
A Novel Approach to Modeling Context-aware

and Social Collaboration Processes

Vitaliy Liptchinsky, Roman Khazankin, Hong-Linh Truong, and Schahram
Dustdar

Distributed Systems Group, Vienna University of Technology
Argentinierstrasse 8/184-1, A-1040 Vienna, Austria

Email: {lastname}@infosys.tuwien.ac.at
WWW: http://www.infosys.tuwien.ac.at

Abstract. Companies strive to retain the knowledge about their busi-
ness processes by modelling them. However, non-routine people-intensive
processes, such as distributed collaboration, are hard to model due to
their unpredictable nature. Often such processes involve advanced activ-
ities, such as discovery of socially coherent teams or unbiased experts, or
complex coordination towards reaching a consensus. Modeling such ac-
tivities requires an expressive formal representation of process context,
i.e. related actors and artifacts. Existing modeling approaches do not
provide the necessary level of expressiveness to capture it. We therefore
propose a novel modeling approach and a graphical notation, demon-
strate their applicability and expressivity via several use cases, and dis-
cuss their strengths and weaknesses.

1 Introduction

Companies strive to retain the knowledge about their business processes by
modelling them. If captured accurately, such knowledge allows us to analyze,
improve, and execute those processes with higher efficiency. Although a variety
of techniques and tools have been introduced for Business Process Modelling
(BPM), nevertheless, modeling of highly dynamic non-routine processes such as
human collaboration is still a subject for discussion in research [15].

While collaboration in general means working together to achieve a goal [8],
the more narrow notion of creative human collaboration implies working together
to design or improve some artifact (a piece of software, a wiki page, a product
design, an article of law, a research paper, etc.). With proliferation of collabora-
tion software, such as groupware or wikis, the manner of such collaboration has
took the form of incremental contributions to a network of shared documents.
Relations between documents, actors, and other artifacts may influence the col-
laboration process. For example, some tasks should be done by actors chosen
based on social relations, actions on some documents should not be performed
before related documents reach certain condition, or a change in a related doc-
ument might force to re-do an activity. Although artifact-based process models



have already been researched [2, 4], existing modeling approaches do not empha-
size the relations between artifacts as process “driving force”, and, therefore,
either do not provide the needed expressivity to capture this logic, or are inef-
ficient because of the excessive complexity. We thus propose a novel modeling
approach and a graphical notation for collaboration processes, the key principle
of which is to treat each document’s evolution as an individual process which
is explicitly influenced by the states of related documents and patterns in sur-
rounding social network. We propose to formalize the relations in line with the
data from collaboration software, e.g., two developers can be considered related if
they committed code to the same project folder in a source code repository. The
amount of such data will grow with social computing pervading the enterprise
IT1, thus allowing process modelers to create richer models of people-intensive
processes.

The rest of this paper is organized as follows: Section 2 describes motivation
behind the modeling approach and presents a motivating example. In Section 3
we show the lack of expressivity in existing modeling approaches with regards to
the motivating example. Section 4 describes the proposed modelling paradigm
and the corresponding graphical notation. Section 5 demonstrates the usability of
the approach through sensible use-cases. Disadvantages of the modeling approach
are discussed in Section 6. The paper is concluded in Section 7.

2 Motivation

Collaboration is a recursive [12] process comprised of human interactions towards
realization of shared goals. Groupware and social software foster collaboration
of individuals who work across time, space, cultural and organizational bound-
aries, i.e., virtual teams [16]. Using this type of software, people interact through
conversations (e.g., e-mails and instant messages) and transactions (e.g., create/
modify/assign/restructure a document) in order to augment a common deliv-
erable, e.g., documentation of an idea, a technical specification, a source code
file, or a wiki page. Typically, such interactions are chaotic, non-routine, and are
hard to predict and model. However, as side-effects they produce semantical and
social relations between actors and artifacts. Furthermore, artifacts usually are
semantically connected into hierarchical or network structures, i.e., references in
wiki pages, or dependencies between software components.

As a motivating example, let us consider in-house software engineering in
a dot-com company. Projects, or ventures, in such company can be classified
as engineering ventures (development of new functionality), or analysis ventures
(incident investigation, proof-of-concepts). Both types of ventures produce deliv-
erables, such as source code or technical documentation. Figure 1 demonstrates
a snapshot of a collaboration process as a directed graph of venture deliverables
and collaborating actors. Edges connecting Ventures represent functional de-
pendencies (i.e., venture depends on either an investigation report or a software

1 http://www.gartner.com/it/page.jsp?id=1470115



component produced by other ventures). Edges connecting Actors depict social
relations, i.e., there is a regular communication over instant messaging channels
between them, or they contribute to the same venture. Analysis ventures, rep-
resenting rather creative and non-routine work, can reside only in two possible
phases, namely In Progress and Finished, while engineering ventures, repre-
senting more structured and long-running work, can reside in more phases, such
as Design, Implementation, Testing, and Finished.

Analysis Venture 2

In progress

Engineer 2

Engineering Venture 4

Design phase
Engineering Venture 2

Design phase

Experts

Engineer 3

Analysis Venture 1

In progress Depends

Depends

Depends

Assigned

Assigned

Engineering Venture 1

Implementation Depends

Engineer 1

Assigned

Social Relation

Assigned

Assigned

Experts

Assigned

NO Social Relation

Engineering Venture 3

Finished

Depends

Engineer 4

Assigned

Social Relation

Depends

Fig. 1. Software engineering collaboration process snapshot

Now, let us consider a process modeler that possesses knowledge of working
environment, culture, and the scale of the company, and aims at modeling the
following rules:

1. A venture project team should be notified of any changes in the technical
documentation of other ventures it depends on. However, if two functionally
interdependent ventures share any team members, then enforced communi-
cation is not required. This rule ensures proper knowledge sharing between
functionally interdependent ventures while avoiding overcommunication. For
example, any new technical reports of Analysis Venture 2 should be com-
municated to the project team of Engineering Venture 2. However, the
same synchronization between Engineering Venture 2 and Engineering

Venture 4 is not critical, because Engineer 3 is anyway aware of any such
changes.

2. Venture technical documentation (i.e., design, or a report) should be reviewed
by an expert from a functionally dependent venture. Moreover, it is preferable
to assign an expert socially unrelated to the venture team members. This
rule tries to avoid biased reviews by finding a socially unrelated experts. For
example, it is more preferable to assign Engineer 4, than Engineer 1, as a



reviewer of Engineering Venture 2, as Engineer 4 does not have strong
social relations with the Engineering Venture 2 team.

3. An engineering venture can be started if at least one venture, it depends on,
has passed Design phase. This rule defines a balance between total serializa-
tion of dependent ventures Design phases, which results in a longer time-
to-market, and total parallelization of Design phases, which results in more
iterations. For example, Engineering Venture 2 was started upon comple-
tion of Design phase of either Engineering Venture 3 or Engineering

Venture 1.

4. Design phase of a venture cannot be finished if all ventures, it depends
on, have not passed Design phase. This rule minimizes chances of poten-
tial rework and wasted efforts. For example, Design phase of Engineering
Venture 2 can be finished only after Engineering Venture 4 switches to
Implementation phase.

We refer to such rules as context dependency rules (CDRs). As it can be seen
from the examples above, they allow to capture the knowledge about the impact
of social and structural relations on collaboration processes. Formal specification
can help visualize and improve CDRs, thus reflecting management experience in
enterprise.

3 Related work

In this section we discuss the related works and show their shortcomings with
regard to their ability to model context dependency rules (CDRs), examples of
which are outlined in the previous section. To the best of our knowledge, no
framework is capable of capturing CDRs in a formal and visual manner.

Information-centric modeling approaches, such as Case Handling [2] and
Artifact-centric workflows [4], can capture the evolvement of collaboration en-
tities into formal models, and capture the relations on a conceptual level us-
ing composite cases and ’is-a’ relationships between Roles in Case Handling,
and Entity-Relationship models in Artifact-centric workflows. However, condi-
tion elements in these approaches do not allow to specify CDRs. Conditions in
case-handling are defined as sets of bindings where a binding is a set of val-
ues for specific data objects. Therefore, it is not possible to define a condition
which examines all the objects in a specific relation to the object at hand (CDR
example 3), or to specify that all the related objects must reside in a specific
state (CDR example 4). Conditions in Artifact-centric workflows are specified
in formulas written in first-order logic. However, the specification is restricted
and does not allow to use quantifiers, which is crucial for expressing CDRs (e.g.,
CDR examples 3 or 4).

Traditional activity-oriented business process modeling approaches like
BPMN2 allow to model dependencies between processes via messages or events.

2 http://www.bpmn.org/



Asynchronous messaging can be used to partially resemble CDRs, e.g., by send-
ing notifications to related processes. However, it would not provide enough
flexibility to capture such rules. Using external events is another way to model
such logic, but, it would require the specification of events in natural language.
Moreover, activity-oriented approaches are difficult to apply for collaboration
processes, because it is hard to predefine exact steps to follow [15]. In addition,
explicit communication and coordination entities (i.e., events, message chan-
nels), intended for publishing information, do not convey any functional load
and, therefore, complicate and encumber process models. Agent-based or agent-
inspired approaches for coordination of business processes as [1, 11] also utilize
explicit information publishing entities, thus sharing the same disadvantages.

Context-aware workflows [18] are a generic approach that advocates the aug-
mentation of workflow technology with information about the physical world.
It is an execution framework, and proposes to use an XML-based language to
express context dependencies. Theoretically, CDRs could be implemented using
this framework, however, it would be hardly intuitive to comprehend.

In [3] so-called batch-tasks were proposed to allow for a task that is executed
for multiple workflow instances at the same time. Other similar approaches can
be found in [5]. Partially, CDRs can be covered by batch-tasks, e.g., CDR ex-
ample 4. For more complex rules, however, this approach is not flexible enough.

Team Automata [9, 10] use communication via shared action spaces. Transi-
tions, which include the same external action, are fired simultaneously in these
Automata. Alike to batch-tasks, it doesn’t provide the needed flexibility.

COREPRO modeling framework [13] proposes to model the dependencies
between states of related processes via so-called external state transitions. Again,
it provides limited expressivity for describing the dependencies, as it allows to
specify only exact external state transitions.

Futhermore, neither of approaches discussed above focuses on functional or
social relations between actors and artifacts and therefore does not provide cor-
responding modeling elements. This makes it difficult for a modeler to specify
such relations and their impact in a natural way.

4 Modeling Paradigm

In this section we present the modeling approach for collaboration processes,
which allows to express context dependency rules (CDRs, see Sec. 2). We ex-
plain the design features, outline the modeling paradigm, and present modeling
elements and graphical notation.

The key modeling principles of our modeling paradigm are:

– Information-centric. As described in Sec. 2, collaboration can be seen as a
network of evolving artifacts. In addition, activity-oriented approaches are
difficult to apply to collaboration processes, because it is hard to predefine
exact steps to follow [15]. For instance, people interactions, such as conver-
sations and transactions, in a collaboration process are rather chaotic and
unpredictable, therefore, it is easier to capture collaboration artifacts and



corresponding social and semantic relations as side effects of interactions.
Therefore, the information-centric modeling paradigm is chosen as a basis
for the modeling approach.

– Bottom-up and neighborhood-aware. Modeling an evolvement of a network
of artifacts and people in a holistic view can be a daunting task. Contrar-
ily, neglecting relations completely and modeling the progress of artifacts in
isolation leads to context tunneling, and, therefore ineffective models. We
thus propose to use a bottom-up hybrid approach, which models evolution
of each artifact as an individual process explicitly influenced by its neigh-
borhood. This approach allows to describe behavior at macro level (network
of artifacts) by means of modeling behaviors at micro level (evolvement of
a single artifact). Additionally, it allows to provide simple processes coordi-
nation and secure encapsulation: a process can modify only its own state, it
cannot impact related processes explicitly. This approach was inspired by a
computational model of Cellular Automata(CA) [14].

– Social. Collaboration processes often involve non-routine activities, such as
discovery of socially coherent teams, or complex decision-making by exploit-
ing social hubs and unbiased experts. Therefore, the paradigm promotes
modeling not only a network of evolving artifacts, but also an evolving net-
work of people.

In the following subsection we introduce the modeling framework, which
incorporates the discussed above key principles.

4.1 Modeling Framework

Our modeling framework is defined as a set of basic modeling elements, a business
process modeler can operate with, in order to reflect context dependency rules
(CDRs) within business process models:

1. Collaboration artifacts and their states. Artifacts should represent various
aspects and deliverables of collaboration process (e.g., a software compo-
nent, or a technical design). The states should represent the possible phases
of collaboration. Artifacts and their states may be modeled using existing
information-centric approaches, such as Artifact-centric workflows [4], mak-
ing thus our approach rather complementory, than stand alone.

2. Relations. Relations can be pre-defined (e.g., functional or structural depen-
dency) or dynamic (e.g., temporal or social relations), i.e., produced as side
effects of interactions and transactions. Proliferation of groupware and so-
cial software boosts the quantity and quality of dynamic relations data, thus
empowering process modelers.

3. Context-aware state transitions. Context-aware state transitions define what
Relations and Artifacts are relevant for a business process at various steps
of its execution.

In order to better demonstrate how the framework basic modeling elements
can be put together to model a business process, we present a graphical notation



for the modeling framework. The notation is an extension of the conventional
statecharts visual formalism [7]. The choice of statecharts is justified by their
information-centric nature and widespread adoption as part of Unified Modeling
Language (UML)3. Being a natural visual representation of state machine math-
ematical model, statecharts include the following basic elements: (i) Clustered
and refined states ; (ii) State transitions comprised of events (external happen-
ings such as user input or timeout), conditions (boolean expressions over events
and state) and actions (e.g., sending an e-mail, or assigning a person to a task).

Our graphical notation, dealing with explicit modeling of relations, extends
conventional statecharts with a new element Context, graphically depicted as a
hexagon. Context element, being inseparable to State element, defines relations
and artifacts, relevant to a particular state. Each Context element contains a
query against the neighborhood of the artifact (i.e., related artifacts and peo-
ple) asking for the presence of a specific pattern. Each Context can have several
Transition elements attached: if the context query finds the corresponding pat-
tern, then all transitions attached to this Context element are enabled, otherwise
disabled. Similarly to State elements in statecharts, Context elements can be
clustered using logical AND/OR/XOR operations.

Figure 2 demonstrates the overall integration of Context element into state-
charts (the context queries are omitted in this figure for the sake of simplicity).
Two of three transitions in the figure are enabled by Context elements. By de-
fault, we assume that transitions attached to Context elements have a higher
priority over other transitions, but generally it is up to a modeler to define the
priorities. Below are enlisted possible transitions in the default prioritization
order:

1. If a pattern described in Context 2 is found, then the state machine switches
to state D. Here we can see that Event is optional, and if absent, then tran-
sition is activated at once.

2. If Event 1 is fired and a pattern described in Context 1 is found, then the
state machine switches to state B.

3. If Event 1 is fired and a pattern described in Context 1 is not found, then
the state machine switches to state C.

When modeling the behavior of multiple interdependent concurrent process
instances, a modeler should assume that state transitions are synchronized, i.e.,
every Context element is evaluated before activation of any state transition in
any process. Thus, if some process switches to state A and then instantly to some
other state, the fact that it has been in state A will be considered.

We believe that graphs a priori are rather a natural visual medium for de-
scribing artifact networks and relations. Therefore, we define a visual graph query
language, which is used to specify queries in Context elements. Queries expressed
in the language, can easily be mapped to a First-Order Logic expressions, but
vice versa does not hold. A query in the visual language is a directed connected

3 http://www.omg.org/spec/UML/



Context 2

State B

Context 1

Event 1

State A State C

State D

Event 1

Fig. 2. Integration of Context elements into statecharts

multigraph with labeled edges and nodes. Labels can either denote atomic re-
lations/states/types, or expressions over atomic entities based on propositional
calculus expressions. Additionally, labels may be absent in general, denoting a
placeholder (e.g., any relation/state/type). An edge direction in a graph is used
to depict a non-commutative relation.

Interpretation of a graph query naturally corresponds to the way we read
First-Order Logic expressions. Query graphs always have one initialized primary
element, therefore, graph queries should be interpreted outwards: starting from
the central primary element towards most distant nodes. For example, graph
queries depicted in Fig. 3 can be interpreted as follows:

– Context 1: if the primary document is in state A, and there are no docu-
ments, related by content or author to the primary one, residing either in
state A or state B, then the attached transition is enabled.

– Context 2: if the primary document is in state A, and every single document,
related by content to the primary one, must reside in state B and have two
socially unrelated Authors that contributed to it, one of which is Active,
then the attached transition is enabled.

As depicted in Fig. 3, single line edges correspond to existence quantifiers,
while double line and crossed dashed edges correspond to universal quantifiers.
Nodes in query graphs may be labeled with variables, that can later be reused
in Conditions and Activities of corresponding Transitions. Since multiple oc-
currences of a context pattern may be found in the neighborhood, Activities/-
Conditions may be also extended with quantifiers, i.e., send e-mail to any/every
related contributor.

The success of a modeling approach depends, to a great extent, on the level
of simplicity offered. Therefore, we favor simplicity over completness and impose
following constraints on the queries expressed in the visual language:

– Only basic operators from proposition calculus are allowed as literal expres-
sions attached to edges and nodes: conjunction, disjunction and negation.
Even though, conditional and biconditional operators may be expressed via



Context 2

Context 1

State B

Document X

State A

Document
Similar Content 

OR Same Author

x

Similar 

Content

State A OR

State B

User

User

Active

Contributed

NOT Socially RelatedContributed

For Any X send message

Fig. 3. Example of context queries in Context elements. Single line edges correspond
to existence quantifiers, while double line and crossed dashed edges correspond to
universal quantifiers.

the former ones, more complex operators may decrease understanding and
make reasoning about the model more difficult.

– Under Open World Assumption [17] negation may introduce ambiguity,
therefore only negation as a failure is allowed, i.e., negation on an edge
can be used only if nodes connected by the edge are transitively connected
to the central node with non-negative edges.

– Edges with universal quantification can be adjacent only to the primary
node. During our experiments with the modeling notation we observed that
universal quantification can introduce ambiguity and would require assigning
priorities to edges thus unnecessary complicating the modeling process.

Our visual graph querying language was inspired by Graphlog language [6].
Graphlog is more complex, because it was designed as an execution language, as
opposed to our language which aims rather at modeling. Our language assumes
that central artifact is always present and exploits that to simplify universal
quantification notation with special types of edges, while in Graphlog universal
quantification is represented by a conjunction of existential quantification and
negation.

5 Use cases

This section describes three collaboration process use-cases which demonstrate
the application of our modeling approach to various collaboration issues. As it
can be witnessed, the approach allows to easily express the dependency of a
process on complex relations in its environment, and to compactly capture the
dynamic co-influence between instances of the same process in one model.



When all related projects are waiting,

Check if any of them were updated.

Exception: socially related projects

In Progress

Wait Input

Updated

Project
Related

Changes to document
No changes 

to document

Send updated documents 

to contributors

NOT Socially related

Better design idea emerged

Set finalized, If all related 

documens were finalized 

Updated
Finalized

Project
Related

Wait Input

Project
Related

If all the documents of 

the system are finalized

Finalized
Finalized

Project

Belong to the

same system 

design

Fig. 4. Use case - design game

5.1 Use case - design game

Goal. The goal in this use case is to coordinate a design of a complex system
consisting of interrelated projects. A set of expert virtual teams thus collaborate
to reach a consensus. Assignment relation between teams and projects is one-
to-one, but teams can share members. As some projects are dependent, it can
happen that changes in the design of one project can be the reason for changes
in the design of others. Finally, all project designs should be consistent with
dependent ones.

Model. Each project of this system is regarded as a separate process (See
Figure 4). In the beginning, it is in In Progress state which means the team
is currently working on its design. When the team makes some changes to the
design and commits it, the process goes into Updated state. If no changes to
the design were made, i.e., the existing version was examined and considered
valid, then the process switches to Finalized state. These two states represent
superstate Wait Input which means that the project design is currently awaiting
for some external actions. If the team suddenly decides to update the design (e.g.,
a better idea emerged), the process goes back into In Progress state.

Now, if the process is in Wait Input state, and if all the related projects
are also in Wait input state and at least one is Updated, then the team should
check the design of their project against inconsistencies with updated projects.
Thus, the updated documents are sent to the team and the state is switched to
In progress. An exception is the case when the project team shares a common
expert with the team of an updated project(relation Socially related), who is
expected to foresee any inconsistencies beforehand. Waiting the related projects
to be in “Wait input” ensures that all the updates of related documents will be
taken into account.

When in Updated state, and if all the related projects are finalized, the
process goes into finalized state, which ensures that if a document spawned no
updates among related documents, it will not stay in Updated state.

The system may be considered in the final state when all the projects are in
Finalized state.



Advantages. This use case demonstrates the modeling of collaboration as
ordered iterative communication of project teams towards reaching a consensus.
It shows that our modeling approach, as opposed to existing modeling approaches
(See Sec. 3), is capable of expressing universal and existential quantification.

5.2 Use case - social selection

Implementation 

In progress

Get any avalable developer from related tasks

Task Employee X

Available

Impediment 

resolution in 

progress

Assign any X

as developer

Implementation 

Finished

Assign 

any X

as adviser

Resolved 

Get 2 unrelated reviewers, each 

of whom worked on a related task

Review in 

Progress

Was assigned 

as developer

TaskTask

Available

Employee A

Available

Employee B

Contributed Contributed

NOT related

Assign any A,B

as reviewers

Done

Impediment occurred

Ready for 

Implementation
Related

Ready for 

Review

RelatedRelated

Get any related to developer employee 

who contributed to the task

Employee Employee X

Available
Related

Otherwise any employee who 

contributed to a related task

Impediment 

pending

Assigned 

as developer

Impediment not resolved

Priority: 1

Priority: 2

Assign 

any X

as adviser

Impediment self-resolved

Manually assigned

Task Employee X

Available

Contributed
Related

Task

Contributed

Related

Fig. 5. Use case - social selection

Goal. The goal of this use case is to support a software development process
with the selection of appropriate actors (e.g., developer, adviser, reviewer) based
on relations with the other tasks and among the actors. Tasks are related if they
belong to the same project, employees are related if they collaborated before.

Model. Figure 5 depicts the software development process. At first, the task
is Ready for implementation state and is waiting for an appropriate developer
to be assigned. Any available developer from a related task is assigned for this
role, as he/she expected to be more productive because of being familiar with
some related concepts. Alternatively, a manual assignment is performed. In either
case, the process goes to Implementation in Progress state. An impediment
can occur during the implementation (Impediment pending state), in which case
an adviser is needed for assistance. An adviser is preferably selected as a related
to the developer employee who contributed to a related task, because of joint
work experience. Otherwise, any related task contributor is chosen. If the adviser
is found, the process goes into Resolution in Progress state, from where it can
either go either back to Implementation in Progress or Impediment pending

states, depending on whether the impediment has been resolved. Also, the devel-
oper can resolve the impediment by him/herself if no adviser was found. After



the implementation is finished, the reviewers are selected (Ready For Review

state): they are desired to have experience with related tasks but be unrelated
to each other, which assures unbiased reviews. After the review process (Review
In Progress state), either the implementation needs to be revised, or the task
is considered finished.

Advantages. This use case demonstrates expressiveness of the modeling
approach when visualizing social network environment, allowing thus to model
processes that require discovery (e.g., compose a socially coherent team), unbi-
asedness (e.g., involve independent people), and negotiation (e.g. by exploiting
of social hubs). It shows expresiveness of the graphical notation with regards to
modeling patterns in a surrounding social network. Contrarily, existing model-
ing approaches do not model social relations between actors, therefore, are not
capable of capturing such patterns (See Sec. 3).

5.3 Use case - dependent components

Depends upon at least one in 

testing phase, or no dependence

OR
Depends upon at least one 

switched back to implementation

Ready For 

Implementation

Finalized

External event

(e.g., change of 

requirements) 

or testing fail

Implementation 

In progress

Assign developer

Implementation phase

Testing phase

Testing phase

Component

Implementation

Depends upon only finalized 

components

Finalized

Component

Implementation 

phase

Component

Depends

Depends upon only 

implemented

Depends

Implementation 

done

Testing phase

Component

Ready for testing
Testing in 

progress
Tested OK

Assign 

tester
Testing Ready to finalizeAppovement

Depends

Open

Depends

Depends

x
Component

Fig. 6. Use case - dependent components

Goal. The goal is to coordinate the development and testing of a software
product, which consists of manifold components, some of which depend on oth-
ers (we assume no cyclic dependencies). The development a component should
proceed only when the components it depends on have reached certain progress.

Model. Figure 6 depicts the process which corresponds to a single com-
ponent. It starts in Open state and switches over to Implementation Phase in
either of two cases: it does not depend on any components, or at least one compo-
nent which it depends on is in Testing Phase. This ensures some minimal basis



for the development. After Implementation phase, the component is ready to
switch over to Testing Phase, but, first, it should wait for all the components
it depends on to be implemented, so the testing covers the combined function-
ality. The testing phase can reveal some flaws so the component will return into
Implementation Phase for fixing those. If, while the component is in Testing

Phase, any of the components it depends on suddenly goes into Implementation
Phase, then the testing should be stopped in order not to waste the testing ef-
fort on outdated components. Lastly, if the component is in Ready to Finalize

state, and all the components it depends on are Finalized, then the component
can be finalized.

Advantages. This use case demonstrates the suitability of the modeling
approach for expressing of coordination of project teams towards ensuring con-
sistency and correctness of a complex product. It shows expressiveness of our
modeling notation comparing to existing modeling approaches that would cap-
ture process coordination either in a text form or via events (See Sec. 3).

6 Discussion

Advantages of the modeling approach were demonstrated in the previous sec-
tion. However, we perceive that our model also has particular disadvantages.
Absence of explicit communication entities (events or messages) in the modeling
approach is a strength, but also a weakness. A modeler cannot immediately see
what parts of a business process (states) other processes rely upon. Given that
definitions of events and messages represent a process interface, a modeler will
not be able to remove or change process states without a risk of affecting other
models. However, this problem can be remedied with State clustering available
in statecharts.

We envision, that the discussed visual query language might need additional
elements for greater expresiveness. For instance, aggregation elements to express
query of exact number of neighbors residing in particular state, or aggregated
state of all neighbors. However, in this paper we focused on fundamental con-
cepts, thus trying to keep the appropriate level of detail.

7 Conclusion

This paper proposes a modelling approach and a corresponding graphical no-
tation for creative human collaboration processes. The applicability of the ap-
proach was demonstrated through several use-cases, and its strengths and weak-
nesses were discussed.

Comparing to existing approaches, our contribution has two main distin-
guishable features: it is capable of capturing specific conditions in form of pat-
terns in related artifacts of the process, and it advocates a communication model
where a process can modify only its own state and cannot explicitly impact the
related processes. We have shown that these features are naturally suitable for



modeling of collaboration processes. Although our approach was designed with
this focus, we do not exclude its applicability in other areas.

Our future work includes the development of an associated execution frame-
work and the integration with existing business process technologies and collab-
orative software.

References

1. van der Aalst, W., Barthelmess, P., Ellis, C., Wainer, J.: Workflow modeling using
proclets. In: Scheuermann, P., Etzion, O. (eds.) Cooperative Information Systems,
pp. 198–209. Lecture Notes in Computer Science, Springer Berlin / Heidelberg
(2000)

2. van der Aalst, W.M., Weske, M., Grnbauer, D.: Case handling: a new paradigm for
business process support. Data & Knowledge Engineering 53(2), 129–162 (2005)

3. Barthelmess, P., Wainer, J.: Workflow systems: a few definitions and a few sug-
gestions. In: Proceedings of conference on Organizational computing systems. pp.
138–147. COCS ’95, ACM, New York, NY, USA (1995)

4. Bhattacharya, K., Hull, R., Su, J.: A data-centric design methodology for business
processes. In: Handbook of Research on Business Process Modeling, chapter 23.
pp. 503–531 (2009)

5. Casati, F., Ceri, S., Pernici, B., Pozzi, G.: Conceptual modeling of workflows. In:
Papazoglou, M. (ed.) OOER ’95: Object-Oriented and Entity-Relationship Mod-
eling, Lecture Notes in Computer Science, vol. 1021, pp. 341–354. Springer Berlin
/ Heidelberg (1995)

6. Consens, M.P., Mendelzon, A.O.: Graphlog: a visual formalism for real life recur-
sion. In: Proceedings of the ninth ACM SIGACT-SIGMOD-SIGART symposium
on Principles of database systems. pp. 404–416. PODS ’90, ACM, New York, NY,
USA (1990)

7. David, Harel: Statecharts: a visual formalism for complex systems. Science of Com-
puter Programming 8(3), 231–274 (1987)

8. Dickson, G.W., DeSanctis, G.: Information Technology and the Future Enterprise:
New Models for Managers. Prentice Hall PTR, Upper Saddle River, NJ, USA
(2000)

9. Ellis, C.: Team automata for groupware systems. In: Proceedings of the interna-
tional ACM SIGGROUP conference on Supporting group work: the integration
challenge. pp. 415–424. GROUP ’97, ACM, New York, NY, USA (1997)

10. Engels, G., Groenewegen, L.: Towards team-automata-driven object-oriented col-
laborative work. In: Brauer, W., Ehrig, H., Karhumki, J., Salomaa, A. (eds.) For-
mal and Natural Computing, Lecture Notes in Computer Science, vol. 2300, pp.
247–255. Springer Berlin / Heidelberg (2002)

11. Hagen, C., Alonso, G.: Beyond the black box: event-based inter-process commu-
nication in process support systems. In: Distributed Computing Systems, 1999.
Proceedings. 19th IEEE International Conference on. pp. 450 –457 (1999)

12. Martinez-Moyano, I.: Exploring the dynamics of collaboration in interorganiza-
tional settings. Creating a Culture of Collaboration: The International Association
of Facilitators Handbook 4, 69 (2006)

13. Mller, D., Reichert, M., Herbst, J.: Data-driven modeling and coordination of large
process structures. In: Meersman, R., Tari, Z. (eds.) On the Move to Meaningful
Internet Systems 2007: CoopIS, DOA, ODBASE, GADA, and IS, Lecture Notes
in Computer Science, vol. 4803, pp. 131–149. Springer Berlin / Heidelberg (2007)



14. Neumann, J.V.: Theory of Self-Reproducing Automata. University of Illinois Press,
Champaign, IL, USA (1966)

15. Nurcan, S.: A survey on the flexibility requirements related to business processes
and modeling artifacts. In: Proceedings of the Proceedings of the 41st Annual
Hawaii International Conference on System Sciences. pp. 378–388. HICSS ’08,
IEEE Computer Society, Washington, DC, USA (2008)

16. Powell, A., Piccoli, G., Ives, B.: Virtual teams: a review of current literature and
directions for future research. SIGMIS Database 35, 6–36 (February 2004)

17. Reiter, R.: On closed world data bases, pp. 300–310. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA (1987)

18. Wieland, M., Kopp, O., Nicklas, D., Leymann, F.: Towards context-aware work-
flows. In: CAISE0́7 Proceedings of the workshops and doctoral consortium. Citeseer
(2007)


