
Distributed Continuous Queries Over Web Service Event Streams

Waldemar Hummer, Benjamin Satzger, Philipp Leitner, Christian Inzinger, and Schahram Dustdar
Distributed Systems Group, Vienna University of Technology, Austria

Email: {lastname}@infosys.tuwien.ac.at

Abstract—Complex Event Processing over Web service event
streams poses huge challenges with regard to efficient, scalable
execution as well as expressive models and languages that
account for the dynamics in long-running queries. We present
a distributed query platform that tackles these problems. Our
novel query model permits to specify inputs that provide data
for other inputs and need to be processed first. An XQuery
language extension lets users easily express such dependencies,
which are then continuously resolved with the required data
at runtime. Query specifications are abstracted from physical
deployment, allowing the platform to distribute the execution
and to elastically scale up and down. We evaluate several
aspects of our prototype in a Cloud computing environment.

Keywords-complex event processing, continuous queries, scal-
ability, elasticity, Cloud computing, Web services, WS-Eventing

I. INTRODUCTION

Throughout the last years, the World Wide Web has

moved from an Internet of documents to an Internet of

services [1]. This goes hand-in-hand with the paradigm of

Service-oriented Computing [2], which considers services

as the building blocks for distributed applications. While

the classical Web model is a client-server and request-

response model, more and more emphasis is put on loosely

coupled distributed systems, asynchronous processing and

event-driven architectures [3]. WS-Eventing [4] has been

proposed as a technology for building event-based services.

The primary format for data exchange on the Web is the

Extensible Markup Language (XML). The XML query lan-

guage XQuery [5] provides a powerful means to arbitrarily

extract, transform and generate XML content. The current

working draft of XQuery version 3.0 supports queries over

sequences of XML nodes. This feature has been largely

influenced by Botan et al. [6] who proposed to extend

XQuery with window functions. These functions provide the

basis for Complex Event Processing (CEP) [7] over XML

event streams, i.e., sequences of temporally decoupled XML

messages sent from a producer to subscribers. On top of

XQuery, however, event subscription, collection, correlation

and propagation still require tailor-made implementation

on the application level. This inherent complexity is even

harder to handle when the individual event streams have

interdependencies, i.e., if a subscription needs to be updated

when other event streams produce a certain result or pattern.

In earlier research, we have introduced the WS-

Aggregation framework [8], a scalable platform which al-

lows to combine and process data from heterogeneous Web

resources using configurable distribution strategies. Whereas

our previous work focused on synchronous, stateless ag-

gregation of static Web data, we now extend the approach

to support active (continuous) queries over dynamically

changing data and event streams. This platform employs an

novel active query model for event-based data aggregation,

which not only processes events from a single source or sub-

scription, but actively creates and renews event subscriptions

based on user-defined data dependencies and generation

templates. An aggregation query consists of an arbitrary

number of inputs from Web services and allows to specify

data dependencies between any two inputs i1 and i2. When

i1 yields a new result, the invocation or event subscription

for i2 is generated and renewed. The functional query spec-

ification is abstracted from its physical distribution, which

allows to split the execution on multiple computing nodes

for deployment in a scalable Cloud Computing environment.

In the remainder of this paper, we first introduce a sce-

nario of continuous event querying in Section II, and provide

some background on XQuery window clauses in Section III.

Section IV presents the query model and discusses dis-

tributed query execution and runtime query updates. Section

V details the platform implementation, and Section VI

evaluates different aspects of the solution. In Section VII we

discuss related work, and Section VIII concludes the paper.

II. SCENARIO

We consider a scenario from the financial computing

domain, in which Web services provide live data about

companies and stock prices. The aim is to combine the

information in an XML document that is actively updated

when the underlying data change. Figure 1 illustrates, on a

high level, how data and events are received and processed.

���������
�	
��

��
�
����
��

����
��

����

�������

����
����
�

������
��
����
�

�����������
�������

����
������
�
��������
����

	�
���� ���!
"�������
��

"#���
�$

�������������
�#
����
��

���%
�����
���

"�����!
��&���������

���%
�����
���

�
���'����
�������

�������
��
����#
�

������
�����(���
�

�
�

�
��
�
�
�

�
�
�
�
��
�
�

	
�
�
��
�
�

�
�
�
�'
#�

&
�
��

��(���

)
�
�
�
#

��
�"
#��
�

�

�
���*����
�������

����� ����	
� �
�� ����
 ��	��� �	�������

+� +,���
��� +�,,, -.,$/ 0������� /,1����,

� ����� % /.,$- 2 %

*� *�!�
� % 3.,4. 2 %

���%
�����
���

"#���
�/

Figure 1. Event-Based Continuous Data Aggregation Scenario

We distinguish 3 basic types of receiving data from the

sources: (1) the StockPrice and StockTrade services allow to

subscribe for certain events transmitted using WS-Eventing,

(2) the News feed is regularly monitored for changes, (3)

the Company Info service contains rarely changing, static

data. The clients specify a query to receive aggregated data

that are incrementally updated as the query executes. The

aggregation platform mediates between the data providers

and consumers, and coordinates the query execution. The

required core components from a high-level perspective are

as follows. An Event Manager (EM) maintains subscriptions

with the target services and receives events. The Web Service

Invoker (SI) is responsible for performing synchronous ser-

vice requests, and a Data Monitor (DM) repeatedly retrieves

data from the monitored resource and generates an event

to report any changes. The collected results from EM, DM

and SI are fed into the Active Query Coordinator (AQC),

which updates all dependencies and generates new requests

as needed. To the clients the platform appears as a single

entity, but in fact the system is distributed over several

computing nodes, be it for performance reasons or due to

higher-level constraints (e.g., the StockPrice and StockTrade

services should report to physically separated endpoints).

The resulting document should contain a table with the

current stock prices and general company information. Fur-

thermore, the result indicates when a stock has three or more

consecutive price rises, in which case the largest bid volume

is displayed. If the platform detects that a stock has risen

and traders are placing high volume bids (e.g., ≥ 1 million),

the table should display live news about these companies.

A. Interdependent Event Streams

Figure 2 illustrates two sample event streams of the

StockPrice and StockTrade services. Initially, a subscription

for StockPrice exists, and the service continuously sends

stock price events. When three consecutive rises are detected

for GM (bold text), the Event Manager requests a new sub-

scription with the StockTrade service to receive all bids and

asks for GM placed on the market. Finally, this subscription

is destroyed when five consecutive ticks (also in bold text)

are below the last price of the rising sequence (35.7).

�����������	
��
�
����	
�����
��
�����������	
��
�
����	
�����
��
�����������	
�
�
����	
�����
��
�����������	
�
�
����	
�����
��
�����������	
��
�
����	
�����
��
�����������	
��
�
����	
�����
��
�����������	
��
�
����	
�����
��
�����������	
��
�
����	
�����
��

�������������������

����������
�������

 �����!�"����
����#�
!�����������$��

%���&�"�'��(�)����*

����������
�������

�����

�+���+&����	
,��-
������
������ �!"�	
#�
������
�+���+&����	
���-
������
�"�)�+&����	
���-
������
������ �!"�	
#�$�
������
�+���+&����	
.��-
������
������ �!"�	
#���
������
�+���+&����	
��������
��

 �����!�"����
����#�
/�)��%����$�����

�����������	
��
�
����	
�����
��
�����������	
012
�
����	
������
��
�����������	
��
�
����	
�����
��
�����������	
012
�
����	
������
��
�����������	
��
�
����	
����%
��
�����������	
�
�
����	
�����
��
�����������	
��
�
����	
�����
��
�����������	
��
�
����	
����#
��
�����������	
�
�
����	
����,
��
�����������	
��
�
����	
���#�
��

 �)�!�"����
����

1&����)#�!1%3
 ���'�
����$�
 ���������+4��

�
�
�
��
�
�&
�
'��
�

Figure 2. Sample Event Streams and Lifecycle of Event Subscriptions

The presented scenario poses several challenges to CEP.

The basic requirement is the possibility to detect patterns in

event streams in order to trigger new actions. This is a core

research topic in CEP, and we can build on the existing work

(e.g., [9], [10]). In this paper, we utilize XQuery to detect

patterns in single streams, and perform distributed execu-

tion of continuous queries over multiple event sources. We

thereby focus particularly on dependencies which determine

the data flow and the lifecycle of event subscriptions.

III. BACKGROUND

We briefly provide background information on XQuery

window clauses, which is essential for understanding the

remainder of the paper. The current draft of XQuery 3.0

introduces tumbling and sliding window clauses which we

utilize as the basis for CEP. Listing 1 prints an exemplary

window query operating on the StockTrade events. The

variable $input points to the sequence of events that the

platform received so far. The query creates a window $w

(sequence of consecutive items drawn from the $input

sequence) for each subsequence of $input for which the

start and end conditions apply. A window starts when the bid

amount is at least 1000000, and the same window ends if a

higher amount is found than in the previous window. In other

words, the query splits the sequence $input into chunks

of consecutive event sequences (stored in the loop variable

$w), and returns the end item of each subsequence (which

is greater than the end item of the preceding subsequence).
� �

1 f o r tumbling window $w in $ i n p u t / b i d
2 s t a r t $s at $spos p r e v i o u s $ s p r e v when
3 number ($s / @amount) ge 1000000
4 end $e next $ e n e x t when $spos l e 1 or
5 number ($ s p r e v / @amount) l t number ($e / @amount)
6 re turn
7 <maxbid s t o c k =”{$e / @stock}”>{$e / @amount}</maxbid>

� �
Listing 1. XQuery Window Clause for Events from StockTrade Service

The defining characteristic of tumbling windows is that

new windows are only created when the previous window

has been closed, whereas sliding windows may overlap [6].

The two window types provide orthogonal functionality and

it depends on the application which of the two is used. Note

that XQuery provides these features for queries over event

streams, but has no explicit means for active continuous

queries that consider data dependencies between streams,

automatically request and retrieve data from services, and

manage the lifecycle of event subscriptions. Section IV

discusses how this is achieved by WS-Aggregation.

IV. EVENT-BASED WEB DATA AGGREGATION

In this section we detail our approach for event-based

querying and aggregation of Web services and data, dis-

cussing both the functional aspects (i.e., how clients express

aggregation queries), and the non-functional aspects which

affect the platform’s internal structure and mode of opera-

tion. We present the model that is used to construct aggrega-

tion queries in Section IV-A. The actual query language, pre-

sented in Section IV-B, is based on XQuery and introduces

additional language constructs that are tailored to the used

query model. The WS-Aggregation platform is particularly

designed for scalability and Cloud-based deployment, which

will be discussed in more detail in Section IV-C.

A. Query Model

A simplified version of the query model is illustrated as

a UML class diagram in Figure 3. The model builds on

our previous work [8] and extends it with eventing-specific

aspects. The central entity AggregationQuery specifies the

Endpoint Reference (EPR) used to receive result updates

(notifyTo). An aggregation query contains multiple Inputs

(identified by ID) that determine how data from external

sources are retrieved and inserted into the active query.

����������	
�

��������	����

���
�
���	
�

���
������	�
�
�
������	����

������������
���

��
�������	����

�
�����	��

���

������	�����
�

��
��������
�����

�����
����
�����

����������
�����

���

������	�������

�������!����"	�#���"

����$
���

�����

��$%	�����
�
��������	����

��&�����%���

'���'���

'���

Figure 3. Query Model for Continuous Event-Based Data Aggregation

The EventingInput entity creates event subscriptions with

an optional filter that is evaluated by the target Web service

as defined in WS-Addressing. On the other hand, RequestIn-

put is used for documents retrieved in a request-response

manner. In both cases, the target EPR specifies the location

of the service. The interval attribute allows to continuously

monitor a Web service or document for changes.

Besides input entities, an aggregation query contains

XQuery-based QueryExpressions. A preparationQuery ex-

pression may be used to prepare and transform the result of

an Input immediately as it arrives at the platform. In the case

of a RequestInput, the preparation query performs a one-

time transformation (e.g., extracting the news for a certain

company from the News Feed), whereas to “prepare” an

EventingInput a window query is continuously executed on

the event stream to yield new results. To specify the con-

dition for ending an event subscription, an EventingInput is

associated with a terminationQuery. When this query yields

a true result, the target service is automatically invoked

with a WS-Eventing Unsubscribe message to destroy the

subscription. Finally, the finalizationQuery combines all the

prepared results and constructs the final output document.

B. Input Data Dependencies

A core feature in the query model is the concept of data

dependencies between two inputs i1 and i2, which signifies

that i2 can only be “activated” if certain data from i1 are

available to be inserted into i2. Activation in this context

means that the input becomes usable only when all data

dependencies are resolved. The query model in Figure 3

associates an Input (receiving input), via the association class

DataDependency, with an arbitrary number of required data

from other Inputs (providing inputs) of the same query. The

attribute extractPath is an XPath which points to the data

in the providing input. If the optional association fromInput

is set, the data will be extracted from a specific Input; oth-

erwise, if fromInput is unknown, the platform continuously

matches extractPath against the available inputs and extracts

data when this XPath evaluates to true.
� �

[new] DataDependency : : = ” $ ” Name? ”{” Pa thExpr ”}”
[new] EscapeDol lar : : = ” $$ ”
[1 2 5] Pr imaryExpr : : = DataDependency | . . .
[1 4 5] CommonContent : : = DataDependency | EscapeDol lar | . . .
[2 0 4] E lemen tCon ten tCha r : : = Char − [{}<&$]
[2 0 5] Q u o t A t t r C o n t e n t C h a r : : = Char − [”{}<&$]
[2 0 6] A p o s A t t r C o n t e n t C h a r : : = Char − [’{}<&$]

� �
Listing 2. XQuery Language Extension for Data Dependencies

We propose an XQuery language extension to account

for simple modeling of data dependencies as studied in this

paper. The modifications are printed in EBNF (Extended

Backus-Naur Form) syntax in Listing 2. The new construct is

named DataDependency and consists of a dollar sign (“$”),

an optional Name token referencing the ID of the providing

input, and an XPath expression (PathExpr) specifying the ex-

tractPath in curly brackets (“{”, “}”). To express that a string

“${foo}” should be interpreted as a verbatim string and not

as a data dependency, a double dollar sign (EscapeDollar)

is used for escaping (“$${foo}”). The DataDependency

token is added to the definition of PrimaryExpr (rule 125

in the current version of XQuery 3.0) and CommonContent

(rule 145). Furthermore, to satisfy parser consistency of the

syntax rules, the single dollar sign needs to be appended to

the list of “exceptional” (non-content) characters (rules 204

to 206). Section V provides further implementation details.
1) Scenario Query Model: Based on the four inputs for

the scenario services (SP = StockPrice, ST = StockTrade,

CN = Company News, CI = Company Information), the

expressions in Figure 4 illustrate how data dependencies

(highlighted in bold font) can be utilized in different parts of

an aggregation query, including the WS-Eventing filter for

the ST subscriptions (input 2), the preparationQuery for the

monitored CN Feed (input 3), and the SOAP body of the

CI request (input 4). The terminationQuery of ST is similar

to its preparationQuery (see Listing 1) and not printed in

the figure. The input results are directly accessible in the

finalizationQuery, e.g., //news inserts the results of input

3 into the final result. The figure depicts the Dependency

Graph indicating which input expects data from which other

inputs. This graph is automatically constructed from the

aggregation query and checked for circular dependencies.

It is important to notice that the XQuery expressions are

evaluated in a preprocessing step which generates the actual

elements to be used as, e.g., filter for ST and body for CI. For

instance, if during evaluation of $1{//rising/@stock}
the platform extracts three stock symbols (’GM’,’F’,’TM’)

from the prepared result of input 1, three instances of

input 2 are generated for each of the corresponding filter

���������	
����
�	

������
����	�	
��
�������������������	�
�

���������	
�������

���������	
����
�	

������

���
������for $s in distinct-values(

 $1{//rising/@stock}) return

 <Filter>stock={$s}</Filter>�
����	�	
��
�������������������	���

����
	
��
�����������

�����������	��
�	

������

����	�	
��
������
��for $s in distinct-

 values($2{//maxbid/@stock})

 return $input//news[@stock=$s]�

�����������	��
�	

������
�

���	�����������
��

��������for $s in distinct-values(

$1{//rising/@stock}) return

<GetInfo>{$s}</GetInfo>�

����������
����
��

� �����„<table><tr>...</tr>{for $i in

 distinct-values(//stock/@symbol)

 return <tr>

 …//news…//rising…//maxbid…

 </tr>}</table>“

����
��
���!�	�"#

�� �� �� ��

��
	��$	
��
�����
�
��
�

Figure 4. Aggregation Query for Data Aggregation Scenario

expressions. Analogously, three instances of input 4 are gen-

erated with corresponding GetInfo service requests. Sim-

ilarly, the preparationQuery of CN loops over all maxbid

stock symbols from input 2 (cf. preparation query in List-

ing 1) and outputs all news lines related to these symbols.

C. Distributed Query Execution

To serve a large number of simultaneous active queries,

the platform employs a scalable distributed processing model

with several loosely coupled nodes working collaboratively.

In addition to the obvious performance reasons, query dis-

tribution may also be required or desired from a higher-

level (business) perspective. For instance, the data may have

to be physically separated according to business policies.

Moreover, if multiple data sources are spread over a large

geographical distance, the aggregation can be organized in a

location-based hierarchical structure, e.g., with regional and

national nodes (for more details see [8]).

The fundamental assumption of WS-Aggregation is there-

fore that multiple aggregator machines collaboratively pro-

cess the queries and events requested by the clients. The set

of available aggregators is stored in a central service registry,

which allows to dynamically select a subset of aggregators

responsible for executing each individual query. The overall

request is then split up into smaller (“atomic”) parts that can

be processed by a single node (generateRequests function in

Algorithm 1). It should be stated that the single parts cannot

be regarded as completely isolated units, because, according

to the query model, there often exist data dependencies

between them. Each time a new event is received and added

to the result store (onEvent function), the dependencies

are updated and possibly new request inputs are generated.

Note that several inputs, possibly from different aggregation

queries, can be affected by an event in the onEvent function.

Line 6 in function generateRequests indicates that a

responsible aggregator is determined for each input. WS-

Aggregation supports different configurable distribution

strategies, and allows to either specify fixed input-to-

aggregator mappings or to assign inputs automatically. In the

latter case, the platform performs load balancing. In general,

Algorithm 1 Processing of Active Query with Dependencies

results← new result store // variable for aggregation results
function generateRequests(AggregationQuery r)

1: while r contains independent inputs do
2: I ← determine independent inputs in r
3: for all i ∈ I do
4: G← generate actual inputs from i using XQuery engine
5: for all input ∈ G do
6: aggr ← determine aggregator to handle input
7: if aggr is self then
8: result← invoke input on input.target
9: result← apply preparation query to result

10: add result to results, update dependencies
11: else
12: delegate request with input to aggr
13: end if
14: end for
15: end for
16: end while

function onEvent(Event e) // called by WS-Eventing service

1: add e to event buffer of e
2: for all EventingInput i affected by e do
3: result← apply preparation query of i to event buffer of e
4: add result to results, notify clients, update dependencies
5: generateRequests(i.aggregationQuery) // issue new requests
6: end for

new inputs are assigned to aggregators with the lowest

load (CPU, memory, number of active queries). A second

important distribution goal for event-based processing is

to bundle inputs with the same underlying event stream.

Consider two inputs i1 and i2 which receive the same ticks

from StockPrice, but use a different preparation query to

filter certain information. If these inputs are handled by

some aggregator a, a shared event buffer can be used and

redundancies are avoided to save memory. Of course, this

approach does not scale infinitely, and inputs are assigned to

new aggregators if the load of a reaches a certain threshold.

The evaluation in Section VI further discusses this aspect.

V. IMPLEMENTATION

This section discusses our implementation of the pre-

sented approach. WS-Aggregation employs multiple aggre-

gator nodes which collaboratively implement the function-

ality of the aggregation platform as sketched earlier in

Figure 1. From an external viewpoint, an aggregator is

solely defined by its Web service interfaces. Specialized

implementations can be plugged into the platform, as long

as the aggregator registers itself in the Service Registry. The

WS-Eventing compliant Eventing Interface is used to receive

events from data services. the Event Store buffers and for-

wards the events to the Query Engine which consists of the

Preprocessor (responsible for processing the XQuery data

dependency extensions) and a third-party (hence depicted in

gray) XQuery Engine from http://mxquery.org. The Active

Query Coordinator (AQC), accessible from the Aggregation

Interface, maintains aggregation queries, determines which

data dependencies are fulfilled and activates new inputs.

The AQC forwards activated inputs to the Request Dis-

tributor, which implements configurable query distribution

 0

 1

 2

 3

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700

Time (seconds)

Interval (sec)

 0

 50

 100

 150

Active Queries

 0

 500

 1000

 1500 Client Updates

 0
 0.2
 0.4
 0.6
 0.8

 1

CPU Usage Range

 0

 100

 200

 300

 400

Java Heap Usage Range (MB)

 0

 5

 10

 15

 20

Active Aggregators

Figure 5. Performance Results of Executing Multiple Simultaneous Scenario Aggregation Queries with Different Event Frequencies

����������	

�����
��������

��������	
��

�����
�
����
�

������
��	
��

�������
�
���
���
�

�		��	��

�
���������

��������
���������

����	�����
���������

���	������
��
��
!��

����
������
�
�
�
�

"
��
	����
�

��#�
�����
��	
��

� ���
�	
���������

� ���
��
��

���
 �������
"

��
���
�

$��� ���
�	
���
��

$������
��

�����
����

���
 �������
������
���

Figure 6. Core Components and Connectors of Aggregator Nodes

strategies. Moreover, the AQC uses the Eventing Interface

of partner aggregators to propagate WindowQueryEvents.

To communicate with other nodes, the Request Distributor

makes use of the Multicast Engine, which contacts the

Aggregation Interface (to delegate the execution of inputs) or

Metadata Interface of the partners. Results are pushed to the

clients (Active Query Subscribers) by the AQC; alternatively,

clients can poll for results (e.g., useful for Web browsers).

The implementation of the Preprocessor and XQuery lan-

guage extension for data dependencies is based on JavaCC, a

parser generator for Java. The EBNF syntax rules of XQuery

were extended with the modifications in Listing 2 and

transformed into the format of JavaCC. The parser generated

by JavaCC reads in the extended XQuery expressions and

creates an in-memory representation (abstract syntax tree),

which is used to extract the data dependencies.

VI. EVALUATION

To evaluate of the framework performance, we have set

up a comprehensive test environment in the Amazon Elastic

Compute Cloud (EC2). We launched an initial number of

15 aggregator nodes. During execution, the framework was

configured to deploy up to 5 additional instances, which

is achieved using the Web services based API of EC2.

Furthermore, we deployed the four scenario Web services

which provide randomized test data, and a gateway service

which acts as a central entry point for clients and selects

master aggregators for coordinating the query execution.

Figure 5 illustrates the results of the scenario execution.

The x-axis shows the time in seconds. The lowermost part

of the figure plots the interval in which the test StockPrice

and StockTrade services publish events to the platform. Over

time, various test clients deployed in a LAN outside of EC2

(average latency of 60ms) have requested and terminated

multiple (up to 125 simultaneous) executions of the scenario

aggregation in different variants (sub-plot Active Queries).

The number of Client Updates per ten seconds (up to

1500 around time point 900) is largely influenced by a

combination of event Interval (between 0.5 and 3 sec.) and

Active Queries, and also depends on the random test data

and the state of each active query.

Heap memory and CPU are shown in Figure 5 with the

range (min. to max.) and the trendline of the maximum over

all active aggregators. The platform heuristically distributes

the total load, based on CPU/memory usage, active aggrega-

tors and queries. Up to second 50, the queries are handled by

only two aggregators, because the aim is to bundle queries

for one event stream on the same aggregator. However, after

60 seconds, additional aggregators are involved to avoid per-

formance deterioration due to the increasing load. When ten

aggregators are active, the platform requests new machines

in addition to the 15 initial instances. The startup (roughly

40 sec.) includes EC2 overhead and the time to initialize

and add the aggregator to the registry. As the active queries

decrease, some aggregators become idle (e.g., time 400); the

configurable timeout for releasing unused resources should

be at least several minutes because aggregators may become

used again (e.g., time 400) and instances are billed per hour.

We observe that the load is stable and equally distributed

(small CPU and memory ranges) when the number of active

queries only slightly changes (e.g., between time 400-600

or 700-900); however, rapid changes in the active queries

cause load peaks, as event stores are initialized/terminated

and many objects need to be allocated/freed. Note that the

memory consumption grows particularly at the beginning,

because the nodes perform internal caching. A factor that

evidently raises memory management issues is the need to

store past events for evaluation of query windows. Fortu-

nately, MXQuery employs sophisticated algorithms to free

unused input buffer items, and we have run several complex

queries with up to 1 million events without memory leaks.

VII. RELATED WORK

The broad range of applications for event processing has

spurred the interest of both industry and research for this

topic [11]. In the context of service-oriented computing,

some work on bringing the power of CEP into service

environments has been carried out within the VRESCo

project [12]. However, so far eventing is mostly used for

monitoring (e.g., [13]), while WS-Aggregation uses the CEP

notion for service-based data aggregation. Related to the data

aggregation aspect is the Qizx XML database engine [14],

which provides an XQuery implementation supporting most

3.0 features. As WS-Aggregation, Qizx Server performs data

management tasks on demand, however, it lacks support

for complex event processing and WS-Eventing. Similarly,

the Active XML project [15] provides distributed data man-

agement and different styles of data integration. However,

ActiveXML follows a top-down approach, whereas WS-

Aggregation employs a bottom-up query model, in which

atomic inputs of an aggregation query are executed and

correlated to dynamically compose the final result. An-

other related problem area is distributed filtering of XML

documents, e.g., XFilter [16]. XFilter is an XPath based

approach to structural document filtering. A similar contri-

bution has been presented in [17], where nondeterministic

finite automata have been distributed over Pastry distributed

hashtables in order to filter XML. Both approaches have

a strong focus on high-performance XML filtering, while

WS-Aggregation provides a much larger feature set. Other

approaches to distributed event processing generally sacrifice

query expressiveness and Web standards for performance.

For instance, S4 [18] is a stream computing platform that

focuses on scalable and fault tolerant processing of massive

numbers of events. Our distributed query processing ap-

proach has also been influenced by the method in [19] which

proposes stratums as a way to achieve modularization and

distribution. Finally, our work in WS-Aggregation is related

to the field of Enterprise Information Integration (EII) [20].

VIII. CONCLUSION

We presented a platform for active event-based aggrega-

tion of Web data. The active query model utilizes XQuery

window clauses, and provides a language extension to model

data dependencies between event streams or other query

inputs. The system is designed for scalability and distributed

query execution, and allows easy deployment in the Cloud.

As part of our ongoing work, we are investigating advanced

techniques for optimized load distribution, bundling multi-

ple queries on shared event buffers, and further adoption

of Autonomic Computing [21] concepts to the platform’s

control loops. We also envision a light-weight abstraction of

XQuery clauses to account for often recurring CEP patterns.

ACKNOWLEDGMENTS

This research was funded by the European Community’s Seventh
Framework Programme under grant agreement 257483 (Indenica).

REFERENCES

[1] C. Schroth and T. Janner, “Web 2.0 and SOA: Converging
Concepts Enabling the Internet of Services,” IT Professional,
vol. 9, no. 3, 2007.

[2] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann,
“Service-Oriented Computing: State of the Art and Research
Challenges,” IEEE Computer, vol. 40, 2007.

[3] H. Taylor, A. Yochem, L. Phillips, and F. Martinez, Event-
Driven Architecture: How SOA Enables the Real-Time Enter-
prise, 1st ed. Addison-Wesley Professional, 2009.

[4] W3C, “Web Services Eventing (WS-Eventing),”
http://www.w3.org/Submission/WS-Eventing/, 2006.

[5] ——, “XQuery 1.0: An XML Query Language,”
http://www.w3.org/TR/xquery/, 2007.

[6] I. Botan, D. Kossmann, P. Fischer, T. Kraska, D. Florescu,
and R. Tamosevicius, “Extending XQuery with window func-
tions,” in VLDB, 2007.

[7] O. Etzion and P. Niblett, Event Processing in Action. Man-
ning Publications Co., 2010.

[8] W. Hummer, P. Leitner, and S. Dustdar, “WS-Aggregation:
Distributed Aggregation of Web Services Data,” in SAC, 2011.

[9] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman,
“Efficient Pattern Matching Over Event Streams,” in ACM
SIGMOD, 2008, pp. 147–160.

[10] P. Fischer, A. Garg, and K. S. Esmaili, “Extending XQuery
with a pattern matching facility,” in Int. XML Database
Symposium, 2010, pp. 48–57.

[11] D. C. Luckham, The Power of Events: An Introduction to
Complex Event Processing in Distributed Enterprise Systems.
Addison-Wesley, 2001.

[12] A. Michlmayr, F. Rosenberg, P. Leitner, and S. Dustdar,
“Advanced Event Processing and Notifications in Service
Runtime Environments,” in DEBS, 2008, pp. 115–125.

[13] E. Mulo, U. Zdun, and S. Dustdar, “Monitoring Web Service
Event Trails for Business Compliance,” in SOCA, 2009.

[14] Pixware, “Qizx, a fast XML database engine fully supporting
XQuery,” http://www.xmlmind.com/qizx/.

[15] S. Abiteboul, O. Benjelloun, and T. Milo, “The Active XML
project: an overview,” VLDB Journal, vol. 17, 2008.

[16] M. Altinel and M. J. Franklin, “Efficient Filtering of XML
Documents for Selective Dissemination of Information,” in
VLDB, 2000, pp. 53–64.

[17] I. Miliaraki and M. Koubarakis, “Distributed Structural and
Value XML Filtering,” in DEBS, 2010, pp. 2–13.

[18] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, “S4: Dis-
tributed Stream Computing Platform,” in ICDM Workshops,
2010, pp. 170–177.

[19] G. T. Lakshmanan, Y. G. Rabinovich, and O. Etzion, “A strati-
fied approach for supporting high throughput event processing
applications,” in DEBS, 2009, pp. 1–12.

[20] P. A. Bernstein and L. M. Haas, “Information integration in
the enterprise,” Communications of the ACM, vol. 51, 2008.

[21] J. Kephart and D. Chess, “The vision of autonomic comput-
ing,” IEEE Computer, vol. 36, no. 1, pp. 41 – 50, 2003.

