
Towards Efficient Measuring of Web Services API Coverage

Waldemar Hummer1, Orna Raz2, and Schahram Dustdar1

1 Distributed Systems Group 2 IBM Haifa Research Lab
Vienna University of Technology, Austria Haifa University Campus, Israel
{hummer,dustdar}@infosys.tuwien.ac.at ornar@il.ibm.com

ABSTRACT
We address the problem of interface-based test coverage for Web
services. We suggest an approach to analyze the Application Pro-
gramming Interface (API) of Web services, calculate the number of
possible input combinations and compare it to the number of actual
historical invocations. Such API coverage metrics are an indicator
to which extent the service has been used. Measuring API cover-
age is a key concern for assessing the significance of Validation and
Verification (V&V) techniques; on the other hand, API coverage
metrics can also yield interesting usage reports for a service-based
system in production use. The coverage metrics rely on the exact
specification of service interfaces, and we provide a mechanism to
specify restrictions for data types in the Java Web services frame-
work (JAX-WS). As full enumeration of all possible inputs is often
unfeasible, we allow the definition of custom coverage metrics by
means of domain partitioning: the user divides domain ranges into
subsets, and a coverage of 100% means that the logged invocations
contain at least one sample for each subset. Based on a prototype
implementation, we evaluate different aspects of our approach.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification

General Terms
Design, Management, Reliability, Verification

Keywords
API Coverage Metrics, Web Services, TeCoS Framework

1. INTRODUCTION
In recent years, the Service-Oriented Architecture [15] (SOA)

has become a widely adopted paradigm to create loosely coupled
distributed systems, and Web services1 are the most commonly
used technology to build SOA. One of the defining characteris-
tics of SOA is that the API (application programming interface)
1http://www.w3.org/2002/ws/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PESOS ’11 Hawaii, USA
Copyright 2011 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

of the available services is published to service consumers using
standard, machine-readable description languages. In the case of
Web services, this is achieved using the Web Services Description
Language (WSDL), paired with XML Schema Definitions (XSD)
of the service operations’ input and output messages.

Now that the WS-* stack builds a solid technological founda-
tion, traditional software engineering disciplines are being applied
to Web services. Among these disciplines is software testing in
terms of verification and validation (V&V) [6, 16]. An important
field in software testing is concerned with test coverage, i.e., the
extent to which an implemented system has been tested or used.
Classical code-based coverage metrics such as function, statement
or branch coverage require access to the source code, which is not
always possible for Web services. Therefore, testing methods for
Web services can usually only rely on the service’s API definition,
and hence focus on black-box testing of single services or testing
the composition of services [9]. A variety of professional commer-
cial services have evolved around Web services API testing2 3 4,
which clearly shows the practical relevance of this field.

API coverage is commonly expressed as the ratio of previously
performed, distinct invocations to the number of (theoretically) pos-
sible invocations as defined by the API [12]. In the simplest case,
single parameter values are varied and tested, e.g., with extreme
values, to verify functionality and detect failures. Since an iso-
lated analysis of parameters is often not sufficient, input combina-
tions need also be considered. Achieving an API coverage of (near)
100% in this case is generally subject to the problem of combinato-
rial explosion [16], because all input parameter combinations need
to be considered. Hence, it is desirable to restrict the value domain
of each parameter to its smallest possible size, in order to minimize
the total number of possible combinations. We see two possibilities
to achieve that. Firstly, Web service developers need to provide a
more precise specification of the valid operation parameters, e.g.,
in terms of string patterns or allowed numeric ranges. Secondly,
service testers may analyze these parameters to identify similari-
ties or combinations that seem less important to be tested. XSD al-
ready provides a solution for the first point in the form of facets, but
expressing such schema-based restrictions is surprisingly hard to
achieve in major Web service frameworks such as JAX-WS5 (Java
API for XML Web Services) or Microsoft’s .NET platform. Essen-
tially, developers cannot rely on the automated XSD generation, but
have to manually define the XML Schema that uses facet restric-
tions. Concerning the second point, there is still an evident lack for
API coverage frameworks with customizable coverage metrics that

2http://qualitylogic.com/tuneup/uploads/docfiles/web-api-testing.pdf
3http://www.crosschecknet.com/
4http://www.stylusstudio.com/ws_tester.html
5http://jcp.org/en/jsr/detail?id=224

can be easily plugged into (existing) service-based systems.
In our previous work, we developed coverage metrics for data-

centric dynamic service compositions [11]. Under the same um-
brella project named TeCoS (Test Coverage for Service-based sys-
tems) we now investigate coverage of service APIs. In this paper
we apply software testing concepts to Web services and present a
solution for measuring API coverage based on historical invoca-
tions. Our contribution is threefold: 1) we define API coverage
metrics and their instantiation for Web services, 2) we suggest the
implementation of XSD facets in the JAX-WS framework, and 3) we
present and assess our prototype in an experimental evaluation.

The remainder of this paper is structured as follows. In Section 2
we briefly introduce a scenario Web service to which the API cov-
erage metrics will be applied. Section 3 illustrates our approach
for exact Web service interface definition using Java annotations.
Section 4 discusses how different API coverage metrics can be de-
fined by SOA testers and developers, and in Section 5 we detail the
technique for measuring and calculating these metrics. Section 6
presents our prototype implementation, and the overall approach is
evaluated in Section 7. We then discuss related work in the field of
API coverage for service-oriented systems in Section 8, and Sec-
tion 9 concludes the paper with an outlook for future work.

2. SCENARIO
As an illustrative scenario for this paper we assume a Chart Web

service (CWS) that is capable of generating chart images from nu-
meric input values, similar to the Google Chart API6. For the sake
of brevity we consider only a simplified version of a service with
1 operation (generateChart) and 4 parameters (see Table 1). How-
ever, our approach is also applicable to more comprehensive APIs.

Service ChartService
Operation generateChart

Parameters:
Name XSD Type Constraints
type string type ∈ {′line′,′ bar′,′ pie′}
values list of integers values ∈ {−100, .., 100}n,

1 ≤ n ≤ 10
name string pattern "[a-z][a-z0-9]{0,4}"

config list of Configs -

Table 1: API of Scenario Service

The generateChart operation has a parameter type, whose do-
main is an enumeration of 3 values. The parameter values is a
list of integers, with a length between 1 and 10, and an integer
range of {−100, .., 100}. A short alphanumerical identifier (maxi-
mum length 5, starting with a letter) is provided using the parameter
name. Finally, various configuration settings in the form of key-
value pairs are passed to the operation using the parameter config.
The XSD complex type Config contains a sequence with a key
element and a list of one ore more value elements. More details
about the XML schema are given in Section 3.

3. EXACT DEFINITION OF WEB SERVICE
API WITH JAX-WS AND JAXB

To provide meaningful data for API coverage metrics, it is desir-
able to limit the domain range of the parameters of service opera-
tions. For example, the numeric values in our scenario are of type
integer. Considering the service is implemented in Java, each

6http://code.google.com/apis/chart/

value has a range of 32 bits (4.294.967.296 possibilities), while the
API requires the values to be between -100 and +100 (201 possibil-
ities). Note that constraining the domain range does not eliminate
the combinatorial explosion problem per se, but can lead to a sig-
nificantly smaller size of the parameters’ combined domain range.� �

1 @XmlRootElement
2 p u b l i c c l a s s G e n e r a t e C h a r t {
3 p u b l i c s t a t i c enum Char tType { l i n e , bar , p i e }
4 p u b l i c s t a t i c c l a s s Conf ig {
5 p u b l i c S t r i n g key ;
6 p u b l i c L i s t < S t r i n g > v a l u e ;
7 }
8 @XmlElement (r e q u i r e d = t r u e)
9 p u b l i c Char tType t y p e ;

10 @MinOccurs (1) @MaxOccurs (1 0)
11 @Facets (m i n I n c l u s i v e =−100, m a x I n c l u s i v e =100)
12 p u b l i c L i s t < I n t e g e r > v a l u e ;
13 @Facets (p a t t e r n =" [a−z] [a−z0−9]{0 ,4} ")
14 p u b l i c S t r i n g name ;
15 p u b l i c L i s t < Conf ig > c o n f i g ;
16 }
17

18 @WebService
19 p u b l i c c l a s s C h a r t S e r v i c e {
20 p u b l i c S t r i n g g e n e r a t e C h a r t (G e n e r a t e C h a r t r e q u e s t) {
21 / / g e n e r a t e c h a r t , r e t u r n i n Base64 f o r m a t
22 }
23 }� �

Listing 1: Implementation of Chart Web Service

We argue that an exact definition of the interfaces should be an inte-
gral part of engineering service-oriented systems to provide for rea-
sonable coverage analysis. The Web services framework is based
on XML messaging and allows to limit domain ranges of simple
types using XSD facets, and the range of elements with multiple oc-
currences using the XSD attributes minOccurs and maxOccurs.
An exact specification of parameters is also useful to enforce the in-
tegrity of invocations at runtime. Instead of validating parameters
manually in the implementation (e.g., checking for null values to
avoid a Java NullPointerException), the service execution
engine can automatically filter invalid parameters by matching in-
coming messages against the XSD using XML Schema validation.� �

1 <complexType name=" g e n e r a t e C h a r t ">
2 < s e q u e n c e >
3 < e l e m e n t name=" t y p e ">
4 < s impleType >
5 < r e s t r i c t i o n base =" x s : s t r i n g ">
6 < e n u m e r a t i o n v a l u e =" l i n e " / >
7 < e n u m e r a t i o n v a l u e =" b a r " / >
8 < e n u m e r a t i o n v a l u e =" p i e " / >
9 < / r e s t r i c t i o n >

10 < / s impleType >
11 < / e l e m e n t >
12 < e l e m e n t name=" v a l u e " minOccurs=" 1 " maxOccurs=" 10 ">
13 < s impleType >
14 < r e s t r i c t i o n base =" i n t ">
15 < m i n I n c l u s i v e v a l u e ="−100" / >
16 < m a x I n c l u s i v e v a l u e =" 100 " / >
17 < / r e s t r i c t i o n >
18 < / s impleType >
19 < / e l e m e n t >
20 < e l e m e n t name=" name ">
21 < s impleType >
22 < r e s t r i c t i o n base =" s t r i n g ">
23 < p a t t e r n v a l u e =" [a−z] [a−z0−9]{0 ,4} " / >
24 < / r e s t r i c t i o n >
25 < / s impleType >
26 < / e l e m e n t >
27 < e l e m e n t name=" c o n f i g " t y p e =" Conf ig " maxOccurs=" 99 " / >
28 < / s e q u e n c e >
29 < / complexType>
30 <complexType name=" Conf ig "> . . . < / complexType>� �

Listing 2: Generated XML Schema for GenerateChart

In the world of Java Web services (JAX-WS), JAXB (Java Archi-
tecture for XML Binding) is used to create a mapping between
XML elements and Java objects. Because JAXB currently sup-
ports neither XSD facets nor occurrence ranges, we suggest to ex-
tend JAXB with 3 new annotations: @Facets, @MinOccurs and
@MaxOccurs. The Java implementation of the Chart Web service
using the extended JAXB annotations is illustrated in Listing 1.

When deploying the Web service, the WSDL file is automati-
cally generated and contains the according XSD type for the class
GenerateChart, which is printed in Listing 2. Details concerning
the implementation are presented in Section 6. Based on this exact
description of the service API, we are now able to define metrics to
measure the coverage of the Chart Web service in Section 4.

4. CONFIGURABLE API COVERAGE MET-
RICS FOR WEB SERVICES

API coverage can be measured in various ways, and the ability to
define coverage metrics is vital for SOA testers and developers. For
instance, we could request that the Chart Web service needs to be
invoked at least with the extreme values for the parameter values
(i.e., -100 and +100) and with all possible chart types. Further-
more, it could be of interest to see a service invocation fail which
uses values beyond the range (e.g., -200). Apart from testing the
functionality of services, coverage metrics can also be used to gen-
erate usage reports of the running system, e.g., how often service
consumers have requested different chart types, or which configu-
ration parameters were frequently used.

Determining the aforementioned coverage metrics is supported
in our approach by means of customizable domain partitioning.
The basic idea is that the user specifies rules which divide the
range of a parameter domain d into (usually disjoint) subsets Pd =
{d1, .., dn}, d1 ∪ ..∪ dn = d. At runtime, service invocation mes-
sages are logged and matched against the specified rules to find out
which subset the message belongs to. A 100% coverage would then
indicate that at least one message has been logged for each subset.

We distinguish two methods to define domain partitioning rules:

1. Membership Test (MT): For each subset s in the partion Pd

of domain d, a membership function ms : d→ boolean de-
termines for every element of d whether it is a member of s.
That is, the user has to define n different membership func-
tions, and all n expressions need to be evaluated to determine
which subset(s) an element is member of.

2. Membership Identifier (MI): The user specifies 1) the total
number of subsets in the partition, |Pd|, and 2) a single mem-
bership function i : d → ID, which returns for each ele-
ment in the domain d a unique numeric identifier (ID ⊂ R,
|ID| = |Pd|) of the subset it is member of. Evidently, with
this approach the subsets d1, .., dn are automatically disjoint.

m1: x false
m2: x false
m3: x false
m4: x true

X

d1 d2 d3 d4 ... dn

✓

M
em

be
rs

hi
p

Te
st

M
em

be
rs

hi
p

Id
en

tif
ie

r

  

X

d1 d2 d3 d4 ... dn i: x 4

...

Figure 1: Domain Partitioning Methods

The two methods are illustrated in Figure 1. The MT method
requires more function evaluations, but it is more expressive and

supports non-disjoint subsets (i.e., each element may be member in
more than one subset). For both methods, the expressions are de-
fined using the syntax of the Groovy7 scripting language for Java.
Seven exemplary domain partitions are illustrated in Table 2. The
predefined variable x references the target value for which the func-
tion expression should be evaluated (e.g., the parameter values
introduced in Section 2), and MIN/MAX are predefined variables
for the minimum/maximum value of the domain of x. It is im-
portant to mention that domain partitions may apply to different
targets: 1) the numerical occurrence count (e.g., x∈{1, .., 10} for
values), and 2) the value (text content) of XML elements (e.g.,
x∈{−100, .., 100} for values). Hence, the variable x refers to ei-
ther of the two, depending on the target for which the partition has
been specified. The examples in Table 2 contain numerical parti-
tions for extreme values (t), negative/zero/positive values (n, z),
blocks of values (b) or values that are out of the valid range (o),
as well as a partition to select the type pie (p) and an “ignore”
partition (returns true on all membership tests). Additionally, we
provide the predefined default partition (d) which defines no cus-
tom subsets but reflects the value domains as specified in the XSD.

ID Name Type |Pd| m1(x) m2(x) m3(x) i(x)
i ignore MT 1 true - - -
n negZeroPos MT 3 x<0 x==0 x>0 -
z zero MT 1 x==0 - - -
t extreme MT 2 x==MIN x==MAX - -
b blocksOf10 MI int(abs(MAX - - - (int)

-MIN)/10)+1 x/10

o outOfRange MT 1 x<MIN|| - - -
x>MAX

p pieChart MT 1 x==’pie’ - - -
d default predefined, based on XSD of the Web service

Table 2: User-Defined Domain Partitions

5. EFFICIENT COVERAGE COMPUTATION
In the following we discuss how Web service API coverage is

computed taking into consideration the configurable coverage met-
rics described in Section 4. A prerequisite is that all invocations
performed in the service-based system are accessible. Details on
how our implementation intercepts and logs the invocations mes-
sages are given later in Section 6. For now, we assume that the
XML messages are stored in tables of a relational database manage-
ment system (DBMS). To enable detailed queries on their structure
and content, the XML messages are parsed and stored in a struc-
tured format as depicted in Figure 2. This figure uses UML notation
and the model maps directly to the persistence (database) level.

The base class is XMLNode, which models nodes in an XML
structure. The type (simple/complex element, attribute, text, . . .)
is distinguished by the attribute type, and the value (text con-
tent) may be empty for complex type elements. Additionally, the
complete XML source of the root elements is stored in xml for
performance optimizations (see Section 7). The actual XSD type
of elements is stored separately, and is left out in the figure. The
combination of name and value is unique, i.e., every encoun-
tered XML is only stored once and there are no redundancies. In
turn this means that the parent-child relationship has many-to-many
cardinality: an element may have multiple children and each ele-
ment may be the child of more than one parent. In addition to
the parent-child association, we store the list of all descendants of
an invocation input message m using the class XMLDescendant.
7http://groovy.codehaus.org/

XMLNode

+ type
+ name
+ value
+ xml

XMLDescendant

+ XPath

*

DomainMembership

+ subsetID

DomainPartition

+ name
+ type: {MT, MI}
+ subsetsCount
+ idExpression
+ isForOccurrences
+ isForValues

DomainSubset

+ testExpression

*

children

*

* *

Invocation

+ isFailed

*

input

. . .

omitted:
Model Elements
of Web Services

(Messages,
Operations,

Endpoints, ...)
and

XML Schema

unique

*

*

Figure 2: Domain Model for API Coverage with Custom Do-
main Partitioning

The position within the element tree rooted in m is specified as an
XPath [18] expression. The class DomainPartition describes
a domain partition, including the name, type and number of subsets
(subsetsCount). Depending on the type (MT or MI), the sub-
sets are either expressed using several membership test expressions
(testExpression), or using a single membership ID expres-
sion (idExpression). The mapping between a node and the
partition subset it belongs to is stored in DomainMembership.

<generateChart>
 <type>bar</type>
 <value>10</value>
 <value>25</value>
 <value>–13</value>
 <value>36</value>
 <value>0</value>
 <value>–13</value>
 <value>12</value>
 <name>ch1</name>
 <config>
 <key>zoom</key>
 <value>1.2</value>
 </config>
</generateChart>

select distinct (…) as gt, (...) as gv_o, (…) as gv_1, (…) as gv_2, ...,
(…) as gv_7, (…) as gn, (…) as gc_o, (…) as gck_1, (…) as gck_2,
(…) as gcv_o, (…) as gcv_1, (…) as gcv_2, (…) as gcv_3 from ...

<generateChart>
 <type>pie</type>
 <value>34</value>
 <value>12</value>
 <value>29</value>
 <value>25</value>
 <name>ch2</name>
 <config>
 <key>zoom</key>
 <value>1.5</value>
 </config><config>
 <key>titles</key>
 <value>x=foo</value>
 <value>y=bar</value>
 </config>
</generateChart>

Domain
Subset
i.1
e.2
n.3
n.3
n.1
n.3
n.2
n.1
n.3
i.1
s.1
i.1
i.1

i.1
e.3
n.3
n.3
n.3
n.3
i.1
s.2
i.1
i.1

i.1
i.1
i.1

7 = maximum occurr. of
/generateChart/value

3 = maximum occurrences of
/generateChart/config/value

 2 7 3 3 1 3 2 1 3 1 1 1 1 1 null null null

 3 4 3 3 3 3 null null null 1 2 1 1 3 1 1 1

SQL Result

e.X … enumeration values i.1 ignore (one single subset)
n.X … numeric (neg./zero/pos.) s.X sequence length

Figure 3: SQL-Based Querying of Distinct Invocations

Essentially, API coverage expresses the ratio of previously per-
formed, distinct invocations (DI) to the number of possible invoca-
tions (PI). While PI can be calculated statically based on the XSD
schema of the service’s input messages, determining DI requires to
query the database for logged invocations. Since the log database
may become very large, our goal is to outsource the computation of
DI to the DBMS. We hence formulate a single SQL query, which
can be optimized and efficiently executed by the DBMS.

Figure 3 illustrates the SQL-based querying of distinct invoca-
tions, based on two invocations of the generateChart operation.
We specify that type should have one subset for each enumera-
tion value (abbreviated e.1, e.2, e.3), the numeric values are
divided into negative/zero/positive (n.1, n.2, n.3), the number
of element occurrences for values and config are measured us-
ing the MI partitioning method (s.X, where X is the length of the
sequence), and the actual keys and values all fall into one single
partition (i.1) and are hence “ignored”, i.e., have no effect on the
computation of DI. The depicted SQL select clause joins the stored
invocations with their calculated domain subset membership and
computes all distinct combinations. The core idea of our method
is to flatten the XML tree and to use a sub-query for each possible
value that can occur in this tree. We abbreviate an element’s XPath
as the concatenation of the first characters of its ancestors’ names
(e.g., gcv for /generateChart/config/value). The total
multiplicity of elements is abbreviated with the suffix “_o”, e.g.,
gcv_o is 1 in the first example invocation and 3 in the second in-
vocation. The single values of these elements with multiple occur-
rences are referenced by their index, e.g., gcv_1, gcv_2 etc. We
hence first determine for each descendant the maximum number of
occurrences recorded so far. For each relevant value we then con-
struct an SQL sub-query and generate the total query string. This
means that the SQL result (distinct invocations) contains null val-
ues for those elements with less than the maximum occurrences.

For now, we assume that the ordering plays a role and work
mainly on XSD sequences, because they are arguably more rele-
vant in the Java Web services world than the order indicators all
and choice. However, extending the approach is straightforward.

generateChart
 type
 value
 name
 config
 key
 value

PIa
∞
3

1023

45M
∞
∞
∞

PIo
1
1
10
1

100
1
∞

based on Schema

PIv
-
3

201
45M

-
∞
∞

PIa
 265716

3
 88572

1
1
1
1

PIo
1
1

10
1
1
1
1

PIv
-
3
3
1
-
1
1

based on Partitioning

DIa
2
2
2
1
1
1
1

Cvg%
 0.0008

 66.667

 0.0023

100
100
100
100

DPv
i
d
n
i
i
i
i

DPo
-
-
d
-
i
-
i

DIo
1
1
2
1
1
1
1

DIv
-
2
3
1
-
1
1

Figure 4: Calculation of Possible Invocations

Figure 4 illustrates the calculation of the number of possible in-
vocations and the percental API coverage (Cvg%), based on our
scenario and the two logged invocations depicted in Figure 3. The
figure contains a table which lists the following values for every
XSD (sub-)element el of the invocation message generateChart:

1. the user-defined domain partition to be used for evaluation of
el concerning its values (DPv) and occurrences (DPo),

2. all possible invocations (PIa) with regards to the value of el
(PIv) and the number of occurrences of el (PIo),

3. the actually measured distinct invocations (DIa) of el, when
evaluating partition DPv on its values (DIv) and partition
DPo on its number of occurrences (DIo),

4. the overall coverage (Cvg%) of el as the percental ratio of
distinct invocations (DIa) to possible invocations (PIa). The
coverage of the root element generateChart can be seen
as the API coverage of the operation with the same name.

Concerning point 1, DPv and DPo can be arbitrarily chosen for
each XML descendant of the input message schema, which allows
for detailed coverage analysis on a per-element basis. Note that
DPo is not available for elements that have a fixed occurrence count
within their parent element (e.g., elements type and name).

For point 2, PIv can be inferred from the domain partition DPv

and is generally equal to the number of subsets in this partition.
PIo expresses the number of possible occurrences of an element,
and is subject to partitioning with DPo. Besides custom domain
partitions, our approach also supports computing the number of
possible invocations directly from the XSD definitions (illustrated
in Figure 4). Usually this number is much higher, e.g., the regular
expression of name specifies 44917730 (≈45M) possibilities (see
Section 6 for details about how this is determined). The total num-
ber of possibilities PIa is a combination of PIv and PIo. Consider
the value element and its assigned partition n.X (negative-zero-
positive) which has 3 subsets (PIv=3). As specified in the XSD, this
element may occur between 1 and 10 times, which means that the
total number of possible instantiations is 31 + 32 + . . . + 310. We
observe that this term can be calculated by means of a geometric
series, as printed in Equation 1.

nX
k=m

rk =
rn+1 − rm

r − 1
(1)

In our example, m = 1, n = 10, r = 3, the value of PIa hence
amounts to 88572 possible combinations. The calculation of PIa
for complex XSD types (e.g., generateChart, config) is dif-
ferent, because all combinations of the contained sub-elements need
to be taken into account. PIa of a complex type is therefore defined
as the product of the PIa values of all its direct child elements.
For instance, generateChart has a total of 265716 possibili-
ties (3∗88572∗1∗1) when we apply our example domain partition-
ing. Note that it is in fact possible that a complex type also con-
tains a text content which is not embraced by another element (e.g.,
<a>text), for instance resulting from an XSD any el-
ement. Our approach supports such constructs, since in terms of
API coverage we can treat the text node like a simple type element.

Point 3 of the above list concerns the number of distinct invo-
cations, DIa, the calculation of which has been described earlier
in this section. Additionally, we calculate DIv and DIo with two
modified versions of the SQL query in Figure 3. In our example
for the element value, DIv is 3 because values from all 3 domain
subsets (negative, zero, positive) have been logged, and DIo is 2
because we logged invocations with 2 different occurrence counts
of the value element (7 and 4).

Having computed all required values, the API coverage is calcu-
lated as DIa/PIa. The example coverage of 0.0008% is very low,
which is hardly surprising considering the fact that we only logged
2 invocations for illustrative purposes. The overall coverage in-
creases considerably when either more invocations are stored in the
DB or other (more restricting) domain partitions are chosen.

6. IMPLEMENTATION
In this section we discuss the implementation of the presented

concepts. The overview of the TeCoS framework architecture in
Figure 5 shows a SOA under test consisting of Web services, which
are invoked by a business process and end users. The services
are deployed in a container, whose responsibility is to transpar-
ently log incoming invocations to the Tracing Service (TS). To
that end, we provide an implementation of SOAPHandler which
can be easily plugged into the JAX-WS handler chain. The TS
makes use of a Service Registry and logs all messages to the Invoca-
tion Database (InvDB), which also incorporates a simplified XML
Schema Database. MySQL8 (version 5.1) is used as the DBMS.
The Coverage Calculator (CC) operates on the InvDB and contains

8http://www.mysql.com/

the core business logic for computing API coverage metrics. Fur-
thermore, the CC manages the user-defined domain partitions. The
TeCoS framework also defines coverage metrics for WS-BPEL ser-
vice compositions, which we have presented in earlier work [11].
We further plan to extend our notion of API coverage from param-
eter combinations of a single operation to invocation sequences.

Log Invocations

Publish Events

Invoke

Tracing
Service

Web User
Interface

Te
C

o
S

 F
ra

m
ew

o
rk

Business Process

. . .S
O

A
 U

n
d

er
 T

es
t

Service
End User

Deployed Services

Invocation
Database

Service
Registry

Web Service 1

Web Service 2

Web Service 3

. . .

Coverage
Calculator

Schema
Database

Use

S
er

vi
ce

 C
on

ta
in

er

W
S

-B
P

E
L

E
ng

in
e

Figure 5: TeCoS Framework Architecture

To allow for a graphical feedback and experimental exploration
of coverage metrics, we have implemented a graphical Web user
interface (UI) using Java Server Faces (JSF) technology. The UI
allows the configuration of user-defined partitions, visualizes the
information stored in the Service Registry, and depicts invocations
and API coverage data. A screenshot of the Web UI, showing the
coverage results of our test scenario, is depicted in Figure 6. The
leftmost table column lists the element structure together with the
applicable facets. By clicking on the name of an element, the user
receives additional information such as the actual occurrences and
values that were logged for this element. We are currently also
working on extended coverage reports with graphical charts.

Figure 6: Screenshot of Web User Interface

As part of its extension mechanism, the JAX-WS reference im-
plementation9 (RI) employs a means to implement special-purpose
9http://jax-ws.java.net/

interceptors for custom WSDL generation (e.g., WS-Addressing
headers). However, JAX-WS RI does not allow custom schema
generation based on JAXB. In 2007, a JIRA entry10 with prior-
ity “Major” was created for this issue, but as of January 2011 the
status of this feature request is still “Open”. We therefore investi-
gated the source code of JAXB RI to hook into the schema genera-
tion process. Our modification requires 3 new annotation interfaces
(used in Listing 1), 1 new class (XsdFacets) and 3 additional
lines of code in the class com.sun.xml.bind.v2.XmlSchema-
Generator (lines with comments on right margin in Listing 3).
We have initiated an open discussion on the JAXB dev mailing list
about whether our solution will be merged into JAXB RI.� �

1 p r i v a t e Tree h a n d l e E l e m e n t P r o p (
2 f i n a l E l e m e n t P r o p e r t y I n f o <T , C> ep) {
3 . . .
4 i f (! XsdFace t s . h a s F a c e t s (t , e)) / / 1
5 w r i t e T y p e R e f (e , t , " t y p e ") ;
6 . . .
7 i f (! XsdFace t s . w r i t e O c c u r s (t , e , i s O p t i o n a l , r e p e a t e d)) / / 2
8 w r i t e O c c u r s (e , i s O p t i o n a l , r e p e a t e d) ;
9 X s d F a c e t s G e n e r a t o r . a d d F a c e t s (t , e) ; / / 3

10 . . .
11 }� �

Listing 3: Modifications of XmlSchemaGenerator in JAXB RI

One of the key prerequisites for determining the number of possi-
ble invocations is the analysis of regular expressions (regex). Usu-
ally, regex engines allow only to match a given string against a
regex string, but have no support for generating all strings that
match the regex. Our current implementation is hence based on
a small (yet powerful) Python script11 by Paul McGuire, which can
determine the number of all possible matching strings for a regex.

7. DISCUSSION AND EVALUATION
To evaluate different aspects of our approach, we have imple-

mented the test service presented in Section 2 and generated 10000
invocations with randomized parameters (concerning both the length
of sequences and the values of simple types). Figure 7 depicts the
measured results when applying the domain partitions of Figure 4:
number of distinct invocations (DI), time required to calculate this
number (CT), and XML Elements (XE) stored in the database. As
described in Section 5, only unique XML elements are stored in the
database; e.g., if two subsequent invocations i1 and i2 use a value
parameter with value 5, a new database entry is inserted for i1, but
the stored invocation for i2 then points to the existing row. This
means that more queries are required when we store an invocation
message, with the advantage that the DB is free of duplicates. We
can observe the memory effect in the figure: the minimum number
of XML elements per invocation is 3 (1 type, 1 value, 1 name),
but for 10000 invocations only 10209 distinct elements were saved.

Another interesting aspect is the trend of DI with increasing
number of total random invocations. We calculate DI with the par-
tition settings and the query depicted in Figure 3. Whereas DI rises
quite sharply in the initial phase (635 out of 1000, 1074 out of
2000), the curve flattens out when more invocations are recorded
(∆DI between 9000 and 10000 was 160). The reason for this is
clearly that an increasing number of stored messages decreases the
possibility that a new distinct invocation arrives. Finally, the figure
indicates the time required to calculate the coverage metrics with
the aid of the DBMS. The time for 10000 stored invocations is still
feasible (< 6 seconds) and shows that the approach generally scales

10http://java.net/jira/browse/JAXB-392
11http://pyparsing.wikispaces.com/file/view/invRegex.py

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

V
al

ue

Number of Invocations

Calculation Time (ms)
Distinct Invocations

XML Elements in DB

Figure 7: Performance Evaluation Results

well. However, for very large systems with millions of records the
current solution poses limitations for real-time usage. In our fu-
ture work, we are therefore investigating techniques for caching
and storing/calculating coverage data in a distributed manner.

For simple processing of XML data, MySQL provides the func-
tion ExtractValue to access node values in XML markup via
XPath expressions. To evaluate the use of this function, we have
stored the complete XML source of invocation messages in the col-
umn xml of table XMLNode (cf. Figure 2). This allows to execute
the coverage sub-queries (cf. Figure 3) directly on the XML source,
e.g., select ExtractValue(xml,‘//type’) from XMLNode

... Such XPath-based queries show very good performance, even
with several thousand rows in the table, and in some cases an im-
provement could be achieved over the alternative approach of join-
ing XMLDescendant with the XMLNode table. The queries us-
ing ExtractValue are especially profitable when the stored in-
vocations differ in content, but the tradeoff is that always the com-
plete XML is stored, which results in redundant and duplicate data.

Example gt_v gv_o gv_v gn_v gc_o gck_v gcv_o gcv_v
Metrics User-Specified Partitions

1 Usage Counter d d d d d d d d
2 Extreme Values i t t i i i i i
3 Chart Types d i i i i i i i
4 Blocks of 10 i i b i i i i i
5 Pie Charts p d d d d d d d
6 Out of Range i i o i i i i i
7 Config. Settings i i i i d i i i
8 Config. Keys i i i i i d i i
9 Values of De- p i d i z i i i

fault Pie Charts

Table 3: Partition Settings for Example Coverage Metrics

The introductory paragraph of section 4 mentions that TeCoS
allows various coverage metrics and usage reports. To provide a
complete taxonomy of supported metrics is out of the scope of this
paper, but we evaluate this claim by giving a number of concrete
examples in Table 3. The column titles are analogous to those used
in Figure 3 and the partition IDs refer back to Table 2. In the default
setting (#1) all historical (distinct) invocations are computed, which
provides a general usage counter of the chart service. To analyze
specific parameters, the domain partitions of all remaining elements
are set to i (ignore). For instance, example #2 calculates the cover-
age of the extreme values (concerning both the occurrence and the
numeric value) of the value parameter, and metric #3 determines
which chart types are covered. Conversely, if a subset of parameters
should be fixed, all remaining parameter partitions can be set to d:
e.g., #5 represents the partition settings to determine all pie charts
requests. Metric #9 is a more advanced example which shows the
potential of combining different parameter partitions. It calculates

the chart values (gv_v=d) of all pie chart requests (gt_v=p) with
default settings, i.e., no additional user configurations (gc_o=z).

8. RELATED WORK
In the following we discuss related work in the area of API test

coverage and its application to service-oriented systems.
Xu et al. [19] present an approach for testing Web services based

on the operations’ XML schema. The paper defines a formal model
for XSD, and defines operators for schema “perturbation”, i.e., for
creating XML messages that are invalid with respect to the schema.
These operators, which include insertion, deletion and changing
of nodes, are the basis for test coverage criteria. Their approach
is complementary to ours, as it focuses on generating invalid test
cases, whereas we perform logging and analysis of performed invo-
cations, which serves both as a reporting tool for service providers
and as a means to enforce coverage goals for service testers.

Apart from interface-based Web service testing, different meth-
ods have been proposed for, e.g., group testing [17], collaborative
contract-based testing [2], and testing of data-centric service com-
positions [14, 11]. Further coverage criteria have been defined for
operation/message combinations [5], and execution paths in pro-
cesses defined with the Web Services Business Process Execution
Language (WS-BPEL) [10, 13]. Baresi et al. [3] presented vari-
ous techniques for Web services testing and verification, including
monitoring, modeling, and reliability analysis.

A certain similarity can be seen with the approach of Bertoloni
et al. [7] who also utilize XML Schema based partitioning. A ma-
jor difference is that only the partitions defined by the schema are
considered, whereas we support customizable partitioning of do-
main ranges. Furthermore, their approach aims at test data genera-
tion, which is not the primary concern in this paper. Under the term
“whitening” of SOA testing [4], Bertoloni et al. have suggested that
testable services should expose additional metadata in the form of
coverage data. Similarly, we argue that providing an exact interface
definition is a key requirement for meaningful API coverage testing
and analysis. Conversely to Bertoloni et al., we do not require the
service under test to measure the coverage itself, but merely to log
its invocations to the TeCoS tracing service.

Also Bai et al. have studied automatic test case generation based
on WSDL documents and the XML schema exposed therein [1].
Their approach mostly concentrates on random generation based
on the interface and dependencies (message flows) of operations,
but does not define in detail how coverage metrics are calculated.

Domain partitioning for API testing has been proposed previ-
ously, e.g., in the form of the Category-Partition test design pattern
by Binder [8]. Jorgensen and Whittaker [12] do not differentiate
between methods for defining partitions, whereas we provide two
alternative ways (MT and MI) and additionally support default par-
titioning that is automatically derived from WSDL documents.

9. CONCLUSION
We presented an efficient, novel solution to measure API cov-

erage of service-based systems implemented with Web services.
User-specified domain partitioning allows for the definition of cus-
tomizable and reusable API coverage metrics. Our end-to-end frame-
work TeCoS can be easily plugged into existing service execution
engines to log service invocations, calculate coverage data and ren-
der the results in a Web UI. Furthermore, we suggest to enhance
JAX-WS and JAXB with support for XSD facets, and provide a
solution that integrates seamlessly with the JAXB RI. This user-
friendly extension greatly reduces the required development effort
and is a step towards meaningful coverage data and schema-based

validation of invocation parameters. The performance and scala-
bility has been successfully evaluated in our experimentation. As
part of our ongoing work, we plan to extend the scope of API cov-
erage to invocation sequences and semantic input description, as
well as to enhance the TeCoS framework with distributed storage
and computation of coverage data.

10. REFERENCES
[1] X. Bai, W. Dong, W.-T. Tsai, and Y. Chen. WSDL-based au-

tomatic test case generation for Web services testing. In Int.
Workshop Service-Oriented Syst. Eng., pages 215–220, 2005.

[2] X. Bai, Y. Wang, G. Dai, W.-T. Tsai, and Y. Chen. A frame-
work for contract-based collaborative verification and vali-
dation of web services. In 10th Int. Conf. on Component-
Based Software Engineering, pages 258–273, 2007.

[3] L. Baresi and E. D. Nitto. Test and Analysis of Web Services.
Springer-Verlag New York, Inc., 2007.

[4] C. Bartolini, A. Bertolino, S. Elbaum, and E. Marchetti.
Whitening SOA testing. In ESEC/SIGSOFT FSE ’09, pages
161–170, 2009.

[5] C. Bartolini, A. Bertolino, E. Marchetti, and A. Polini.
WS-TAXI: A WSDL-based Testing Tool for Web Services.
In ICST 2009, pages 326–335, 2009.

[6] B. Beizer. Software testing techniques (2nd ed.). Van
Nostrand Reinhold Co., New York, USA, 1990.

[7] A. Bertolino, J. Gao, E. Marchetti, and A. Polini. Automatic
Test Data Generation for XML Schema-based Partition
Testing. In Int. Workshop Automation of Software Test, 2007.

[8] R. V. Binder. Testing object-oriented systems: models,
patterns, and tools. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1999.

[9] G. Canfora and M. Di Penta. Testing Services and
Service-Centric Systems: Challenges and Opportunities. IT
Professional, 8(2):10–17, 2006.

[10] J. Garcïa-fanjul, J. Tuya, and C. D. L. Riva. Generating Test
Cases Specifications for BPEL Compositions of Web
Services Using SPIN. In WS-MaTe 2006, pages 83–94, 2006.

[11] W. Hummer, O. Raz, O. Shehory, P. Leitner, and S. Dustdar.
Test coverage of data-centric dynamic compositions in
service-based systems. In 4th IEEE International Conference
on Software Testing, Verification and Validation, 2011.

[12] A. Jorgensen and J. Whittaker. An API Testing Method. In
STAREAST Conf. on Softw. Testing Analysis & Review, 2000.

[13] D. Lübke, L. Singer, and A. Salnikow. Calculating BPEL
Test Coverage Through Instrumentation. In Int. Workshop on
Automation of Software Test, pages 115–122, 2009.

[14] L. Mei, W. Chan, and T. Tse. Data flow testing of
service-oriented workflow applications. In ICSE, 2008.

[15] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann.
Service-Oriented Computing: State of the Art and Research
Challenges. Computer, 40(11):38–45, 2007.

[16] J. O. Paul Ammann. Introduction to Software Testing.
Cambridge University Press, 2008.

[17] W. T. Tsai, Y. Chen, R. Paul, N. Liao, and H. Huang. Coop-
erative and Group Testing in Verification of Dynamic Com-
posite Web Services. In COMPSAC, pages 170–173, 2004.

[18] World Wide Web Consortium (W3C). XML Path Language
(XPath). http://www.w3.org/TR/xpath/, 1999.

[19] W. Xu, J. Offutt, and J. Luo. Testing Web Services by XML
Perturbation. In 16th IEEE Int. Symposium on Software
Reliability Engineering, pages 257–266, 2005.

