 2013 13 / 94



Example: Conit

DS WS 2013 14 / 94



Example: Conit

DS WS 2013 15 / 94



Ordering of Operations

Desired Behavior

read returns result of most recent write

No global clock!

What is the most recent (last) write?

Relax timing

• consider intervals of R/W operations
• define precisely what are acceptable behavior for conflicting

operations
• replicas need to agree on consistent global ordering of updates
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Sequential consistency

Definition

The result of any execution is the same as if the operations of
all processes were executed in some sequential order, and the
operations of each individual process appear in this sequence
in the order specified by its program.

P1: W(x)a

W(x)b

R(x)b

R(x)b R(x)a

R(x)a

P2:

P3:

P4:

(a)

P1: W(x)a

W(x)b

R(x)b

R(x)a R(x)b

R(x)a

P2:

P3:

P4:

(b)

(a) sequentially consistent, (b) not consistent
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Sequential consistency

Example

• Assume x is a shared social network timeline
• Peter posts: I’m going skiing, who’s in?
• Paul posts: I’m going hiking, who’s in?
• Petra reads: first Paul’s, then Peter’s post
• Pam reads: first Paul’s, then Peter’s post

Beware

To be sequentially consistent: every reader of the timeline
needs to receive the updates in exactly the same order.
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Causal consistency

Definition

Writes that are potentially causally related must be seen by all
processes in the same order. Concurrent writes may be seen in
a different order by different processes.

(a) causally consistent

(b) causally consistent
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Causal consistency - more examples

P1:

P1:

W(x)a

W(x)a

R(x)aP2:

P2:

P3:

P3:

P4:

P4:

W(x)b

W(x)b

R(x)a

R(x)a

R(x)a

R(x)a

R(x)b

R(x)b

R(x)b

R(x)b

(a)

(b)

(a) causally inconsistent, (b) consistent
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Causal consistency

Example

• Again, assume x is a shared social network timeline
• Peter posts: I had a car accident!
• Peter posts: But I’m ok!
• Paul read this and posts: Happy for you!
• Petra reads: Peter’s first post, the Paul’s, the Peter’s

second
• Pam reads: both Peter’s, then Paul’s post

Beware

How to determine causally related writes?
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FIFO consistency
Definition

• Writes done by a single process are seen by all other
processes in the order in which they were issued, but

• writes from different processes may be seen in a different
order by different processes.

Valid sequence of event of FIFO consistency

R(x)b→ R(x)c only
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FIFO consistency
Implications

• Easy to implement: Writes from different processes are
always assumed ”concurrent”.

• Different processes may see the statements executed in
different order

• Some results may be counterintuitive

Example

• Process P1: x := 1; if (y==0) kill (P2);
• Process P2: y := 1; if (x==0) kill (P1);

Effect

Two concurrent processes, both may be killed with FIFO (but
not with sequential consistency).
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Frequent questions to the audience

Get ready!

From time to time I will do Simultaneous Voting to check
whether the presented concepts are clear to everyone.

Will you attend the lecture next Monday?

Your choices are:
• Sure, I just love Distributed Systems! (head)
• Not sure yet, do I really need to? (ear)
• No way, Garfield is my second name! (nose)
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Know your Consistency Models

Question to the audience

Observe following read/write events. The sequence is only valid
for one of the following consistency models, which one?

Your choices are:

• Sequential Consistency (head)
• Causal Consistency (ear)
• FIFO Consistency (nose)

Answer: causal consistency
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Grouping operations

Definition

• Accesses to synchronization variables are sequentially
consistent.

• No access to a synchronization variable is allowed to be
performed until all previous writes have completed
everywhere.

• No data access is allowed to be performed until all
previous accesses to synchronization variables have been
performed.
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Grouping operations

Definition

• Everyone has exactly the same view on a lock (a
synchronization variable)

• Have a lock: Cannot unlock until data value is
synchronized everywhere

• Grab a lock: then only allowed to proceed when everyone
has the same view on the lock

Basic idea

You don’t care that reads and writes of a series of operations
are immediately known to other processes. You just want the
effect of the series itself to be known.
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Grouping operations

Acq(Lx)  W(x)a  Acq(Ly)  W(y)b  Rel(Lx)  Rel(Ly)

Acq(Lx)  R(x)a         R(y) NIL

Acq(Ly)  R(y)b

P1:

P2:

P3:

Observation

Weak consistency implies that we need to lock and unlock data
(implicitly or not).

Question

Why do we need a lock here?
The underlying distributed system might decide to push
updates to all replicas after lock release OR not until a new lock
is acquired.
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Avoiding Data-centric Consistency

Concurrent processes

• So far required simultaneous updates of shared data
• Consistency and Isolation have to be maintained
• Synchronization required

Lack of concurrent processes

• Lack of simultaneous updates (or distinct update regions)
• Easy resolved or acceptable inconsistencies
• Focus on guarantees for a single (mobile) client (but not for

concurrent access)!
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Client-centric consistency models

Overview

• System model
• Monotonic reads
• Monotonic writes
• Read-your-writes
• Write-follows-reads

Goal

Show how we can perhaps avoid systemwide consistency, by
concentrating on what specific clients want, instead of what
should be maintained by servers.
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Consistency for mobile users

Example

Consider a distributed database to which you have access
through your notebook. Assume your notebook acts as a front
end to the database.

• At location A you access the database doing reads and
updates.

• At location B you continue your work, but unless you
access the same server as the one at location A, you may
detect inconsistencies:

• your updates at A may not have yet been propagated to B
• you may be reading newer entries than the ones available

at A
• your updates at B may eventually conflict with those at A
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Consistency for mobile users

Note

The only thing you really want is that the entries you updated
and/or read at A, are in B the way you left them in A. In that
case, the database will appear to be consistent to you.

Eventual Consistency

• Update is performed at one replica (at a time)
• Propagation to other replicas is performed in a lazy fashion
• Eventually, all replicas will be updated
• I.e., replicas gradually become consistent if no update

takes place for a while
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Basic architecture

Read and write operations

Client moves to other location
and (transparently) connects to
other replica

Wide-area network

Replicas need to maintain
client-centric consistency

Portable computer

Distributed and replicated database
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Monotonic reads

Definition

If a process reads the value of a data item x , any successive
read operation on x by that process will always return that
same or a more recent value.

WS(    )x 1 R(    )x1

WS(    ;    )x 1 x 2 R(    )x2

L1:

L2:

WS(    )x 1

WS(    )x 2

R(    )x1

R(    )x2

L1:

L2:
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Client-centric consistency: notation

Notation

• WS(xi [t ]) is the set of write operations (at Li ) that lead to
version xi of x (at time t)

• WS(xi [t1];xj [t2]) indicates that it is known that WS(xi [t1]) is
part of WS(xj [t2]).

• Note: Parameter t is omitted from figures.
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Monotonic reads

Example

Automatically reading your personal calendar updates from
different servers. Monotonic Reads guarantees that the user
sees all updates, no matter from which server the automatic
reading takes place.

Example

Reading (not modifying) incoming mail while you are on the
move. Each time you connect to a different e-mail server, that
server fetches (at least) all the updates from the server you
previously visited.

DS WS 2013 41 / 94



Monotonic writes

Definition

A write operation by a process on a data item x is completed
before any successive write operation on x by the same
process.

L1:

L2: x2

W(    )x1

W(    )

x2

W(    )x1

W(    )

L1:

L2:

WS(    )x 1
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Monotonic writes

Example

Updating a program at server S2, and ensuring that all
components on which compilation and linking depends, are
also placed at S2.

Example

Maintaining versions of replicated files in the correct order
everywhere (propagate the previous version to the server
where the newest version is installed).
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Read your writes

Definition

The effect of a write operation by a process on data item x , will
always be seen by a successive read operation on x by the
same process.

L1:

L2:

W(    )x1

W(    )x1L1:

L2:

WS(    ;    )x 1 x 2 R(    )x2

R(    )x2WS(    )x 2

Example

Updating your Web page
and guaranteeing that
your Web browser shows
the newest version
instead of its cached
copy.
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Writes follow reads

Definition

A write operation by a process on a data item x following a
previous read operation on x by the same process, is
guaranteed to take place on the same or a more recent value of
x that was read.

WS( )x 1 R( )x 1

WS( ; )x 1 x 2

L1:

L2:

WS( )x 1

WS( )x 2

R( )x 1L1:

L2:

W( )x 3

W( )x 3

Example

See reactions to posted
articles only if you have
the original posting (a
read “pulls in” the
corresponding write
operation).
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Know your Consistency Models

Question to the audience

Observe following read/write set. What changes are required to
make this sequence correct with regard to Read your writes?

Your choices are:

• Nothing, it’s correct (head)
• Add as first event for L3: R(x2) (ear)
• Replace L3: WS(x1;x3) with WS(x1;x2;x3) (nose)
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Know your Consistency Models

Answer

Replace L3: WS(x1;x3) with WS(x1;x2;x3)
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Replica Consistency Concerns

From consistency models to management

• Replicas need to be kept consistent according to some model
• No update→ no problem
• If access-to-update ratio is high, replication will help
• If updates-to-access ratio is high, updates will not be consumed
• Ideally, update only replicas that are going to be accessed
• In general, try to keep replicas in proximity to clients
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Replica Management

Challenges

• Replica server placement
• often a management or commercial issue

• Content replication and placement
• Content distribution

• state vs. operation
• push vs. pull vs. lease
• blocking vs. non-blocking (eager vs lazy)
• unicast vs multicast (group communication)
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Replica placement

Essence

Figure out what the best K places are out of N possible
locations.
• Select best location out of N−K for which the average

distance to clients is minimal. Then choose the next best
server. (Note: The first chosen location minimizes the
average distance to all clients.) Computationally expensive.

• Select the K -th largest autonomous system and place a
server at the best-connected host. Computationally
expensive.

• Position nodes in a d-dimensional geometric space, where
distance reflects latency. Identify the K regions with
highest density and place a server in every one.
Computationally cheap.
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Content replication

Distinguish different processes

A process is capable of hosting a replica of an object or data:
• Permanent replicas: Process/machine always having a

replica (i.e. origin server)
• initial set (small)
• LAN; e.g., Web server cluster or database cluster
• geographically; e.g., Web mirror or federated database

• Server-initiated replica: Process that can dynamically host
a replica on request of another server in the data store

• performance, e.g., push cache or Web hosting service
• reduce server load and replicate to server placed in the

proximity of requesting clients
• Client-initiated replica: Process that can dynamically host a

replica on request of a client (client cache)
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Content replication

Permanent
replicas

Server-initiated replicas

Client-initiated replicas

Clients

Client-initiated replication
Server-initiated replication
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Server-initiated replicas

Server without
copy of file F

Client Server with
copy of F

P
Q

C1

C2

Server Q counts access from C  and
C   as if they would come from P

1
2

File F

• Keep track of access counts per file, aggregated by
considering server closest to requesting clients

• Number of accesses drops below threshold D ⇒ drop file
• Number of accesses exceeds threshold R ⇒ replicate file
• Number of access between D and R ⇒ migrate file
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Content distribution

Model

Consider only a client-server combination:
• Propagate only notification/invalidation of update (often

used for caches)
• Transfer data from one copy to another (distributed

databases): passive replication
• Propagate the update operation to other copies: active

replication

Note

No single approach is the best, but depends highly on available
bandwidth and read-to-write ratio at replicas.
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Content distribution

Push (server)-based protocols

• Updates are propagated to other replicas without those
replicas asking for updates

• Used by permanent and server-initiated replicas, but also
by some client caches

• High degree of consistency (consistent data can be made
available faster)

• If server keeps track of clients that have cached the data,
we have a stateful server: limited scalability and less fault
tolerant

• Often, multicasting is more efficient
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Content distribution

Pull (client)-based protocols

• A replica requests another replica to send it any updates it
has at the moment

• Often used by client caches
• I.e. client polls server if updates are available
• E.g. Web modified since
• Response time increases in case of a cache miss
• Unicasting instead of multicasting
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Content distribution: client/server
system

• Pushing updates: server-initiated approach, in which
update is propagated regardless whether target asked for
it.

• Pulling updates: client-initiated approach, in which client
requests to be updated.

Issue Push-based Pull-based
1: List of client caches None
2: Update (and possibly fetch update) Poll and update
3: Immediate (or fetch-update time) Fetch-update time
1: State at server
2: Messages to be exchanged
3: Response time at the client
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Content distribution: client/server
system

Push-based vs Pull-based Updates
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Content distribution

Observation

We can dynamically switch between pulling and pushing using
leases: A contract in which the server promises to push
updates to the client until the lease expires.
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Content distribution
Issue

Make lease expiration time dependent on system’s behavior (adaptive
leases):

• Age-based leases: An object that hasn’t changed for a long time,
will not change in the near future, so provide a long-lasting lease

• Renewal-frequency based leases: The more often a client
requests a specific object, the longer the expiration time for that
client (for that object) will be

• State-based leases: The more loaded a server is, the shorter
the expiration times become

Question

Why are we doing all this?
Trying to reduce the server’s state as much as possible while
providing strong consistency.
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Blocking vs Non-Blocking

When are (push) updates propagated?

• Synchronous (blocking, eager):
All replicas are updated immediately, then reply to client
(that issued the update)

• Asynchronous (non-blocking, lazy):
Update is applied to one copy, then reply to client,
propagation to other replicas afterwards
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Consistency protocols

Consistency protocol

Describes the implementation of a specific consistency model.
• Continuous consistency
• Primary-based protocols
• Replicated-write protocols
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Continuous consistency: Numerical
errors

Principal operation

• Every server Si has a log, denoted as log(Si).
• Consider a data item x and let weight(W ) denote the

numerical change in its value after a write operation W .
Assume that

∀W : weight(W )> 0

• W is initially forwarded to one of the N replicas, denoted as
origin(W ). TW [i , j] are the writes executed by server Si
that originated from Sj :

TW [i , j] = ∑{weight(W )|origin(W ) = Sj & W ∈ log(Si)}
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Continuous consistency: Numerical
errors

Note

Actual value v(t) of x :

v(t) = vinit +
N

∑
k=1

TW [k ,k ]

value vi of x at replica i :

vi = vinit +
N

∑
k=1

TW [i ,k ]
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Continuous consistency: Numerical
errors
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Know your Consistency Models
Question to the audience

What is the value of TW(4,3)?

Your choices are:

1 (head) ; 4 (ear); 8 (nose); Answer = 1
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Continuous consistency: Numerical
errors

Problem

We need to ensure that v(t)−vi < δi for every server Si .

Approach

Let every server Sk maintain a view TWk [i , j] of what it believes
is the value of TW [i , j]. This information can be gossiped when
an update is propagated.

Note

0≤ TWk [i , j]≤ TW [i , j]≤ TW [j , j]
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Continuous consistency: Numerical
errors
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Continuous consistency: Numerical
errors

Solution

Sk sends operations from its log to Si when it sees that
TWk [i ,k ] is getting too far from TW [k ,k ], in particular, when

TW [k ,k ]−TWk [i ,k ]> δi/(N−1)

Question

To what extent are we being pessimistic here: where does
δi/(N−1) come from?

Note

Staleness can be done analogously, by essentially keeping
track of what has been seen last from Si (see book).
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Primary-based protocols

Primary-backup protocol

Data store

Primary server
for item x

Client Client

Backup server

W1. Write request
W2. Forward request to primary
W3. Tell backups to update
W4. Acknowledge update
W5. Acknowledge write completed

W1

W2

W3 W3

W3

W4 W4

W4

W5

R1. Read request
R2. Response to read

R1 R2W5
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Primary-based Synchronous
Replication

Advantages

• No inconsistencies (identical copies)
• Reading the local copy yields the most up-to-date value
• Changes are atomic

Disadvantages

A write operation has to update all sites
• slow
• not resilient against network or node failure
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Primary-based Asynchronous
Replication

Advantages

• Fast, since only primary replica is updated immediately
• Resilient against node and link failure

Disadvantages

• Data inconsistencies can occur
• a local read does not always return the most up-to-date

value
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Primary-based protocols

Example primary-backup protocol

Traditionally applied in distributed databases and file systems
that require a high degree of fault tolerance. Replicas are often
placed on same LAN.
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Primary-based protocols

Primary-backup protocol with local writes

Data store

Old primary
for item x

Client Client

Backup server

W1. Write request
W2. Move item x to new primary

W4. Tell backups to update
W5. Acknowledge update

W3. Acknowledge write completed

R1

W2

W4W4

W4

R2

R1. Read request
R2. Response to read

W1 W3

New primary
for item x

W5 W5

W5
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Primary-based (passive) Replication

Advantages

• At least one node exists which has all updates
• ordering guarantees are relatively easy to achieve (no

inter-site synchronization necessary)

Disadvantages

• Primary is bottleneck and single point of failure
• High reconfiguration costs when primary fails
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Primary-based protocols

Example primary-backup protocol with local writes

Mobile computing in disconnected mode (ship all relevant files
to user before disconnecting, and update later on).
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Replicated-write protocols

Quorum-based protocols

Ensure that each operation is carried out in such a way that a majority
vote is established: distinguish read quorum and write quorum:

A AB BC CD D

E EF FG GH H

I IJ JK KL L

Read quorum

W

N
R W

N= 3, = 10 N
R W

N= 7, = 6

A B C D

E F G H

I J K L

N
R W

N= 1, = 12

required: NR +NW > N and NW > N/2
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