
Distributed Systems – Fault Tolerance

Dr. Stefan Schulte
Distributed Systems Group

Vienna University of Technology

schulte@infosys.tuwien.ac.at



Outline

1. Introduction to Fault Tolerance
2. Process Resilience
3. Reliable Client-Server Communication
4. Recovery

DS WS 2013 2



Dependability

 Basics: In Distributed Systems (DS), 
components provide services to clients 
 To provide services, the component may require 

services from other components,
 This means: It depends on some other component
 More specific: The correctness of the component in 

question depends on the correctness of another 
component

 Dependability is therefore a core objective in 
DS

DS WS 2013 3



Dependability: Attributes

 Availability: Immediate readiness for correct service
 Reliability: Continuity of correct service
 Safety: Absence of catastrophic consequences
 Integrity: Absence of improper system alterations
 Maintainability: Ability to undergo modifications

DS WS 2013 4

Dependability

Availability

Security

Reliability
Safety

Confidentiality
Integrity

Maintainability



Threats to Dependability

 Failure: Delivered service deviates from correct
service, i.e., the system functionality is not 
delivered anymore

 Error: Deviation of the actual system state from
the perceived one

 Fault: Cause of an error

Fault → Error → Failure

DS WS 2013 5



Example I: Failures, Errors, Faults

 Fault: Software bug in a particular method
(so far, the fault is dormant: As long as nobody calls the
method, it will not become active)

 Error: The method is called (fault becomes
active), leading to calculation of wrong value

 Failure: If there is no mechanism to identify the
error, it will lead to incorrect service of the
component calling the method

DS WS 2013 6



Example II: Failures, Errors, Faults

 Fault: Defect USB port of external drive
(as long as you don‘t make use of the drive: fault is
dormant, your computer is still working)

 Error: Input/Output operation started; bit errors
occur

 Failure: It is not possible to correctly copy files
from/to the external drive

DS WS 2013 7



Fault Classes

 Development faults
 Operational faults
 Hardware faults
 Software faults
 Malicious faults
 Accidental faults
 Incompetence faults
 …

DS WS 2013 8



Failure Models

 Crash Failure: Component halts, but is working
correctly until that moment. 

 Omission Failure: Component fails to respond
 Timing Failure: Answer to request is too late

(Performance Failure)

 Response Failure: Reproducible failures with
correct input but wrong output
(Common-Mode Failure)

 Arbitrary Failure: Arbitrary failures at arbitrary
times
(Byzantine Failures)

DS WS 2013 9



Fault Tolerance in DS

DS WS 2013 10

 Distributed Systems (DS) can become very
complex:
 The question is not IF something will go wrong, the

question is WHEN this will happen: Faults are
inevitable!

 However, a DS should not completely fail if a 
failure occurs:
 Partial Failure: A failure in one component does not 

have to lead to a failure in another component or the
whole system



What to do about Faults?

 Fault Prevention: 
 Prevent the occurence of a fault 

 Fault Forecasting:
 Estimate present and future faults and their

consequences
 Fault Tolerance:
 Avoid that service failures occur from faults, i.e., 

masks the presence of faults
 Service provision is continued!

 Fault Removal:
 Reduce the number and severity of faults

DS WS 2013 11



Approaches to Fault Tolerance

 “No Fault Tolerance Without Redundancy” 
(Gärtner, 1999)
 Use redundancy to mask a failure, i.e., hide the

occurence of a fault

 Failure Masking by Redundancy:
 Information Redundancy: Add extra information
 Time Redundancy: Repeat request
 Physical Redundancy: Add additional components

DS WS 2013 12



Redundancy – Examples

 Information Redundancy:
 Add a parity bit
 Error Correcting Codes (memory)
 Hard disks in a RAID 4+5

 Time Redundancy:
 Retransmissions in TCP/IP
 Call method again

 Physical Redundancy:
 Backup server
 Hard disks in a RAID 1
 But also: Different implementations of same functionality

DS WS 2013 13



Physical Redundancy – Example

Electronic circuit with Triple Modular Redundancy:

DS WS 2013 14



Outline

1. Introduction to Fault Tolerance
2. Process Resilience
3. Reliable Client-Server Communication
4. Recovery

DS WS 2013 15



Basics

 How to tolerate faulty processes?
 “No Fault Tolerance Without Redundancy”
 Organize several identical processes into a group

DS WS 2013 16



Communication in 
Hierarchical Groups

 Hierarchical Groups:
 Communication through a single coordinator
 Not really fault

tolerant or scalable
 However, easier to

implement

DS WS 2013 17



Communication in Flat Groups

 Flat Groups:
 Good for fault tolerance as

information exchange
immediately occurs with all
group members

 May impose overhead as
control is completely
distributed, and voting
needs to be carried out

 Harder to implement

DS WS 2013 18



Groups and Failure Masking

 k-fault tolerant group:
 Group is able to mask any k concurrent member

failures
 How large does a k-fault tolerant group need to

be?
 Crash/performance failure models (i.e., components

don‘t answer anymore): k+1 are necessary
 Arbitrary/Byzantine failure model: 2k+1 components

are necessary
 Assumptions: All members are identical and

process all input in the same order

DS WS 2013 19



Groups and Failure Masking II

 Scenario (distributed computation):
 At least one group member different from the others
 Non-faulty members should have to reach

agreement on the same value

DS WS 2013 20

2

31

a b

b

2

31

a a

b

Process 2 tells
different things

Process 3 passes
a different value



Byzantine Agreement Problem I

 Byzantine
Agreement Problem:

 Assumptions:
 Unicast messages
 Ordered message

delivery
 Synchronous

processes
 Bounded

communication delay

DS WS 2013 21



Byzantine Agreement Problem II

 N processes
 Each process sends

value vi to the others
 Each process builds

a vector V from the
values

 If process i is non-
faulty, V[i]=vi

DS WS 2013 22



Byzantine Agreement Problem III

 Step 2: Results -
Individual V

DS WS 2013 23

 Step 1: Messages 
are sent



Byzantine Agreement Problem IV

 Step 3: 
 Every process passes

its vector V
 Process 3 „lies“ to

everyone

 Step 4:
 Each process

examines ith element
of received vectors

 If there is a majority, 
value is put into
resulting vector

 No majority: element
in result vector is
marked UNKNOWN

DS WS 2013 24

From 1

From 3
From 3

From 2

From 4 From 2



Byzantine Agreement Problem V

 Byzantine
Agreement Problem:

 Assumptions:
 Unicast messages
 Ordered message

delivery
 Synchronous

processes
 Bounded

communication delay

DS WS 2013 25



Byzantine Agreement Problem VI

 N processes
 Each process sends

value vi to the others
 Each process builds

a vector V from the
values

 If process i is non-
faulty, V[i]=vi

DS WS 2013 26



Byzantine Agreement Problem VII

 Step 2: Results -
Individual V

DS WS 2013 27

 Step 1: Messages 
are sent



Byzantine Agreement Problem VIII

 Step 3: 
 Every process passes

its vector V
 Process 3 „lies“ to

everyone

 Step 4:
 Each process

examines ith element
of received vectors

 If there is a majority, 
value is put into
resulting vector

 No majority: element
in result vector is
marked UNKNOWN

DS WS 2013 28

From 1

From 3From 3

From 2



Byzantine Agreement Problem IX

 4 Processes:

 Agreement for v1, v2, 
v4

 3 Processes:

 No agreement
possible!

 2k+1 non-faulty
processes are
necessary for k-fault 
tolerance

DS WS 2013 29



Outline

1. Introduction to Fault Tolerance
2. Process Resilience
3. Reliable Client-Server Communication
4. Recovery

DS WS 2013 30



Reliable Client-Server 
Communication

 So far: Process
Resilience

 But what about
reliable
communication
channels?

DS WS 2013 31

2

31

a b

b
Process 2 tells
different things

2

31

b

b
Connection between

Process 2 and Process 1 fails



Remote Procedure Calls:
What can go wrong? 

1.Client cannot locate server
2.Client request is lost
3.Server crashes
4.Server response is lost
5.Client crashes (after request has been sent)

DS WS 2013 32



Remote Procedure Calls:
Solutions I

1.Client cannot locate server
→ Just report back to client
→ Client has to take care of it (e.g., exception 
handling)

2.Client request is lost
→ Resend request message
→ Server won’t know difference between 
original and retransmission

DS WS 2013 33



Remote Procedure Calls:
Solutions II

3. Server crashes
a) Normal case
b) Crash after execution
c) Crash before execution

DS WS 2013 34



Remote Procedure Calls:
Solutions II

3. Server crashes
a) Normal case – no crash
b) Crash after execution
c) Crash before execution

DS WS 2013 35

The client is not able to
see the difference



Remote Procedure Calls:
Solutions III

3. Server crashes
 Correct behaviour of Client depends on behaviour of 

Server
1. At-least-once-semantics: The Server guarantees it will carry 

out an operation at least once, no matter what
2. At-most-once-semantics: The Server guarantees it will carry 

out an operation at most once.

 And the Client? (if not receiving a reply, but a 
message that the server has rebooted)

1. Always reissues a request
2. Never reissues a request
3. Reissue a request only if it did not receive an ACK (that 

request has been delivered)
4. Reissue a request only if it did receive an ACK

DS WS 2013 36



Remote Procedure Calls:
Solutions IV

3. Server crashes 
 8 possible combinations of strategies
 Example: Client sends printing request to Print Server
 Three events may happen at the Server:

(M) Send the completion message (ACK)
(P) Print the text
(C) Crash 

 There is no combination of server and client 
strategies that will work correctly under all possible 
event sequences.

DS WS 2013 37



Remote Procedure Calls:
Solutions V

3. Server crashes 
 These events can occur in six different 

sequences:
1. M →P →C: A crash occurs after sending the completion 

message and printing the text.
2. M →C (→P): A crash happens after sending the completion 

message, but before the text could be printed.
3. P →M →C: A crash occurs after sending the completion 

message and printing the text.
4. P→C(→M): The text printed, after which a crash occurs before 

the completion message could be sent.
5. C (→P →M): A crash happens before the server could do 

anything.
6. C (→M →P): A crash happens before the server could do 

anything.
DS WS 2013 38



Remote Procedure Calls:
Solutions VI

3. Server crashes

M = Send the completion message, P = Print, C = Crash

DS WS 2013 39

Example: Client
wrongly assumes
Print hasn‘t been
carried out



Remote Procedure Calls:
Solutions VII

4. Server response is lost
 How do we know that the server has not crashed?
 Once again: Has the server carried out the

operation?
 Repeat request: 

→ In case of real-world impact? Transfer from your
banking account carried out twice?

 No real solution! Except making operations
idempotent, i.e., repeatable without any harm

DS WS 2013 40



Remote Procedure Calls:
Solutions VIII

5. Client crashes (after request has been sent)
 Server executes requests anyway and sends

response (called orphan computation)
 Different Solutions:

1. Orphan is killed by Client if it is received
2. Reincarnation: Client tells Servers that it has rebooted; 

Server kills orphans
3. Expiration: Require computations to complete in T time 

units. Old ones are simply removed.

DS WS 2013 41



Outline

1. Introduction to Fault Tolerance
2. Process Resilience
3. Reliable Client-Server Communication
4. Recovery

DS WS 2013 42



Recovery

 So far: Tolerate faults
 But what if a failure occurs nevertheless? 
 Recovery is complicated as processes need to

cooperate to identify a consistent state from where to
recover

 Bring the system into an error-free state:
 Forward error recovery: Find a new state from which

the system can continue operation
 Backward error recovery: Bring the system back into

a previous error-free state
 Usually applied

DS WS 2013 43



Backward Recovery

 Bring system from its present errornous state to
a previously correct state:
 Makes it necessary to record the system‘s state from

time to time, i.e., checkpointing
 Benefit: Generally applicable method
 Drawbacks:
 Relatively costly
 No guarantee that the same failure won‘t happen 

again
 Some things are simply irreversible

DS WS 2013 44



Checkpointing

 Goal: Record a consistent global state (also 
known as distributed snapshot)

 Every message that has been received (here: 
by P2) is also shown to have been sent (here: 
by P1)

DS WS 2013 45



Independent Checkpointing

 Distributed nature of checkpointing (each
process records local state from time to time)
makes it difficult to find a 
recovery line

DS WS 2013 46

Distributed Snapshot
(Most recent consistent
collection of snapshots)



Coordinate Checkpointing

 As the name implies: Each process takes a 
checkpoint after a globally coordinated action
 Coordinator necessary!

 Two-phase blocking protocol:
1. Coordinator multicasts a checkpoint request

message
2. When participant receives this message, it takes a 

checkpoint, stops sending (application) messages, 
and reports back that it has taken a checkpoint

3. When all checkpoints have been confirmed at the
coordinator, the latter broadcasts a checkpoint done

4. Processes continue
DS WS 2013 47



Message Logging

 Alternative to checkpointing
 Less costly than checkpointing
 Nevertheless needs some checkpoints

 Instead of taking a checkpoint, try to replay
communication behaviour from the most recent
checkpoint

DS WS 2013 48



Message Logging – Basic 
Assumption

 Piecewise deterministic execution model:
 The execution of each process can be considered as

a sequence of state intervals
 Each state interval starts with a nondeterministic

event (e.g., message receipt)
 Execution in a state interval is completely

deterministic
 If we record nondeterministic events (to replay 

them later), we obtain a deterministic execution 
model that will allow us to do a complete replay.

DS WS 2013 49



Message Logging – Avoid Orphans

 Example:
 Process Q has just received and subsequently delivered 

messages m1 and m2“

 Assume that m2 is never logged.
 After delivering m1 and m2, Q sends message m3 to process R
 Process R receives and subsequently delivers m3

DS WS 2013 50



Further Readings

 Tanenbaum, van Steen: Distributed Systems –
Principles and Paradigms, 2nd edition, 2007.

 Jalote: Fault Tolerance in Distributed Systems, 1998.
 Avizienis, Laprie, Randell, Landwehr: Basic Concepts

and Taxonomy of Dependable and Secure Computing, 
IEEE Transactions on Dependable and Secure 
Computing, 1(1), 2004.

 Gärtner: Fundamentals of Fault-Tolerant Distributed 
Computing in Asynchronous Environments, ACM 
Computing Surveys, 31(1), 1999.

DS WS 2013 51


