
Simulating Autonomic SLA Enactment in
Clouds using Case Based Reasoning

Michael Maurer1, Ivona Brandic1, and Rizos Sakellariou2

1 Vienna University of Technology, Distributed Systems Group, Argentinierstraße 8,
1040 Vienna, Austria, {maurer,ivona}@infosys.tuwien.ac.at

2 University of Manchester, School of Computer Science, U.K., rizos@cs.man.ac.uk

Abstract. With the emergence of Cloud Computing resources of phys-
ical machines have to be allocated to virtual machines (VMs) in an on-
demand way. However, the efficient allocation of resources like memory,
storage or bandwidth to a VM is not a trivial task. On the one hand,
the Service Level Agreement (SLA) that defines QoS goals for arbitrary
parameters between the Cloud provider and the customer should not
be violated. On the other hand, the Cloud providers aim to maximize
their profit, where optimizing resource usage is an important part. In
this paper we develop a simulation engine that mimics the control cycle
of an autonomic manager to evaluate different knowledge management
techniques (KM) feasible for efficient resource management and SLA
attainment. We especially focus on the use of Case Based Reasoning
(CBR) for KM and decision-making. We discuss its suitability for effi-
ciently governing on-demand resource allocation in Cloud infrastructures
by evaluating it with the simulation engine.

Keywords: Cloud Computing, Autonomic Computing, Service Level
Agreement, Case Based Reasoning, Knowledge Management, Resource
Management.

1 Introduction

The emergence of Cloud Computing – a computing paradigm that provides com-
puting power as a utility – raises the question of dynamically allocating resources
in an on-demand way. The resources that Cloud Computing providers should al-
locate for the customers’ applications can be inferred from so-called Service Level
Agreements (SLAs). SLAs contain Service Level Objectives (SLOs) that represent
Quality of Service (QoS) goals, e.g., storage ≥ 1000GB, bandwidth ≥ 10Mbit/s
or response time ≤ 2s, and penalties that have to be paid to the customer if
these goals are violated. Consequently, on the one hand Cloud providers face
the question of allocating enough resources for every application. On the other
hand, however, they have to use resources as efficiently as possible: one should
only allocate what is really needed.

This work is embedded in the Foundations of Self-governing ICT infrastruc-
ture (FoSII) project [3]. The FoSII project aims at developing an infrastructure

for autonomic SLA management and enforcement. Besides the already imple-
mented LoM2HiS framework [12] that takes care of monitoring the state of
the Cloud infrastructure and its applications, the knowledge management (KM)
system presented in this paper represents another building block of the FoSII
infrastructure. [11] proposes an approach to manage Cloud infrastructures by
means of Autonomic Computing, which in a control loop monitors (M) Cloud
parameters, analyzes (A) them, plans (P) actions and executes (E) them; the
full cycle is known as MAPE [15]. According to [14] a MAPE-K loop stores
knowledge (K) required for decision-making in a knowledge base (KB) that is
accessed by the individual phases. This paper addresses the research question of
finding a suitable KM system (i.e., a technique of how stored information should
be used) and determining how it interacts with the other phases for dynamically
and efficiently allocating resources.

In [19] we have argued for the use of Case Based Reasoning (CBR) as KM
technique, because it offers a natural translation of Cloud status information
into formal knowledge representation and an easy integration with the MAPE
phases. Moreover, it promises to be scalable (as opposed to e.g., Situation Cal-
culus) and easily configurable (as opposed to rule-based systems). Related work
has not observed the usage of CBR nor has it evaluated different KM techniques
in Cloud environments. Yet, evaluating the KM system on a real environment is
not a trivial task, because Cloud infrastructures usually are huge data centers
consisting of hundreds of PMs and even more VMs. Thus, a first step is to simu-
late the impact of autonomic management decisions on the Cloud infrastructure
to determine the performance of the KM decisions.

The main contribution of this paper is the formulation of a CBR-based ap-
proach for the decision making in the MAPE cycle (in particular the analysis
and planning phases) of an autonomic SLA enactment environment in Clouds.
Furthermore, we design, implement and evaluate a generic simulation engine for
the evaluation of CBR. With proper interfaces the engine can be used for the
evaluation of other decision making techniques. Finally, we carry out an initial
evaluation of the approach to assess the suitability of CBR for resource-efficient
SLA management.

The remainder of this paper is organized as follows: Section 2 gives a brief
overview of related work. Section 3 describes the Cloud Infrastructure we are
simulating and explains the autonomic management system of FosII. While Sec-
tion 4 explains the idea of the simulation engine, Section 5 provides a detailed
view of its implementation and details of the adaptation of CBR. Finally, we
present the evaluation of CBR as KM technique by the simulation engine in
Section 6 and conclude in Section 7.

2 Related Work

Firstly, there has been some considerable work on optimizing resource usage
while keeping QoS goals. These papers, however, concentrate on clusters, which
usually lack the ability to provision computing power on demand and only deal

with heterogenous resources [17], or only deal with one or two specific SLA pa-
rameters. Petrucci [21] or Bichler [10] investigate one general resource constraint
and Khanna [7] only focuses on response time and throughput. A quite similar
approach to our concept is provided by the Sandpiper framework [22], which
offers black-box and gray-box resource management for VMs. Contrary to our
approach, though, it plans reactions just after violations have occurred. Addi-
tionally, none of the presented papers uses a KB for recording past action and
learning.

Secondly, there has been work on KM of SLAs, especially rule-based systems.
Paschke [20] et al. look into a rule based approach in combination with the logical
formalism ContractLog. It specifies rules to trigger after a violation has occurred,
but it does not deal with avoidance of SLA violations. Others inspected the use
of ontologies as KBs only at a conceptual level. [18] viewed the system in four
layers (i.e., business, system, network and device) and broke down the SLA into
relevant information for each layer, which had the responsibility of allocating
required resources. Again, no details on how to achieve this have been given.
Bahati et al. [9] also use policies, i.e., rules, to achieve autonomic management.
As in the other papers, this work deals with only one SLA parameter and a quite
limited set of actions, and with violations and not with the avoidance thereof.
Our KM system allows to choose any arbitrary number of parameters that can
be adjusted on a VM.

Thirdly, compared to other SLA management projects like SLA@SOI [6], the
FoSII project in general is more specific on Cloud Computing aspects like deploy-
ment, monitoring of resources and their translation into high level SLAs instead
of just working on high-level SLAs in general service-oriented architectures.

3 FoSII Overview

In this section we describe the basic design of the Cloud infrastructure being
simulated and the autonomic management cycle used in the FoSII project.

3.1 FoSII’s Autonomic Cycle and Monitoring

As shown in Figure 1 the FoSII infrastructure is used to manage the whole life-
cycle of self-adaptable Cloud services [11]. The management is governed by a
MAPE cycle, whose components will be explained in this subsection. As part
of the Monitor phase of the MAPE cycle, the host monitor sensors continuously
monitor the infrastructure resource metrics and provide the autonomic manager
with the current resource status. The run-time monitor sensors sense SLA vio-
lation threats based on predefined threat thresholds. Threat thresholds (TTs) as
explained in [5] are more restrictive thresholds than the SLO values. The gener-
ation of TTs is far from trivial and should be retrieved and updated by the KM
system, and only at the beginning be configured manually. Violation threats are
then forwarded to the KB together with monitoring information that represents
a current snapshot of the system.

Planning

Analysis
Monitoring

Execution

In
fr

a
st

ru
ct

u
re

 R
e
so

u
rc

e
s

Actuator

Sensor
RT

Sensor
Host

Knowledge .
.
.

A
p
p
.
1

A
p
p
.
n

Control loop

Knowledge access

Input sensor values

Output sensor values

Run-time

Host

Fig. 1. FoSII infrastructure

Since monitoring VMs retrieves values like free_disk or packets_sent, but
we are more interested in SLA parameters like storage or bandwidth, there has
to be a mapping between these low level metrics and high level SLAs. This is
achieved by the already mentioned highly scalable framework LoM2HiS [12].

After an SLA violation threat has been received by the KM during the Anal-
ysis phase, it has to decide which reactive action has to be taken in order to
prevent the possible violation. The Plan phase is divided into two parts: phase
Plan I cares about mapping actions onto PMs and managing the PMs (levels
(ii) and (iii) in Subsection 3.2). Phase Plan II then is in charge of planning the
order and timing of the actions with the additional goal of preventing oscilla-
tions, i.e., increasing and decreasing the same resources for several times. Finally
the actions are executed (Execution phase) with the help of actuators.

3.2 FoSII’s Infrastructure and Knowledge Management Use Case

We assume that customers deploy applications on an IaaS Cloud infrastruc-
ture. SLOs are defined within an SLA between the customer and the Cloud
provider for every application. Furthermore, there is a 1:1 relationship between
applications and VMs. One VM runs on exactly one PM, but one PM can host
an arbitrary number of VMs with respect to supplied vs. demanded resource
capacities. After allocating VMs with an initial capacity (by estimating initial
resource demand) for every application, we continuously monitor actually used
resources and re-allocate resources according to these measurements. Along with
the process of re-allocating VM resources, the VMs have to be deployed to PMs,
a VM possibly migrated from one PM to another or PMs turned on/off. Thus,
one is dealing with autonomic management on three levels with respect to the
following order: (i) VM resource management, (ii) VM deployment, (iii) PM
management. This paper will focus on level (i). As far as level (ii) is concerned,
deploying VMs on PMs with capacity constraints minimizing consumed energy
by the PMs (also taking into account the costs of booting PMs and migrating
VMs) can be formulated into a Binary integer problem (BIP), which is known to
be NP-complete [16]. The proof is out of scope for this paper, but a similar ap-

proach can be seen in [21]. As realistic Cloud environments consist of many VMs
and PMs, this can be considered as a real problem in practice. Consequently,
heuristics have to be found to approach this problem within reasonable time.
Level (iii) considers turning on/off PMs or modifying CPU frequency.

For level (i) we need to define how the measured, provided and agreed val-
ues interrelate. An example is provided in Table 1. At first, we deal with the
measured value (1), which represents the amount of a specific resource that is
currently used by the customer. Second, there is the amount of allocated re-
source (2) that can be used by the customer, i.e., that is allocated to the VM
which hosts the application. Third, there is the SLO agreed in the SLA (3). A
violation therefore occurs, if less is provided (2) than the customer utilizes (or
wants to utilize) (1) with respect to the limits set in the SLA (3). Considering
Table 1 we can see that rows 1 and 3 do not represent violations, whereas row 2
does represent an SLA violation.

Provided (1) Utilized (2) Agreed (3) Violation?
500 GB 400 GB ≥ 1000GB NO
500 GB 510 GB ≥ 1000GB YES
1000 GB 1010 GB ≥ 1000GB NO

Table 1. Cases of (non-) SLA violations using the example of storage

4 Description of the simulation engine

Monitor	 (simulated):	 	
New	 measurement	 of	 an	

SLA	

Quality	 of	
recommended	

ac;ons	 (decisions)	 =	
Viola;ons	 vs	

provided	 resources	

(1)	 What	 do	 we	
provide?	

(2)	 What	 does	 the	
customer	 u;lize?	

(3)	 What	 did	 we	
agree	 in	 the	 SLA?	

Analysis	 I:	 Queries	
knowledge	 base	

Knowledge	 base:	
Recommends	

ac;on	

Executor	 (simulated):	 	
Executes	 ac;on	

Plan	 I:	 Maps	 ac;on	
onto	 PMs	

Plan	 II:	 Prevents	
oscilla;ons	 and	 schedules	

execu;on	 of	 ac;ons	

Fig. 2. MAPE cycle in FoSII

The goal of the simulation engine is to evaluate the quality of a KM system
with respect to the number of SLA violations and the utilization of the resources.
Furthermore, the simulation engine serves as an evaluation tool for any KM
technique in the field of Cloud Computing, as long as it can implement the two
methods of the KB management interface:

1. public void receiveMeasurement(int slaID, String[] provided,
String[] measurements, List<String> violations); and

2. public Action recommendAction(int slaID);.

The parameter slaID describes the ID of the SLA that is tied to the specific
VM, whose provided and measured values are stored in the arrays provided and
measurements, respectively. The list violations contains all SLA parameters
being violated for the current measurements. The method receiveMeasurement
inputs new data into the KB, whereas the method recommendAction outputs
an action specific to the current measurement of the specified SLA.

The simulation engine traverses parts of the MAPE-cycle as can be seen in
Figure 2 and described in Subsection 3.1. The Monitoring and Executor part
are simulated, Analysis I and the KB are implemented using CBR. Plan phases
I and II are currently not considered within the simulation engine; the focus of
the engine is to solve the question of how to correctly allocate resources for VMs
before deploying them to PMs. Possible reactive actions have to be pre-defined
and are – for the Analysis phase – tied to parameters that can directly be tuned
on a VM: Increase/Decrease storage/bandwidth/memory etc. by 10%/20% etc.,
or do nothing.

As far as the measurements are concerned, a sensor is “installed” for ev-
ery VM parameter that should be measured. The simulated Monitor component
simultaneously asks the sensors for the current value of their VM parameter. Sen-
sors can be implemented completely modularly and independently. An example
sensor implementation is explained in the following: For the first measurement,
it randomly draws a value from a Gaussian distribution with µ = SLO

2 and
σ = SLO

8 , where SLO describes the SLO threshold set for the current VM pa-
rameter. Then, it randomly draws a trend up or down and a duration the trend
is going to last. Now, as long as the trend lasts, it increases (trend up) or de-
creases (trend down) the measured value for every iteration by any percentage
uniformly distributed in the interval [iBegin%, iEnd%]. After the trend is over,
a new trend and a new duration of the trend are selected. By doing this, we
achieve a set of measurement data, where values do not behave just randomly,
but follow a certain trend for a period of time that is a-priori unknown to the
KM. As the intensity of the trend varies for every iteration, we deal with both,
slow developments and rapid changes.

The simulation engine is iteration-based, meaning that in one iteration the
MAPE cycle is traversed exactly once. In reality, one iteration could last from
some minutes to about an hour depending on the speed of the measurements,
the length of time the decision making takes, and the duration of the execution
of the action, like for example migrating a resource intensive VM to another PM.

5 Implementation of CBR-based Knowledge Management

In this section we describe how CBR was implemented within the simulation
engine. We first explain the idea behind CBR, then define when two cases are
similar, and finally derive a utility function to estimate the “goodness” of an
action in a specific situation. CBR was first built ontop of FreeCBR [4], but
is now a completely independent Java framework taking into account, however,
basic ideas of FreeCBR.

5.1 CBR Overview

Case Based Reasoning is the process of solving problems based on past experience
[8]. In more detail, it tries to solve a case (a formatted instance of a problem) by
looking for similar cases from the past and reusing the solutions of these cases to
solve the current one. In general, a typical CBR cycle consists of the following
phases assuming that a new case was just received:

1. Retrieve the most similar case or cases to the new one.
2. Reuse the information and knowledge in the similar case(s) to solve the

problem.
3. Revise the proposed solution.
4. Retain the parts of this experience likely to be useful for future problem

solving. (Store new case and found solution into KB.)

In this paragraph we formalize language elements used in the remaining pa-
per. Each SLA has a unique identifier id and a collection of SLOs. SLOs are
predicates of the form

SLOid(xi, comp, πi) with comp ∈ {<,≤, >,≥,=}, (1)

where xi ∈ P represents the parameter name for i = 1, . . . , nid, πi the parameter
goal, and comp the appropriate comparison operator. Additionally, action guar-
antees that state the amount of penalty that has to be paid in case of a violation
can be added to SLOs, which is out of scope in this paper. Furthermore, a case
c is defined as

c = (id,m1, p1,m2, p2, . . . ,mnid
, pnid

), (2)

where id represents the SLA id, and mi and pi the measured (m) and provided
(p) value of the SLA parameter xi, respectively.

A typical use case for the evaluation might be: SLA id = 1 with SLO1(“Storage”,
≥, 1000, ag1) and SLO1 (“Bandwidth”, ≥, 50.0, ag1), where ag1 stands for the
appropriate action guarantee to execute after an SLO violation. A simple case
that would be received by a measurement component could therefore look like
c = (1, 500, 700, 20.0, 30.0). A result case rc = (c−, ac, c+, utility) includes the
initial case c−, the executed action ac, the resulting case c+ measured some time
interval later (one iteration in the simulation engine) and the calculated utility
described in Section 5.3.

5.2 Similarity Measurement between two Cases

In order to retrieve similar cases already stored in the database to a new one,
the similarity of two cases has to be calculated. However, there are many metrics
that can be considered.

The problem with Euclidean distance, for instance, is due to its symmet-
ric nature that it cannot correctly fetch whether a case is in a state of over-
or under-provisioning. Additionally, the metric has to treat parameters in a
normalized way so that parameters that have a larger distance range are not

over-proportionally taken into account than parameters with a smaller differ-
ence range. (E.g., if the difference between measured and provided values of
parameter A always lie between 0 and 100 and of parameter B between 0 and
1000, the difference between an old and a new case can only be within the same
ranges, respectively. Thus, just adding the differences of the parameters would
yield an unproportional impact of parameter B.)

This leads to the following equation whose summation part follows the prin-
ciple of semantic similarity from [13]:

d(c−, c+) = min(wid,
∣∣id− − id+

∣∣) +
∑
x∈P

wx

∣∣∣∣ (p−x −m−x)− (p+
x −m+

x)
maxx −minx

∣∣∣∣ , (3)

where w = (wid, wx1 , . . . , wxn) is the weight vector; wid is the weight for non-
identical SLAs; wx is the weight, and maxx and minx the maximum and min-
imum values of differences px −mx for parameter x. As can easily be checked,
this indeed is a metric also in the mathematical sense.

Furthermore, the match percentage mp of two cases c− and c+ is then cal-
culated as

mp(c−, c+) =
(

1− d(c−, c+)
wid +

∑
x wx

)
· 100. (4)

This is done because the algorithm does not only consider the case with the
highest match, but also cases in a certain percentage neighborhood (initially set
to 3%) of the case with the highest match. From these cases the algorithm then
chooses the one with the highest utility. By calculating the match percentage,
the cases are distributed on a fixed line between 0 and 100, where 100 is an
identical match, whereas 0 is the complete opposite.

5.3 Utility Function, Utilization and Resource Allocation efficiency

To calculate the utility of an action, we have to compare the initial case c− vs.
the resulting final case c+. The utility function is composed by a violation and
a utilization term weighed by the factor 0 ≤ α ≤ 1:

utility =
∑
x∈P

violation(x) + α · utilization(x) (5)

Higher values for α give more importance to the utilization of resources, whereas
lower values to the non-violation of SLA parameters. We further note that c(x)
describes a case only with respect to parameter x. E.g., we say that a violation
has occurred in c(x), when in case c the parameter x was violated.

The function violation for every parameter x is defined as follows:

violation(x) =

1, No violation occurred in c+(x), but in c−(x)
1/2, No violation occurred in c+(x) and c−(x)
−1/2 Violation occurred in c+(x) and c−(x)
−1 Violation occurred in c+(x), but not in c−(x)

. (6)

For the utilization function we calculate the utility from the used resources
in comparison to the provided ones. We define the distance δ(x, y) = |x−y|, and
utilization for every parameter as

utilization(x) =

1, δ(p−x ,m

−
x) > δ(p+

x , u
+
x)

−1, δ(p−x ,m
−
x) < δ(p+

x , u
+
x)

0, otherwise.
(7)

We get a utilization utility of 1 if we experience less over-provisioning of resources
in the final case than in the initial one, and a utilization utility of −1 if we
experience more over-provisioning of resources in the final case than in the initial
one.

If we want to map utilization, u, and the number of SLA violations, v, into
a scalar called resource allocation efficiency (RAE), we can achieve this by

RAE =

{
u
v , v 6= 0
u, v = 0,

(8)

which reflects our evaluation goals. High utilization leads to high RAE, whereas
a high number of SLA violations leads to a low RAE, even if utilization is in
normal range. This can be explained by the fact that having utilization at a
maximum - thus being very resource efficient in the first place - does not pay if
the SLA is not fulfilled at all.

6 Evaluation of CBR

This section first describes which initial cases are fed into CBR and then evalu-
ates how CBR behaved over several iterations.

As a first step, the KB has to be filled with some meaningful initial cases.
This was done by choosing one representative case for each action that could be
triggered. For our evaluation the SLA parameters bandwidth and storage (even
though not being tied to them in any way – we could have also named them,
e.g., memory and CPU time) were taken into consideration resulting into 9 pos-
sible actions “Increase/Decrease bandwidth by 10%/20%”, “Increase/Decrease
storage by 10%/20%”, and “Do nothing”.

Taking storage for example, we divide the range of distances for storage St
between measured and provided resources into five parts as depicted in Figure 3.
We choose some reasonable threshold for every action as follows: If pSt−mSt =
−10 then action “Increase Storage by 20%” as this already is a violation; if
p−St−mSt = +50 then action “Increase Storage by 10%” as resources are already
scarce but not so problematic as in the previous case; if pSt −mSt = +100 then
action “Do nothing” as resources are neither very over- nor under-provisioned;
if pSt −mSt = +200 then action “Decrease Storage by 10%” as now resources
are over-provisioned; and we set action “Decrease Storage by 20%” when we are
over the latest threshold as then resources are extremely over-provisioned. We

choose the values for our initial cases from the center of the respective intervals.
Ultimately, for the initial case for the action, e.g., “Increase Storage by 20%”
we take the just mentioned value for storage and the “Do nothing” value for
bandwidth. This leads to c = (id, 0,−10, 0, 7.5), and because only the differences
between the values matter, it is equivalent to, e.g., c = (id, 200, 190, 7.5, 15.0).

-�

-10 +50 +100 +200

x x x x x
z }| { z }| {

Fig. 3. How to choose initial cases using the example of storage

0	
5	
10	
15	
20	
25	
30	
35	

2	 5	 10	 20	

V
io
la
&
on

s	
[%

]	

#	 Itera&ons	

Alpha=0.1	 Alpha=0.3	

Alpha=0.5	 No	 CBR	

Fig. 4. SLA violations

45	
50	
55	
60	
65	
70	
75	
80	
85	

2	 5	 10	 20	

U
"
liz
a"

on
	 [%

]	

#	 Itera"ons	

Fig. 5. Utilization

0	

2	

4	

6	

8	

10	

12	

2	 5	 10	 20	

RA
E	

#	 Itera+ons	

Fig. 6. RAE

The CBR implementation is evaluated by comparing the outcome of the sim-
ulation running with the autonomic manager and without it. At the beginning,
we configure all VMs exactly equally with 80% of the storage SLO value and 2/3
of the bandwidth SLO value provided. Then, we execute 2, 5, 10 and 20 iterations
with values for α being 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 and 0.8 (cf. Eq. 5). We omit
values 0.2 and 0.4 in the evaluation because their outcomes do not differ enough
from the values shown, and all values > 0.5, because they reveal unacceptable
high SLA violation rates. After the iterations we calculate the percentage of
occurred SLA violations in respect to all possible SLA violations (cf. Fig. 4),
the resource utilization (cf. Fig. 5) and the RAE (cf. Fig. 6). Running without
the autonomic manager means that we will leave the configuration of the VMs
as they are and effect no actions due to changing demands. We set the weights
w = (1, 1, 1). In Figures 4 and 5 we see that the number of SLA violations and
resource utilization heavily depend on the factor α. Lower values for α clearly
prefer to avoid SLA violations, whereas higher ones emphasize on resource uti-
lization. We also see that with α ∈ {0.1, 0.3} up to more than half of the SLA
violations can be avoided. However, fewer SLA violations result in lower resource
utilization, as more resources have to be provided than can actually be utilized.
Another point that can be observed, is that after a certain amount of iterations
the quality of the recommended actions decreases. This is probably due to the
fact that the initial cases get more and more blurred when more cases are stored

into CBR, as all new cases are being learned and there is no distinction being
made between “interesting” and “uninteresting” cases. Nevertheless, when we
relate SLA violations and resource utilization in terms of RAE, CBR methods
for α ∈ {0.1, 0.3} are up to three times better than the default method. Summing
up, the simulation shows that learning did take place and that CBR is able to
recommend right actions for many cases, i.e., to correctly handle and interpret
the measurement information that is based on a random distribution not known
to CBR.

7 Conclusion

This paper presents a first attempt to create a KM system for Cloud Com-
puting. To evaluate such systems, a KM technique-agnostic simulation engine
that simulates monitoring information and executing actions on VMs in a Cloud
environment has been developed. Furthermore, we implemented a CBR style
knowledge base and evaluated it. The results are both encouraging and exhibit
needs for further improvement. On the one hand they show that CBR reduces
the number of SLA violations and increases RAE compared to a static approach.
On the other hand, we can subsume two points that have to be leveraged: (i)
learning techniques have to be ameliorated (step 4 in subsection 5.1) in order to
maintain the high quality of the cases in the knowledge base; (ii) fine-tuning the
similarity function should help to choose the most dangerous parameters with
higher precision. One of the limitations of CBR is that for every parameter, the
parameter space has to be divided into different areas corresponding to specific
actions as in Fig. 3. This, however, could be also used for a rule-based approach,
where these areas are specified with thresholds that can be learned using the
utility function defined in Section 5.3. In CBR, the learning of these spaces in-
herently and implicitly takes place, but it would be interesting for a rule-based
approach to compare whether an explicit learning or definition of the thresholds
could bring a benefit to the RAE of the system. Therefore, the evaluation of
other KM techniques with this simulation engine is our ongoing work. We want
to compare the performance of CBR with a rule-based approach using Drools
[2] and a default logic based approach based on DLV [1] in order to determine
the most appropriate knowledge management method for Cloud computing.

Acknowledgments The work described in this paper is supported by the Vi-
enna Science and Technology Fund (WWTF) under grant agreement ICT08-018
Foundations of Self-Governing ICT Infrastructures (FoSII) and by COST-Action
IC0804 on energy efficiency in large scale distributed systems.

References

1. (DLV) - The DLV Project - A Disjunctive Datalog System,
http://www.dbai.tuwien.ac.at/proj/dlv/

2. Drools, www.drools.org

3. (FOSII) - Foundations of Self-governing ICT Infrastructures,
http://www.infosys.tuwien.ac.at/linksites/fosii

4. FreeCBR, http://freecbr.sourceforge.net/
5. IT-Tude: SLA monitoring and evaluation, http://www.it-tude.com/sla-

monitoring-evaluation.html
6. SLA@SOI, http://sla-at-soi.eu/
7. Application Performance Management in Virtualized Server Environments (2006),

http://dx.doi.org/10.1109/NOMS.2006.1687567
8. Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological

variations, and system approaches (1994)
9. Bahati, R.M., Bauer, M.A.: Adapting to run-time changes in policies driving auto-

nomic management. In: ICAS ’08: Proceedings of the 4th Int. Conf. on Autonomic
and Autonomous Systems. IEEE Computer Society, Washington, DC, USA (2008)

10. Bichler, M., Setzer, T., Speitkamp, B.: Capacity Planning for Virtualized Servers.
Presented at Workshop on Information Technologies and Systems (WITS), Mil-
waukee, Wisconsin, USA, 2006 (2006)

11. Brandic, I.: Towards self-manageable cloud services. In: Ahamed, S.I., et al. (eds.)
COMPSAC (2). pp. 128–133. IEEE Computer Society (2009)

12. Emeakaroha, V.C., I.Brandic, Maurer, M., Dustdar, S.: Low level metrics to high
level SLAs - LoM2HiS framework: Bridging the gap between monitored metrics and
SLA parameters in cloud environments. In: The 2010 High Performance Computing
and Simulation Conference in conjunction with IWCMC 2010. Caen, France (2010)

13. Hefke, M.: A framework for the successful introduction of KM using CBR and
semantic web technologies. Journal of Universal Computer Science 10(6) (2004)

14. Huebscher, M.C., McCann, J.A.: A survey of autonomic computing—degrees, mod-
els, and applications. ACM Comput. Surv. 40(3), 1–28 (2008)

15. Jacob, B., Lanyon-Hogg, R., Nadgir, D.K., Yassin, A.F.: A practical guide to the
IBM Autonomic Computing toolkit. IBM Redbooks (2004)

16. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W. (eds.) Complexity of Computer Computations: Proc. of a Symp.
on the Complexity of Computer Computations. pp. 85–103. Plenum Press (1972)

17. Khargharia, B., Hariri, S., Yousif, M.S.: Autonomic power and performance man-
agement for computing systems. Cluster Computing 11(2), 167–181 (2008)

18. Koumoutsos, G., Denazis, S., Thramboulidis, K.: SLA e-negotiations, enforcement
and management in an autonomic environment. Modelling Autonomic Communi-
cations Environments pp. 120–125 (2008)

19. Maurer, M., Brandic, I., Emeakaroha, V.C., Dustdar, S.: Towards knowledge man-
agement in self-adaptable clouds. In: IEEE 2010 Fourth International Workshop of
Software Engineering for Adaptive Service-Oriented Systems. Miami, USA (2010)

20. Paschke, A., Bichler, M.: Knowledge representation concepts for automated SLA
management. Decision Support Systems 46(1), 187–205 (2008)

21. Petrucci, V., Loques, O., Mossé, D.: A dynamic optimization model for power and
performance management of virtualized clusters. In: e-Energy ’10: Proceedings of
the 1st International Conference on Energy-Efficient Computing and Networking.
pp. 225–233. ACM, New York, NY, USA (2010)

22. Wood, T., Shenoy, P., Venkataramani, A., Yousif, M.: Sandpiper: Black-box and
gray-box resource management for virtual machines. Computer Networks 53(17),
2923 – 2938 (2009)

