
End-to-End Versioning
Support for Web Services
(This technical report has been
submitted to the SCC08 conference.)

Philipp Leitner, Anton Michlmayr,
Florian Rosenberg, Schahram Dustdar
leitner@infosys.tuwien.ac.at
michlmayr@infosys.tuwien.ac.at
florian@infosys.tuwien.ac.at
dustdar@infosys.tuwien.ac.at

TUV-1841-2008-1 March 11, 2008

Technical University of Vienna
Information Systems Institute
Distributed Systems Group

Software services are, just like any other software system,subject to per-
manent change. We argue that these changes should generallybe transpar-
ent to service consumers. However, currently consumers areoften tied to a
given version of a service and have no means of easily upgrading to a newer
version. In this paper we propose a WSDL-driven classification of Web ser-
vice change types and discuss a versioning mechanism for service-oriented
systems that considers revision management on registry- and client-side.
We use the concepts of service version graphs and selection strategies to
provide transparent end-to-end versioning support, and show how this ap-
proach is implemented in our service-oriented computing runtime VRESCo.
Furthermore, we illustrate the advantages of our approach in comparison
to the current state of the art using a realistic case study.

Keywords: SOA, Web Services, VRESCo, Versioning, Evolution

c©2008, Distributed Systems Group, Technical University of Vienna

Argentinierstr. 8/184-1
A-1040 Vienna, Austria
phone: +43 1 58801-18402
fax: +43 1 58801-18491
URL: http://www.infosys.tuwien.ac.at/

End-to-End Versioning Support for Web Services

Philipp Leitner, Anton Michlmayr, Florian Rosenberg, Schahram Dustdar
Distributed Systems Group

Vienna University of Technology
Argentinierstrasse 8/184-1, 1040 Vienna, Austria

lastname@infosys.tuwien.ac.at

Abstract

Software services are, just like any other software sys-
tem, subject to permanent change. We argue that these
changes should generally be transparent to service con-
sumers. However, currently consumers are often tied to
a given version of a service and have no means of easily
upgrading to a newer version. In this paper we propose
a WSDL-driven classification of Web service change types
and discuss a versioning mechanism for service-oriented
systems that considers revision management on registry-
and client-side. We use the concepts of service version
graphs and selection strategies to provide transparent end-
to-end versioning support, and show how this approach
is implemented in our service-oriented computing runtime
VRESCo. Furthermore, we illustrate the advantages of our
approach in comparison to the current state of the art using
a realistic case study.

1. Introduction

Software systems in the real world are subject to per-
manent change – vendors constantly add new functional-
ity or change the requirements of existing applications, and
strive to increase quality aspects such as reliability or se-
curity. This software adaptation process is usually referred
to as “software evolution”, and is subject to a vital research
community [1].

With the advent of service-oriented architectures
(SOA) [12] one could believe that evolution of services is
no longer an important issue since services have a dedicated
service contract and evolution aspects can be hidden from
the service requesters. However, all too often new require-
ments and environmental or technological changes still lead
to modifications of the contract. Clearly, such modifications
revive the problem of maintaining multiple versions of a
service. Additionally, new facets are added to the version-
ing problem in SOA environments. On the one hand, ser-

vice providers often want to provide several versions in par-
allel, offering specific variants to some customers or older
service versions for legacy applications. On the other hand,
some service requesters may want to access different ser-
vice versions in a uniform manner or even switch between
them at runtime, while others do not want to explicitly deal
with different service versions. Therefore, the main issue
besides managing multiple versions of a service in the reg-
istry is to provide a certain degree of version transparency
towards clients. The latter should be able to dynamically in-
voke different versions at runtime without having to modify
their code base.

In the current Web services stack service contract
changes require all service requesters to re-engineer their
applications to ensure that they conform to the new contract.
More precisely, current service registries such as UDDI [11]
and the ebXML registry [10] do not provide support for all
facets of service evolution. These registries use a flat ser-
vice model that does not consider service variants, or mul-
tiple versions of the same base service. Furthermore, the
issues of binding and mediating between different service
versions are not addressed by pure registry technologies at
all, and are left entirely to the service requesters. In con-
trast to these standards, we argue that managing Web ser-
vice evolution in an end-to-end fashion should be a core
feature of any real-world SOA solution.

The contributions of this paper are threefold: firstly, we
present a classification of various service change types; sec-
ondly, we introduce a general versioning approach to man-
age evolutionary changes in Web services within Web ser-
vice registries, and thirdly, we propose a client-side ap-
proach using proxies that enables transparent binding and
mediation between different versions of a service. We have
implemented our service versioning approach within our
VRESCO SOA runtime environment [8] and evaluate our
implementation based on a realistic, yet simple case study
from the telecommunications domain.

The remainder of this paper is structured as follows:
Section 2 discusses a classification of possible evolution-

1

Evolutionary Change

Interface Change

Add Operation Change Operation Signature

Change Operation
Name

Add Parameter

 Change Parameter List

Optional

Non-Functional Change Semantic Change

 Change Output

Change
Name

Remove
Parameter

Change
Parameter Add Parameter Remove

Parameter
Change

Parameter

Change
Type

Change
Name

Change
Type

Change
Name

Change
Type

Remove Operation

Mandatory
Changed

Parameter
Optionality

Figure 1. Version change classification scheme

ary changes of Web services and how these changes can
be managed, Section 3 introduces the VRESCO runtime
environment and explains how it supports end-to-end ver-
sioning concepts, Section 4 discusses the advantages of our
approach compared to a solution based on state-of-the-art
technology. Section 5 presents some related work in the
field, while Section 6 concludes the paper and gives an out-
look to future work.

2. Service Versioning Concepts

Web service evolution is the process of Web services
being advanced, adapted, and adjusted over time. In this
process, not only the newest revision1 will be available.
Service providers might often want to keep older versions
of their services online for some time to keep compliance
with existing clients. In this section we present a WSDL-
driven [17] taxonomy of possible changes of Web services,
discuss service version graphs as a means of representing
Web service evolution and explain how clients may operate
on these graphs.

2.1. Classification of Version Changes

A classification scheme for differences between Web ser-
vices has been proposed by Ponnekanti et al. [13]. They
specify four types of incompatibilities: structural, value,
encoding, and semantics. We base our taxonomy on their

1We use the terms version and revision interchangeably in this paper.

approach, but refined it to more closely relate to Web ser-
vice versioning instead of differences between independent
services. Another distinction is that we do not compare ser-
vice versions on SOAP [19] message level, but rather based
on their WSDL descriptions.

Before describing the types of changes, we have to de-
fine the concept of functional interfaces of services. The
functional interface contains all operations that are defined
in the services’ WSDL description. Every operation in the
functional interface consists of an operation name, a list of
parameters and an output. Both parameters and output con-
sist of a name and a type. Parameters may either be op-
tional or mandatory. All other properties of a service (e.g.,
the endpoint address, the WSDL encoding style, the policy
that has to be adhered to) are considered to be part of the
non-functional interface of the service.

Our classification scheme is shown in Figure 1. We
distinguish three top-level types of changes: (1) Non-
Functional Changes are all changes in the non-functional
interface of the Web service as defined above, (2) Interface
Changes represent all changes in the functional interface,
and (3) Semantic Changes cover all changes that are not
contained in the WSDL description of the service, such as a
changed understanding (but not changed structure) of oper-
ations, parameters or return values.

Interface Changes are relatively structured, so we give a
further breakdown of this change type in Figure 1. Non-
functional changes cover a wide range of aspect such as
QoS attributes (as described in [14]) and service policies.
It is important to note that not all non-functional changes

2

require the definition of a new service version. For ex-
ample, QoS attributes typically represent dynamic values
which change frequently and continuously, therefore, they
are not covered by service versioning. A complementary
approach that addresses service adaptation based on QoS is
described in [9].

In this paper, we do not cover semantic changes since
they would require a semantically annotated WSDL (as pro-
posed, for example, by SAWSDL [18]) which is currently
not available in real-world applications.

The different shades of gray in Figure 1 represent the
transparency of the change categories, and will be further
explained in Section 3.

2.2. Service Version Graphs

In order to manage Web service evolution, service reg-
istries need to store not only the service revisions itself, but
also how they relate to each other. We use the notion of
service version graphs to represent these dependencies. For
every service in the registry there is exactly one service ver-
sion graph. These graphs are directed, with nodes repre-
senting concrete revisions of the service, and edges repre-
senting predecessor-successor relationships. The semantics
of these relationships is that revision A is a predecessor of
revision B, if B is the result of changes in A. All revisions
in a service version graph refer to the same base service,
but are on different maturity levels and represent different
stages in the base service’s lifecycle.

Service version graphs may contain branches and
merges. Branches represent situations where two or more
variants of a base service evolve in parallel, for instance if
a special alternative service version with specific behavior
has to be created for a subset of users. Merge revisions con-
solidate two or more branches in the version graph into a
single trunk. In terms of graph theory, branch revisions are
defined by an out-degree greater than 1, while merge revi-
sions have an in-degree greater than 1.

In order to provide helpful information for the user, revi-
sions in the service version graph may be tagged. Generally,
a revision tag is a string attached to one or more service re-
visions that describes the revisions functionality, stability,
maturity level or any other functional or non-functional as-
pect.

Figure 2 exemplifies the service version graph for a
service named Service 2. A number of revision tags
(INITIAL, branch 1, branch 2, . . .) have been as-
signed to the graph to identify revisions. The revision
tagged STABLE is a branch revision; the branches are again
merged in revision LATEST.

Service 1 Service 2 Service 3

Services

Revisions

INITIAL

STABLE

HEAD, LATEST

branch_1

branch_2

branch_1

Figure 2. Service Version Graph

2.3. Version Transparency

Optimally, clients in a SOA should be version-
transparent – version selection, mediation between incom-
patible versions and automatic rebinding should be handled
automatically by the runtime environment. Clients should
be able to switch between versions freely, and invoke any
revision of the service without adapting the client code.

We envision that this version-transparency can be
achieved through service proxies. Proxies are bound to a
selection strategy and update their target revision whenever
there is a better match than their current target. Proxies are
responsible for mediating between the user-provided data
and the expected input of the target revision.

Selection strategies are queries on the service version
graph that use the defined revision tags and the inter-version
relationships to select the most appropriate service revision
for users. A user may, for instance, define a selection strat-
egy that always binds to the most recent revision in the
graph, to the latest stable one, or to a revision belonging
to a specific branch. Unlike one-time queries, this selec-
tion is monitored by the proxy – if the service version graph
changes (for instance because of the insertion of a new re-
vision) the result of the selection may also change, and the
proxy may update its target service to reflect this change.
We refer to this change in the proxies target service as dy-
namic rebinding. Dynamic rebinding is transparent to the
client – it can be safely assumed that the most appropriate
service according to the selection is invoked.

However, to fully utilize the concept of version trans-
parency it is necessary to turn away from the currently
prevalent RPC style of communication. Proxies are, there-
fore, accessed solely through a simple messaging interface:
clients invoke services by passing the service input as an
input message to the proxy, and the proxy answers with an
output message when the underlying service invocation is

3

finished. Typically the response message is delivered in a
non-blocking fashion. Using selection strategies and the
messaging paradigm the tedious details of service version-
ing can be handled entirely by the proxy.

3. Versioning Support in VRESCo

In the following section we explain how the con-
cepts introduced in Section 2 are implemented within our
VRESCO runtime environment.

3.1. VRESCo Runtime

We implemented and evaluated our service versioning
approach as part of the VRESCO (Vienna Runtime En-
vironment for Service-Oriented Computing) project. The
VRESCO runtime environment has been motivated in [8]
and aims at addressing some of the current challenges
in Service-oriented Computing research [12] and practice.
Among others, this includes topics related to service dis-
covery and metadata, dynamic binding and invocation, ser-
vice monitoring, Quality of Service (QoS) aware service
composition, service management and service notifications.
Besides this, another goal of the VRESCO project is to fa-
cilitate engineering of service-oriented applications by rec-
onciling some of these topics and abstracting from protocol
related issues.

VReSCO Infrastructure

Registry
Database

Publishing
Interface

Metadata
Interface

Query
Interface

Composition
Interface

Notification
Interface QoS Monitor

ORM
Layer

VReSCO
Client
Library

Client
Program

SOAP Query
Engine

Composition
Engine

Notification
Engine

Daios

SOAP

SOAP

Figure 3. VRESCo Overview

The base architecture of VRESCO is shown in Figure 3.
The VRESCO services are provided as Web services which
can be accessed either directly using the SOAP protocol, or
via the client library that provides a simple API for access-
ing the VRESCO services.

Services and associated metadata are stored in the reg-
istry database that is accessed using the object-relational
mapping (ORM) layer. Web services are published and
found in the registry using the publishing and querying ser-
vices. Integrated into the VRESCO system is a QoS mon-
itor as described in [14], which continuously monitors the
QoS values of services inside the registry, and keeps the ac-
cording QoS information in the registry database up to date.

Furthermore, the composition engine provides support for
composing services using QoS attributes, while the notifi-
cation engine is responsible for notifying subscribers when
certain events of interest occur.

To carry out the actual Web service invocations the
DAIOS dynamic Web service invocation framework [7] has
been integrated into the VRESCO client-side infrastruc-
ture. DAIOS decouples clients from the services they are
invoking by abstracting from service implementation issues
such as encoding styles, operations or endpoints. Therefore,
clients only need to know the address of the WSDL inter-
face describing the target service, and the input message
that should be passed to it; all other details of the target ser-
vice implementation are handled transparently.

3.2. Versioning Metadata

Current service registries such as UDDI do not provide
direct support for different versions of the same service.
In VRESCO, on the other hand, service versioning is ad-
dressed as a first-class concept within the registry. For each
service a set of metadata (i.e., data that describes the ser-
vice’s owner, its functionality and purpose) and a service
version graph (as defined in Section 2) is stored.

Versioning metadata (i.e., the relationships in the service
version graph) are defined by the service provider when
publishing new services or revisions. Our implementa-
tion does not enforce any specific rules about the degree
of change between two revisions in a service version graph.
Consequently, it is the provider’s decision whether the dif-
ferences between two service versions are so fundamental
that an entire new service should be created instead. How-
ever, every evolutionary change as per classification from
Section 2.1 mandatorily leads to the creation of either a new
revision or a new service. It is not possible to just “update”
the interface of an existing service without creating a new
revision, even though changes in the implementation of the
service are of course possible. However, any evolutionary
step may contain multiple discrete changes, i.e., the actual
difference between revisions may be arbitrarily complex.

Tag Description Assigned by
INITIAL The first version of this service VRESCO
STABLE A well-tested production-level service version provider
HEAD The most recent version in a branch VRESCO
LATEST The most recent version in the entire version

graph; implies HEAD
VRESCO

DEPREC The version is online for compatibility reasons,
but should not be used anymore (deprecated)

provider

OFF The version has been taken offline and is not
available anymore

provider

Table 1. Default revision tags

Establishing branch and merge revisions is also done by
the service provider by defining the appropriate relation-
ships in the service version graph. In this regard, our im-

4

plementation does not impose any further restrictions on
branching and merging, i.e., the service providers are free
to use branching and merging at their convenience.

VRESCO also supports the concept of revision tags.
Tags may either be default tags with a well-defined mean-
ing, or arbitrary strings. A list of default tags currently im-
plemented is given in Table 1. Some of these default tags are
assigned automatically by VRESCO (INITIAL, LATEST,
HEAD) while others (STABLE, DEPREC, OFF) have to be
assigned by the service provider.

3.3. Rebinding Proxies

The VRESCO client library implements the idea of re-
binding client proxies as described in Section 2.

Rebinding clients in VRESCO are to a certain degree
version-transparent – certain types of version changes can
be handled automatically by the runtime environment. That
means the same client code may be used to invoke all revi-
sions of the service as long as the difference of the two ser-
vice revision can be described using only such changes. We
refer to these special change types as transparent change
types. In the classification scheme of Figure 1 we have
marked all transparent change types using a light gray back-
ground. Change types with dark background are non-
transparent – the client code currently has to be adapted for
such changes. Types with white background are indefinite –
they contain both transparent and non-transparent changes.
In a nutshell all change types affecting only optional WSDL
parameters, as well as added operations or changed output
parameters can be handled transparently, while changes in
mandatory parameters are generally non-transparent. Non-
functional changes can be handled if the affected non-
functional feature is supported by the VRESCO dynamic
invoker. Semantic changes are currently out of scope and,
therefore, non-transparent. We plan to extend our work on
rebinding clients in order to transparently handle all func-
tional change types as part of our future work.� �
1 s t r i n g domain = ” NumberPor t ing ” ;
2 s t r i n g s e l e c t i o n =
3 ”QoS . ResponseTime < 500 and ”+
4 ” Tag . Name l i k e ’LATEST ’ ” ;
5 DaiosProxy r e b i n d i n g C l i e n t =
6 P r o x y F a c t o r y . G e t R e b i n d i n g C l i e n t (
7 domain , query , new P e r i o d i c R e b i n d i n g (5 0 0 0)
8) ;� �

Listing 1. Creating a rebinding client

We give an example of how to create a rebinding proxy
within the VRESCO system in Listing 1. The client binds
to a service of the domain ‘NumberPorting’ (within the
VRESCO registry services providing the same functional-
ity are grouped into domains) and chooses the most recent

version of a service that offers a measured response time
of less than 500 ms. Additionally, the client specifies a
rebinding strategy. The rebinding strategy indicates when
the rebinding proxy reconsiders the current binding. In the
example the client constructs a periodical rebinding proxy
with a rebinding interval of 5000 ms. A list of currently
implemented rebinding strategies is given in Table 2.

Strategy Description
Fixed The proxy never updates its binding
Periodic The proxy reconsiders its binding periodically
OnDemand The proxy reconsiders its binding on client requests
OnInvocation The proxy reconsiders its

binding prior to service invocations

Table 2. Rebinding Strategies

All rebinding strategies from Table 2 have their specific
advantages and disadvantages. Fixed proxies can be used
when rebinding is not desired in a specific scenario (e.g.,
because of existing contractual obligations). Periodic re-
binding causes constant overhead, but is inefficient if invo-
cations happen only sparsely whereas on demand rebinding
causes very low overhead but is not always accurate. Fi-
nally, on invocation rebinding is guaranteed to be accurate
but may seriously degrade the invocation time.

Invoker

 : VRESCoRegistryVRESCoProxy

create

query

return wsdl

[wsdl != current_binding] create Repeat periodically

soap_invoke

soap_response

TargetServiceClient

input_message

output_message

invoke

invocation_result

Figure 4. Periodic Rebinding Proxy

Figure 4 exemplifies the internal processing of a period-
ical rebinding proxy: the proxy is initialized with a domain,
a selection strategy and a rebinding interval. The proxy then
periodically queries the VRESCO registry according to the
rebinding interval, and checks if the current binding is still
accurate. If there is a new service which better matches
according to the selection strategy, the proxy discards the
current binding (i.e., destroys the current Invoker object)

5

and constructs a new Invoker pointing to the new service.
If the client finally initiates a service invocation by passing
an input message to the proxy it forwards the request to the
invoker, which dynamically constructs an invocation fitting
to the service using the client input data, fires the invoca-
tion, receives the result and asynchronously passes it back
to the client.

Mediation between the client message and service inter-
face happens in the dynamic invocation phase and is han-
dled by the invoker. More details on this dynamic invoca-
tion mechanism can be found in [7].

4. Evaluation

To demonstrate our approach to Web service versioning,
we use a case study from the telecommunications domain
which is derived from [8].

4.1. Case Study

In this paper we consider a telecommunications provider
(TELCO) that provides a telephone number porting Web
service to its competitors. In its beginning, the service was
implemented using the state of the art technology of that
time (i.e., JAX-RPC using Apache Axis2). In these days,
the interface was intentionally kept basic, including only
the number to port and the new provider as input, and a
confirmation of the successful porting operation as output.

However, not all potential users of the service (i.e., other
providers) were satisfied with the simple service interface:
some providers’ business processes intended to send addi-
tional customer information (e.g., name, address), and in
some special occasions, an indirect port via a third party
was necessary. After some discussion, a new variant of the
service was created with an extended interface that included
this additional information.

Even worse, after a company merge the new IT manage-
ment of the TELCO decided to switch to Microsoft’s .NET
platform. Both service flavors were, therefore, ported to
.NET and the Windows Communication Foundation (WCF)
platform3, a step that was not received benevolently by all
users of the service. It was, therefore, agreed to keep the
original JAX-RPC services online for some time.

Both variants of the service had to be adapted one more
time – the initial definition of the confirmation turned out to
be too limited, and had to be expanded. A new field con-
taining additional textual description was, therefore, added.

Eventually, a last evolutionary step was necessary: num-
ber porting was getting more and more popular over time,
and the server hosting the number porting partner services

2http://ws.apache.org/axis/
3http://wcf.netfx3.com/

could not deal with the load; the original server was there-
fore replaced by a more powerful service host. However,
the old server was kept online as a fallback solution for the
not yet fully tested new machine.

TELCO Number
Porting Service

v1, INITIAL, STABLE, jaxrpc

v2, alt, jaxrpc

v4, alt, wcf

v6, HEAD, LATEST, wcf

v3, wcf

v5, HEAD, alt, wcf

Figure 5. Scenario implementation

Figure 5 illustrates this case study using the notions in-
troduced in Section 2. The service version graph in this
figure contains the six distinct service revisions, which are
arranged in two different branches. A number of revision
tags have been added to the various revisions: jaxrpc or
wcf to describe the technological platform, alt to identify
services of the alternate branch, and HEAD to specify the
most recent versions in both branches. The first version is
tagged STABLE. The tags v1 to v6 have been introduced
to serve as human-readable version identifiers.

In Table 3 the changes from our case study are catego-
rized according to the classification from Section 2. It is
important to note that all these changes are transparent.

Base Revision New Revision Change Type
v1 v2 Added optional parameters
v1 v3 Non-Functional Change (platform change)
v2 v4 Non-Functional Change (platform change)
v4 v5 Changed output type
v3 v6 Non-Functional Change (server relocation)

Table 3. Version differences

In order to evaluate our service versioning scheme and
to demonstrate its advantages, we apply this case study to
compare our approach to established state of the art technol-
ogy: we use UDDI to store and manage the different ver-
sions of the number porting Web service, and the Apache
Web Service Invocation Framework WSIF4 to carry out
Web service invocations.

4.2. Registry Versioning Support

Supporting different versions of the same service is no
built-in feature of UDDI. Storing a version graph such as

4http://ws.apache.org/wsif/

6

the one discussed in our case study, therefore, demands for
suitable and agreed conventions on how to represent the
the graph in the flat UDDI registry structure (see for in-
stance [2]).

Using such a solution versioning is actually implemented
on client-side. From a UDDI registry perspective, all ser-
vices are completely independent; it is the client who de-
cides based on conventions which revisions belong to the
same base service, and how the revisions are interrelated.
Given that service versioning clearly is a registry issue this
is no good separation of concerns, and complicates the im-
plementation of the client. Another evident disadvantage of
this solution is that all clients of the UDDI registry need to
have the same understanding of the representation conven-
tions used in the registry.

With VRESCO none of these problems arise since
versioning is explicitly handled by the SOA runtime.
VRESCO clients to not need to care about versioning is-
sues or conventions, but can rely on the SOA runtime to
bind them to the most appropriate service revision, based
on their selection strategy.

4.3. Dynamic Invocation

Implementing a dynamic Web service client that is able
to invoke services discovered at run-time (e.g., by query-
ing a registry) is not easy with current technologies such as
Apache WSIF [7]. Even though WSIF provides a dynamic
(stubless) interface it still needs service- and revision-
specific information: the WSDL description address and the
functional interface of the service. The WSDL address can
be retrieved directly from the registry, but the functional
interface needs to be parsed from the WSDL description
manually prior to constructing the actual invocation which
is rather cumbersome and error-prone.

What is even more problematic is WSIF’s often dis-
cussed inability to dynamically invoke services that take
complex XML types as parameter or return such. In our
case study we use complex types to represent service inputs
and outputs, and so do most real-life business Web services.
Consequently, WSIF clients are usually hard-wired to a cer-
tain pre-selected service revision using compiled stubs. If
the client application has to be migrated to a different re-
vision a re-engineering of the client application is neces-
sary. Switching service revisions (for instance upgrading to
a newer version) is not possible at run-time.

VRESCO, on the other hand, needs only the WSDL ad-
dress to construct a dynamic frontend to any revision of the
service. Since all changes in our case study are transpar-
ent it is possible to use the same client code to invoke any
revision of the number porting service. Migrating the appli-
cation to a different version or branch in the service version
graph is only a question of selecting and binding to a dif-

ferent revision, the actual invocation does not need to be
changed at all. Furthermore, XML complex types do not
pose a problem for our implementation.

4.4. Dynamic Rebinding

One of the core features of the VRESCO versioning sup-
port is its ability to decouple service clients from the con-
crete service version they are using by means of version-
transparent proxies. Therefore, in our approach clients
can switch between different versions at runtime, without
adaptation of the client code. Neither Apache WSIF nor
UDDI support similar concepts. In order to simulate such
functionality using these technologies the client application
would have to handle all low-level issues of service ver-
sioning and dynamic rebinding (i.e., permanent polling of
the registry, the actual rebinding process) itself.

5. Related Work

The evolution of Web services is subject to a wide rang-
ing debate. The World Wide Web Consortium recently paid
attention to versioning of Web services [16, 17]. Currently,
a common workaround to deal with the lack of versioning
support is to use separate namespaces for each version of a
Web service.

The general problem of versioning of distributed soft-
ware systems is sketched in [15] where the author distin-
guishes between Distributed-Object Versioning and Mes-
saging Versioning. Even more generally, Web service evo-
lution can be considered a special case of the Software
Configuration Management (SCM) problem, which has al-
ready been extensively researched [4]. Therefore, we have
adopted many notions from SCM (e.g., revisions, branch-
ing and merging, revision tagging) in our service evolution
approach.

One approach that addresses Web service evolution has
been introduced by Kaminski et al. [6]. The authors outline
various requirements for versioning, and demonstrate why
common versioning strategies are inappropriate in the con-
text of Web services. Instead they propose to use the Chain
of Adapters pattern [5] for developing evolving Web ser-
vices.

Ponnekanti et al. [13] address the interoperability among
independently evolving Web services The authors introduce
static and dynamic analysis algorithms to identify compat-
ibility between applications and non-native services, and
present tools that implement these algorithms. Moreover,
they introduce so called “cross stubs” for resolving incom-
patibilities.

Current registry standards provide only little support
for evolving Web services. The ebXML versioning ap-
proach [10] is based upon the versioning extensions of Web-

7

DAV [3], but provides only a small subset of this function-
ality. If the ebXML registry supports versioning, all reg-
istry items are implicitly under version-control. However,
it should be noted that ebXML mainly focuses on version-
ing of registry data but it remains unclear how clients can
access specific service revisions.

In contrast to ebXML, the UDDI specification [11] does
not mention service versioning at all. One common ap-
proach to use versioning in UDDI is based on the prereq-
uisite that a given version of a wsdl:portType should
be represented by a unique tModel. Current best practices
for service versioning using UDDI are described in [2].

6. Conclusion

Factors such as new requirements or platforms, or the
need to correct faults in previous releases, cause software
systems to evolve over time, and new versions of systems
to be released. In service-oriented computing, versioning
represents an even more important issue since changes in
services usually directly affect service requesters. In this
paper, we presented a general approach to versioning of
service-oriented systems using service version graphs and
selection strategies, and demonstrated how this approach
is implemented in our VRESCO service runtime environ-
ment. Our approach leverages the dynamic invocation
mechanism of VRESCO that enables to invoke different
versions using transparently rebinding service proxies. We
illustrated the advantages of our approach in comparison
to UDDI and Apache WSIF using a case study from the
telecommunications domain.

As part of our future work we plan to further extend the
concept of dynamic rebinding – currently only a subset of
all possible interface change types can be handled trans-
parently. Other changes still require adaption of the ser-
vice client code, which is often undesired. We therefore
want to enhance the VRESCO versioning model to sup-
port not only inter-version relationships, but also the actual
version deltas (i.e., differences between revisions), in order
to be able to implement full run-time mediation for non-
transparent changes.

References

[1] K. H. Bennett and V. T. Rajlich. Software Maintenance and
Evolution: A Roadmap. In ICSE ’00: Proceedings of the
Conference on The Future of Software Engineering, pages
73–87, New York, NY, USA, 2000. ACM.

[2] K. Brown and M. Ellis. Best Practices for Web Ser-
vices Versioning, 2004. http://www-128.ibm.
com/developerworks/webservices/library/
ws-version/ (Last accessed: January 14, 2008).

[3] G. Clemm, J. Amsden, T. Ellison, C. Kaler, and J. White-
head. Versioning Extensions to WebDAV (Web Distributed

Authoring and Versioning), 2002. http://www.
webdav.org/deltav/protocol/rfc3253.html
(Last accessed: Jan. 14, 2008).

[4] R. Conradi and B. Westfechtel. Version Models for Soft-
ware Configuration Management. ACM Computing Surveys,
30(2):232–282, 1998.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Professional, 1995.

[6] P. Kaminski, H. Müller, and M. Litoiu. A Design for Adap-
tive Web Service Evolution. In Proceedings of the Inter-
national Workshop on Self-Adaptation and Self-Managing
Systems (SEAMS’06), pages 86–92, New York, NY, USA,
2006. ACM Press.

[7] P. Leitner, F. Rosenberg, and S. Dustdar. Daios – Efficient
Dynamic Web Service Invocation. Technical Report TUV-
1841-2007-01, Vienna University of Technology, 2007.

[8] A. Michlmayr, F. Rosenberg, C. Platzer, M. Treiber, and
S. Dustdar. Towards Recovering the Broken SOA Trian-
gle – A Software Engineering Perspective. In Proceedings
of the Second International Workshop on Service Oriented
Software Engineering (IW-SOSWE’07), pages 22–28, Sept.
2007.

[9] O. Moser, F. Rosenberg, and S. Dustdar. Non-Intrusive
Monitoring and Adaption for WS-BPEL. In Proceed-
ings of the 17th International World Wide Web Conference
(WWW’08), Beijing, China, Apr. 2008. to appear.

[10] OASIS International Standards Consortium. ebXML Reg-
istry Services and Protocols v3.0, Mar. 2005.

[11] OASIS International Standards Consortium. Universal De-
scription, Discovery and Integration v3.0 (UDDI), Feb.
2005.

[12] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann.
Service-Oriented Computing: State of the Art and Research
Challenges. IEEE Computer, 11, 2007.

[13] S. R. Ponnekanti and A. Fox. Interoperability Among In-
dependently Evolving Web Services. In Proceedings of the
5th ACM/IFIP/USENIX International Conference on Mid-
dleware (Middleware’04), pages 331–351, New York, NY,
USA, 2004. Springer-Verlag New York, Inc.

[14] F. Rosenberg, C. Platzer, and S. Dustdar. Bootstrapping Per-
formance and Dependability Attributes of Web Services. In
Proceedings of the IEEE International Conference on Web
Services (ICWS’06), Chicago, USA, Sept. 2006.

[15] S. Vinoski. The More Things Change IEEE Internet
Computing, 8(1):87–89, 2004.

[16] World Wide Web Consortium. Extending and Versioning
Languages, July 2006. http://www.w3.org/2001/
tag/doc/versioning-20060726.html (Last ac-
cessed: January 14, 2008).

[17] World Wide Web Consortium. Web Service Descrip-
tion Language (WSDL) Version 2.0 Primer, Mar. 2006.
http://www.w3.org/TR/wsdl20-primer/ (Last
accessed: January 14, 2008).

[18] World Wide Web Consortium (W3C). Semantic Annotations
for WSDL and XML Schema, 2007. http://www.w3.
org/TR/sawsdl/ (Last accessed: Jan. 23, 2008).

[19] World Wide Web Consortium (W3C). Simple Object Access
Protocol v1.2 (SOAP), 2007. http://www.w3.org/
TR/soap/ (Last accessed: Jan. 23, 2008).

8

