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Abstract—With the increased success of Internet of Things
(IoT), the conventional centralized cloud computing is encoun-
tering severe challenges (e.g., high latency, non-adaptive machine
type of communication), that proved insufficient to meet the
stringent requirements of IoT applications. Besides requiring
fast response time, increased security and privacy, they lack
computational resources at the edge of the network. Motivated to
solve these challenges, new technologies are driving a trend that
distributes the computational resources and shifts the function of
centralized cloud computing to the edge. Several edge computing
technologies, edge and fog paradigms, originating from different
backgrounds have been emerging to overweight these challenges.
However, to fully utilize these limited devices, we need advanced
resource management techniques. In this paper, we present a
novel distributed resource allocation algorithm with the purpose
of enabling seamless integration and deployment of different
applications in an IoT infrastructure. The algorithm decides: (i)
the mapping of an IoT application at the edge of the network; (ii)
dynamic migration of parts of the application, such that Service
Level Agreement (SLA) is satisfied. Furthermore, we analyze and
discuss our approach and the potential to minimize the latency
of different IoT applications.

Keywords—Resource Management; Edge Computing; Fog
Computing; Internet of Things;

I. INTRODUCTION

Over the past decades, cloud computing has been applied
in most of the industries due to its high cost-efficiency and
flexibility achieved through consolidation, in which comput-
ing, storage, and network management functions work in a
centralized manner. Since the number of connected devices in
the IoT has increased dramatically in the last couple of years
generating more and more data, the existing centralized cloud
computing architecture is encountering severe challenges. For
instance, transferring all this data to the cloud introduces
congestion in the network and extra delays in the application.
Hence, deploying a real-time IoT application, which requires
fast response times and increased security, entirely to the cloud
is not an effective strategy anymore. As a result, the need for
processing applications closer to the edge of the network has
become a necessity [1].

Shifting the storage and computational power from the
cloud closer to the edge provides a series of benefits, such
as smaller end-to-end (e2e) delay, better scalability of the
network, enhancing privacy and independence of the cloud [2].

Applications such as self-driving cars [3] and aid for people
with disabilities [4] benefits from having a minimum e2e delay
and fast response time. For example, when care services are
extended from hospital to private homes with a focus on remote
monitoring of people suffering from chronic diseases or old
people, in case of emergencies, the faster the response time
is, the immediate help can be provided (e.g., the command
sent to the sensors should be granted immediately, stabilizing
the patient, until a nurse will arrive). Moreover, there are
applications where security and privacy have an important role
like ambient assisted living [5]. Finally, since most of the
computation is performed at the edge, only a small portion
of generated data is sent to the cloud for further processing.
This greatly impacts the network overhead and offers correct
functionality even when the connection to the cloud is lost.

The underlying premise of new paradigms like fog [6]
and edge [7] computing is to deploy distributed heterogeneous
computational resources closer to the IoT sensors. We differ-
entiate the two by the resource capabilities and location. For
example, edge devices are placed closer to the source of data
and have limited resources (e.g., limited computational power,
limited energy). On the other hand, fog devices have more
computational resources, being located between edge devices
and cloud. However, deploying applications in such diverse
IoT infrastructure where mobile devices can come and go
without prior notice is impossible, if there is no support of
novel resource management techniques.

Since the cloud has almost unlimited but far away re-
sources, the resource management comes as a solution to
the constraints imposed by the IoT devices. Deploying IoT
applications at the edge comes with a set of challenges. The de-
vices in the network are heterogeneous, with limited resources
(i.e., limited computational power and energy supply) and are
subject to different environments. Moreover, the nodes can
be mobile introducing even more uncertainty in the system,
since nodes can enter or leave the network without any prior
announcement. In edge computing, the diversity found in such
networks and resource management play a significant role in
assigning and distributing tasks (that are generated by local
devices), to the remote cloud (the center of the network) or
local servers/devices (the edge of the network). A common
approach for resource management in edge computing is to
assign tasks to the remote cloud or local servers according to
several factors such as energy, bandwidth consumption, having
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as final scope the minimization of the latency.

In this paper, we introduce a decentralized resource man-
agement algorithm with the purpose of deploying IoT ap-
plications at the edge of the network such that e2e delay
is minimized. The algorithm tackles resource allocation [8]
from two different perspective, where to place an application
and when to migrate. This ensures that the system is able to
dynamically adapt to the uncertainties of the IoT architecture
and provide a better availability of applications deployed at
the edge of the network. Furthermore, to aid the algorithm in
deciding what tasks to migrate, we propose a task ranking sys-
tem that offers a classification of the tasks on a node based on
some criteria (e.g., battery level, trustiness and communication
latency among others). This is important, especially for being
able to handle variations in resource demand while assuring a
good quality of service (QoS) [9].

The remainder of the paper is structured as follows: In
Section II we discuss the related work on resource manage-
ment techniques. Section III defines the IoT application and
architecture considered in this paper. In Section IV we describe
the implementation details of our proposed algorithm. Section
V present the challenges of such a framework and discuss the
evaluation we intend to make. Finally, Section VI concludes
the paper and provides an outlook on future work.

II. RELATED WORK

With the advent of new paradigms, like edge and fog
computing and the tremendous impact IoT devices is having
on people lives, researcher propose new solutions to take
advantages of all available resources found closer to the IoT
sensors.

In the context of using the available computational re-
sources, the authors in [10] presents a mapping algorithm that
deploys a pre-partition application at the edge of the network,
reducing the cloud communication and minimizing the latency.
Another deployment algorithm composed of two stages, (i)
partitions the IoT application in multiple tasks and annotates
them with location information, (ii) place the obtained tasks
on multiple edge nodes based on their location, is described
in [11].

In [12], the authors suggest a cooperative fog platform
using a distributed communication model. The purpose of the
platform is to achieve a better collaboration between multiple
static and mobile fog devices. Moreover, to improve the
service efficiency of IoT applications, an allocation algorithm
is applied by selecting hosts based on system characteristics.
A similar approach is presented in [13] where an optimiza-
tion service placement algorithm is developed to share fog
resources. However, the algorithm will always try to map an
application to the deployment node or to a neighbor device.
In case of failure, the application is mapped to the cloud.

Another important topic in resource allocation that helps
adapt to the increased uncertainty is resource migration. In [14]
the authors present an algorithm to dynamically migrate virtual
machines (VMs) and find the best communication paths based
on predictions of user movements. Another solution to service
migration is presented in [15], where the authors propose
an edge-enabled publish-subscribe middleware to continuously

monitor the QoS and transparently migrate clients to another
host in close proximity. For our self-adaption solution, we
propose a similar approach that finds the latency of nearby
neighbors devices and solves the problem of mobile nodes un-
predictability. However, in comparison, our approach supports
more diverse IoT applications.

Multiple other solutions that tackle the challenges of de-
ploying IoT applications at the edge have been proposed. The
authors in [16] define algorithms to find the best location to
distribute applications in a cloud-assisted vehicular network
architecture. Others have proposed adaptive workload manage-
ment mechanisms [17] or resource estimation techniques [18]
to provide services closer to the edge similar to those in the
cloud. Furthermore, the authors in [19] introduce a solution
to minimize the response time of video analytics applications
close to the edge.

With respect to aforementioned research papers, most of
the researchers work on emphasizing the placement of edge
devices, whilst load distribution is considered to be a hot
topic. In contrast, our proposal provides a more comprehensive
resource management solution that is independent of IoT
applications and environment. By combining initial placement
of the application at runtime, with dynamic migration and
neighborhood selection, the edge devices will become more
intelligent.

III. IOT INFRASTRUCTURE

The proposed solution is a decentralized algorithm de-
signed to ensure that deployed IoT applications meet their
SLA, i.e., the maximum E2E delay for an application to
function as intended. The framework is divided into three
different modules deployed on each computational device in
an IoT architecture.

A. IoT architecture

For the architecture, we consider that every edge, fog
device, and cloud are connected in a peer-to-peer manner.
This changes the pyramidal approach where there are four
layers (i.e., sensor, edge, fog, and cloud) into a more flatter
approach where devices have a direct connection to different
cloud providers and to all nearby nodes (see Figure 1).

B. IoT application model

Due to the limited computational power of edge devices,
we model an IoT application as a Directed Acyclic Graph
(DAG) where vertices represent different tasks (i.e., a set of
instruction that performs a specific computation) and edges
show the dependencies between them. Each task is character-
ized by its computational requirements (i.e., CPU utilization,
RAM, storage) and the address of the dependent tasks. An
example of such an IoT application is presented in Figure 2.

Moreover, to deploy the application in such a heteroge-
neous IoT network, the tasks are placed in individual docker
containers. A docker container represents a lightweight, stand-
alone, executable package that contains everything needed to
run the specifically added task [20]. Furthermore, since tasks
are isolated from the environment, a better security and a fast
and easy deployment are ensured.
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Fig. 2: IoT application model

In this paper, we assume that the application is divided
into multiple dockers by the developer and sent directly to the
deployment edge node once everything is prepared.

IV. RESOURCE MANAGEMENT SOLUTION

We design an algorithm to dynamically distribute and adapt
the application such that the e2e delay is minimized. In our
approach, the algorithm is deployed on every edge and fog
node in the IoT architecture, being divided into three modules
each performing a different functionality as depicted in Figure
1. Moreover, the algorithm is developed to work on two
different states: (i) deployment state represents the place from
where an application is deployed (i.e., the dispatcher node)
and a (ii) resource sharing state where offers are generated to
receive tasks for further processing (i.e., the neighbor node).
In the deployment state, the deployment policy is aided by
the latency module to find the best placement for the IoT
applications, while the offer generator module is not working.
In contrast, in the resource sharing state the offer generator
module switch places with the deployment policy to choose
the tasks and compute the offers.

The functionality of our algorithm is inspired from a real-
world private auction house rules. Once an item has arrived at
the auction house and is ready to be sold, a list of people is
created, who are invited to the event. These persons are not
randomly chosen since they have to fulfill some criteria and

prove that own the necessary ”resources” to pay for the items.
Once the item placed for auction, the interested buyers can
place offers in a limited period of time. In the end, the buyer
who offered the most is the winner of the object.

In our case, the IoT devices found in close proximity to the
dispatcher are eligible to participate. However, since each IoT
application is different, the latency monitoring module creates
a personalized list of invitations from all the neighbors, based
on the application’s characteristics. When the participants are
elected and the list created, a message is sent to present the
application model and start a timer in which offers can be
submitted. During this period of time, the participating nodes
send offers for one or more tasks depending on their available
resources. Once the time has expired, all the received offers are
collected and the winners are announced. Finally, each winner
receives the desired tasks.

A. Latency monitoring module

The primary function of the latency monitoring module
is to filter the nearby IoT devices and create, at runtime, a
list of participants that meet the IoT application requirements.
Since each IoT application is different, the generated list of
participants is unique. The difference comes from the filter
threshold used by the module. In this case, the threshold is
dependent on the application maximum e2e delay and has
the purpose of ensuring that the communication latency from
the dispatcher to the participants does not exceed a certain
percentage. The equation used to compute this threshold is
presented in Eq. 1:

Tmax = e2edelay × p (1)

where e2edelay is the maximum e2e delay of the applica-
tion and p represents the percentage taken from the e2edelay.

Furthermore, the threshold provides an upper bound of the
accepted latency of each participant. Thus, the algorithm is in
charge of monitoring the latency to the neighbor nodes, by
measuring the time taken to send a message and until the time
it arrived back, similar to [15]. Hence, this technique is perfect
to monitor mobile devices and deal with their uncertainty. For
example, if the latency of such a mobile device increases, then
the mobile device has left the area. The entire functionality of
this module is presented in Figure 3.

The second functionality of this approach is to keep
track of the nodes that joined the network and provide a
possibility to easily enter into the neighborhood of an edge
device. Consequently, each node has the knowledge of all
the computational resources in its vicinity. Since the module
knows exactly how old (i.e., the period of time since the node
joined the network) a node is, a better decision can be made
when inviting participants. A list of participants is presented
in Figure 1.

B. Offer generator module

This module is used only when a device is in a resource
sharing state and has the purpose to create and send offers
to the dispatcher. Each offer reflects the resources that a
node desire to share and represents the Worst-Case Response
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Time (WCRT) of the selected tasks. Moreover, the offers are
compared to a computed threshold to filter them and send
only the ones that could improve the overall e2e delay. This
strategy lowers the network communication and at the same
time helps the neighbor node to take better decisions regarding
its resources.

The threshold is calculated based on two parameters,
the number of selected tasks and a percentage of the e2e
delay. Through this approach, we ensure that only very good
offers are sent to the dispatcher. The mathematical formula is
presented in Eq. 2:

Tmax = e2edelay × p× n (2)

where n represents the number of selected tasks and p
represents the percentage taken from the e2edelay.

The algorithm starts executing when an invitation message
is received. At the same time, a counter, used to know how
much time it takes to generate the current offer, is started
by the algorithm. Next, based on the available resources,
the module selects a number of tasks for which an offer
is prepared. However, multiple tasks can be mapped on the
same device only if they share a direct dependency. Therefore,
the possible combinations of tasks are limited which makes
the algorithm more efficient. Once the number of tasks is
decided, a message containing an offer, the selected tasks, and

a latency table is created. However, before sending the message
to the dispatcher, the algorithm performs the last check, by
comparing the counter with the duration received from the
dispatcher. In this way, it verifies if the node still received
offers or the predefined period ended. The overview of this
module is presented in Figure 4.
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Fig. 4: Offer generator flowchart

Besides generating offers, this module creates a latency
table, consisting of neighbor IoT devices and their respective
latency (computed with respect to the current node). The
devices considered in this table represents the results of an
intersection between the received list of participants from the
dispatcher and its own neighborhood. This approach aids the
deployment strategy to find the e2e delay since it furnishes
the latency communication between two different participants
nodes (i.e., a knowledge that is not available from the latency
monitoring module).

C. Deployment policy module

The deployment policy module is active only when a node
is in the deployment state. To enter this state, a client request
has to arrive to deploy an application. The main objective
is to place the IoT application at the edge of the network
such that the e2e delay is minimized. Once the deployment
finishes, the module continues to monitor the winner devices
to ensure a correct functionality. In case of failure, the module
dynamically adapts by performing task migration. A task
migration can only be executed by the dispatcher of that
particular applications. Hence, if a node has to free some
shared resources, the application’s dispatcher is notified.

The flowchart of our deployment algorithm is outlined in
Figure 5. First, the client sends an application to be deployed
on an edge device. Once the application is received, the
algorithm starts processing it. At the same time, a request for
a list of devices, eligible to execute some of the tasks, is sent
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to the latency monitoring module. While waiting for this list,
the deployment module checks if there are any computational
demanding tasks to be mapped to the cloud.

Next, a check of locally available resources is completed.
Since the network communication latency impacts drastically
the e2e delay, It is important to deploy the tasks on the
smallest number of devices. Hence, as a rule, at least the first
and last task (i.e., task A and task F in Figure 2) must be
mapped locally because these tasks are connected directly to
the IoT sensors and actuators, which are located nearer to the
dispatcher. In the case where no resources are available, the
module has to decide which of the current mapped tasks to
migrate. This decision is made with the help of the task ranking
system.

The task ranking system offers the possibility of task
classification. The order is established based on a number of
factors like, the communication latency to and from the current
task, the resources used, how many tasks are grouped locally,
and the trustiness of the associated dispatcher. The rank is
computed, only once, when the edge device receives the tasks
that it won.
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Fig. 5: Deployment policy flowchart

The algorithm creates a message once the tasks were
locally mapped and the list of participants was retrieved from
the latency module. The message includes the remaining tasks
and their dependencies, the list of participants, the duration in

which offers are received and the IoT application SLA. After
the time expires, all received offers are divided into different
lists. In each list, the algorithm places all the offers received
for the same task/group of tasks. Based on all the offers,
the deployment strategy is found by taking the minimum of
each list and combining the results such that the e2e delay is
minimized. The objective function, used to determine the best
placement, is presented in Eq. 3:

Applatency = Tmap +Blatency +WCRT (3)

where Tmap represents the time to find the best mapping for
the IoT application, Blatency is the sum of the communication
latency between the winner nodes and WCRT represents the
sum of the received offers. It is imperative to state that Tmap

impacts the e2e delay only once during the initial deployment.
In any other case, the Tmap is equal to 0.

Since the offers are filtered twice: firstly: by the latency
monitoring module when the list of participants nodes are
created; secondly by the offer generator module when the offer
is compared with the threshold, almost any combination of the
nodes that offered the minimum values yields an e2e delay that
meets the SLA. In doing so, the search space of this module is
minimized resulting in a very efficient deployment algorithm.
Moreover, knowing the communication latency between two
nodes is not difficult anymore, since the module can easily
find it from the offer messages.

Finally, to deploy the application a message is created
carrying the docker containers of each task and the addresses
of their dependent nodes, providing a direct communication
link between the winner nodes.

V. DISCUSSION

In this section, we present multiple challenges that must
be investigated when developing algorithms for resource man-
agement at the edge of the network. These challenges target
critical aspect of the algorithm such as network overhead and
migration rules. As a result, these will help us to determine
the limitations of such a system, understand, and overcome
them. Next, the challenges and their implications, which we
must consider when designing such a system are discussed.

A. Communication network challenges

To truly enable the full computational resources available
at the edge of the network, mobile devices (i.e., laptops,
smartphones or cars) have to be allowed. Besides the legal and
security aspects of sharing resources, a careful attention must
be accorded to the unpredictability introduced into the system.
In our paper, we present a module for monitoring the latency
in the network, a solution that can detect when a mobile device
is leaving the area. However, the network overhead, introduced
when multiple devices are connected in the same neighborhood
is considered an issue. Hence, multiple evaluations must be
performed to be able to discover new techniques for monitoring
the latency at the edge of the network.

Furthermore, as in the case of latency monitoring, when a
deployment is performed by the algorithm, multiple dockers
are sent through the network. Even though we use dockers,
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deploying multiple applications at the same location introduces
massive traffic. As a result, performing multiple evaluations
to find this limitation of our algorithm is utmost important.
With this knowledge, we can further extend and improve our
solution even more.

B. Proposed solution challenges

Our proposed solution is divided, as described in section
IV, into three main modules each having a set of challenges
that must be overcome using multiple tests.

1) Latency monitoring module: Being able to construct
a personalized list of resources for each IoT application
provides better opportunities to obtain individual deployment
strategies. For example, if an IoT application has a smaller
SLA, the algorithm considers only IoT devices that are in close
proximity to the location of the dispatcher. In contrast, for a
bigger SLA, more devices must be considered for sharing the
resources. Therefore, it is important to define parameters that
describe each IoT application in a novel way. However, besides
SLA, other parameters must be investigated to determine if
they influence the overall efficiency of an IoT application.

Another important parameter of this module is the thresh-
old. It impacts directly the computational time and the results
obtained by the deployment policy module. Comprehending
the optimal value of the percentage used to compute the
threshold, not only yields a better list of participants but
aids the deployment algorithm in finding the best mapping
faster and more efficient. However, to find the near-optimal
percentage we must perform multiple evaluations. Such tests
help us to understand better the impact of this percentage in
the overall deployment strategy.

2) Offer generator module: Similarly to latency module,
we must find the optimal percentage when computing the
threshold. The threshold has a significant meaning in the
overall functionality of our algorithm by determining if the
offers are sent or not. Another possible problem that we must
avoid is related to the migration of tasks. When performing
tasks migration is crucial to guarantee a good decision-making
algorithm. The algorithm ensures that tasks are migrated only
when it is absolutely necessary. Therefore, we have introduced
the ranking system notion in deciding what tasks to migrate al-
though we still have to evaluate and ensure that the migration is
not happening all the time. Since the decision can dramatically
influence the latency of the application, performing constant
migrations of tasks introduces huge penalties in the overall e2e
delay.

3) Deployment policy module: In this case, determining the
time needed to find a good mapping solution counts the most.
Since this impacts the first e2e delay, we have to perform
multiple tests to identify the balance between finding the
best solution but missing the first SLA or accepting the first
found solution and meeting the requirements. Since almost all
solutions can meet the requirements, we have to decide what is
a good time to let the algorithm search. Once we understand
better the behavior, maybe a solution is to have a different
time, based on the characteristics of each IoT application.

Besides the individual challenges of each module, an inter-
esting problem that we desire to explain is related to the actual

resources management. Currently, once an IoT application is
mapped to a location, the resources are used continuously.
This method is not efficient when an application is running
for a specific amount of time. For example, a specific IoT
application may only run during the night, being idle in the
rest of the day. Therefore, such practice introduces a big waste
of resources throughout the period when the application is
idle. Consequently, one solution is to reuse the resources,
by deploying other IoT application during the daylight. The
proposed behavior requires new developments, which consider
the migration of idle applications to other locations (where
their functionality is needed) and free the local resources.
However, once the night has come, the application has to be
redeployed on the same location. This approach implies to
track the timestamp of the first location (i.e., from where the
application was moved) and guaranteeing that the resources are
free once the application returns. In conclusion, the aforemen-
tioned approach, in combination with the proposed resource
management algorithm, allow to fully employ the resource at
the edge.

VI. CONCLUSION AND FUTURE WORK

In conclusion, the stringent requirements of IoT applica-
tions have created new deployment challenges. In an effort to
solve these challenges, new paradigms have been introduced
to add more computational resources at the edge of the
network. However, to truly take advantage of these resources,
a distributed resource management technique is required. In
this paper, we introduce a distributed latency-aware resource
provisioning algorithm with the purpose of deploying IoT
applications such that their SLA is satisfied. Furthermore, the
algorithm can adapt to individual needs and environments
of different applications. We believe that by applying the
proposed algorithm in real IoT infrastructures (e.g., smart city)
more application can be deployed at the edge of the network.

For future work, we plan to evaluate the proposed system
considering simulations to test on a very large network and
small prototypes consisting of multiple nodes where we can
deploy and test our algorithm.
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