
Application-Level Performance Monitoring of Cloud Services Based on the
Complex Event Processing Paradigm

Philipp Leitner, Christian Inzinger, Waldemar Hummer, Benjamin Satzger, Schahram Dustdar
Distributed Systems Group

Vienna University of Technology
Argentinierstrasse 8/184-1, 1040 Vienna, Austria

{lastname} @ infosys. tuwien.ac. at

Abstract

Monitoring of applications deployed to Infrastructure­

as-a-Service clouds is still an open problem. In this paper,

we discuss an approach based on the complex event

processing paradigm, which allows application developers

to specify and monitor high-level application performance

metrics. We use the case of a Web 2.0 sentiment anal­

ysis application to illustrate the limitations we currently

experience with regard to cloud monitoring, and show

how our approach allows for more expressive definitions

of monitored metrics. Furthermore, we indicate how the

higher-level metrics produced by our approach can be

used to increase application elasticity in an existing cloud

middleware.

I. Introduction

Current industrial software engineering practice is see­

ing substantial interest in the novel concept of cloud

computing [1] as a virtualization layer, which enables

applications to dynamically scale up and down as required

by current workload. This model is often referred to

as elastic computing [20]. Elastic computing unlocks a

plethora of advantages for application providers, including

cost savings and greener IT because of reduced energy

consumption. All of these advantages come down to

preventing over-provisioning of IT resources by closely

monitoring demand and acquiring only those resources

strictly required for the application to perform on the

targeted quality level.

Hence, it is evident that powerful monitoring facilities

are at the heart of elastic computing in the cloud. Trivially,

monitoring is always important for complex, distributed,

enterprise-scale applications, simply to enable business

analysts and engineers to reason about the effectiveness

and economics of the application. However, in elastic

cloud computing, monitoring becomes even more relevant,

as it forms the basis, on which all other advantages of

the model are built upon - without means to correctly

assess the current resource demands of an application, all

the dynamicity of the cloud is of little use. In a way,

monitoring delivers the knowledge that is required to make

scaling decisions with confidence.

Unfortunately, monitoring of applications running in the

cloud is currently under-researched, as compared to related

areas, e.g., cloud provisioning [11], scheduling [24] or

monitoring of the cloud infrastructure itself [10]. Industrial

solutions focus on low-level metrics, such as CPU uti­

lization, memory consumption or network bandwidth. We

argue that these metrics, while undoubtedly relevant, do

not fully capture the actual performance of the application.

Instead, applications should be monitored with regard to

how well they perform the tasks they were designed for. To

give an example, for a Customer Relations Management

application provided via the Software-as-a-Service (SaaS)

model, a reasonable performance metric is how long it

takes for a customer to generate the reports he is interested

in, or how many customers can access the application in

parallel. Another fundamental advantage of such higher­

level metrics is that they can be used as the basis of

expressive service level agreements (SLAs). It is clear

that these higher-level, application-specific performance

measures are somehow connected to the primitives, such

as CPU load, but these connections are not easy to derive

or express.

In this paper, we introduce a framework for collecting

such application-level performance metrics. We disucss

our framework based on the earlier presented Cloud Scale

toolkit for building cloud applications [6], and propose a

monitoring infrastructure that uses the complex event pro­

cessing (CEP) paradigm [8]. We discuss how metrics are

defined based on event streams, which types of events can

be used, and how these events are correlated. Furthermore,

we illustrate how such rich monitoring information can

based used to schedule up- and down-scaling of virtualized

resources within CloudScale.

The remainder of this paper is structured as follows.

We start off with an illustrative scenario in Section II,

which will help further motivate our work. Section III

contains some essential background information about the

CloudScale framework, which forms the frame of the

following contributions. Section IV introduces the event­

based monitoring framework, which is the main scientific

contribution of this paper. We provide an initial numerical

evaluation of our monitoring infrastructure in Section V,

and, in Section VI, compare our results with related

research. Finally, we conclude the paper with a summary

and an outlook on future work in Section VII.

II. Illustrative Scenario

To illustrate the ideas of this paper, we use the case of

a company providing Web 2.0 sentiment analysis [15] via

a SaaS model. In essence, the company allows customers

to register with their service, from which point onwards

the company will monitor various social networks for

positive as well as negative remarks about the customer and

its products. Registered customers can query for detailed

reports, which are generated on demand and include near

real-time data from fast-moving social networks, such as

Twitter.

Customer 1 .. " query
......... ,P"=.------.

Customer 2
'@HIT query

�
Customer 3 register

•• po

r-------------: Resource Pool , , , I Request ------t Processor , , , , , , ,
� : Request

C/) -. Processor

Sentiment Database
Cluster

u···u

u
I "- � _________________ _

"",,:� -�� � � � �= = == = = - - - - - - - - - - - - - -J_ --------1
" : Resource Pool : , , , , , , I Data Processor Data Processor ••• Data Processor I , , , ,

1- ______________________________________ I

t t
Data Intertace

/ new data �
new data / / /

_II
!t:Wi��� 7

t

!newdata

Figure 1: Sentiment Analysis Scenario Overview

To minimize infrastructure costs, and in order to seam­

lessly scale up and down depending on current load, the

sentiment analysis application is hosted entirely using the

Amazon Web servicesl (AWS) public cloud. An architec­

tural overview of the application is given in Figure 1. The

application is essentially split in two parts. On the one

hand, a customer-facing interface abstracts from a dynamic

number of cloud hosts handling customer requests (e.g.,

queries and registration requests). These hosts implement

the sentiment analysis business logics, and operate on

a cluster of database instances implemented using Ama­

zon's Relational Database Service (RDS). This database

is mainly filled by the second part of the application, a

data-facing interface, which retrieves real-time data from

various social networks. This data is pre-processed by data

processing cloud hosts. Pre-processing includes tasks such

as stemming or stop-word removal.

Metric Name Description Interface
Data-per-second Avg. number of new data items Data lntf.

processed per second
Time-per-data Avg. time (in ms) necessary to Data lntf.

process a single new data item
Time-to- Avg. time required to get the SaaS lntf.
sentiment sentiment on a given keyword
Time-to-report Avg. time required to generate SaaS lntf.

a report
Time-to-register Avg. time required to register SaaS lntf.

a new customer
Deployment- Total costs of the used Ama- All
costs-per-month zon resources per month

Table I: Example Application-Level Metrics for the Senti­

ment Analysis Application

In the context of this application, we can think of

various meaningful application-level monitoring metrics.

Some examples are given in Table I. Clearly, these metrics

are not necessarily on the same level of abstraction, and

some of the metrics depend on each other, e.g., there is

a clear relationship between data-per-second and time-per­

data. However, all of these metrics have relevance in the

business domain of the application, and, together, they

deliver a more accurate of view of the current performance

of the application than just looking at, for instance, the av­

erage CPU load of the cloud hosts running the application.

These metrics allow us to define policies for the scaling

behavior of the application, e.g., by defining that the

request processor resource pool needs to be increased if the

metrics concerning the SaaS interface are too high. The last

metric in Table I differs from the others, in the sense that

this metric does not really consider the performance of the

application, but the costs of delivering this performance.

Such metrics are often interesting, because real applica­

tions usually cannot be scaled up indefinitely, as there

is a cap on how much the provider of the application is

realistically able and willing to pay for her infrastructure.

I http://aws.amazon.com/

III. Background

While the concepts discussed in this paper are gen­

eral (i.e. , can also be used for other cloud frameworks

and applications), our discussion is mostly based on the

CloudScale middleware for transparently scaling Java ap­

plications [6]. The overall idea of CloudScale is to use

the concept of aspect-oriented programming (AOP) to

dynamically modify the bytecode of executed applications,

and transparently move designated parts of the application

(so-called cloud objects) to different virtual resources in

the cloud (so-called cloud hosts). These runtime changes

are invisible for the application developer. The general

procedure, which follows the Broker pattern, is sketched

in Figure 2.

5: co = 100kupCO(p)

Figure 2: CloudScale Interaction (Adapted from [6])

One of the main tasks (and benefits) of CloudScale is

that the framework takes over the management of virtual

cloud resources (e.g., virtual machines to run the code

on) entirely, as well as the mapping of incoming requests

to the (typically replicated) processing instances [7]. To

this end, CloudScale requires sophisticated means to track

the performance of the application, to decide if more or

less resources should be acquired from the cloud. These

decisions are governed by scaling policies, user-defined

and application-specific rules, which decide, based on

monitoring data, whether the current resources assigned to

a specific type of cloud object are adequate. Please refer

to the original publication for more details [6].

This initial version of CloudScale enabled scaling poli­

cies only on very limited, system-level, performance met­

rics, such as the current CPU load on cloud resources. This

makes writing meaningful scaling policies very compli­

cated for application developers, as it is not clear without

extensive experimentation what CPU loads are actually op­

timal for different cloud objects in an application. Instead,

application developers would actually like to write scaling

policies based on meaningful higher-level metrics, such as

the responsiveness of their application for certain time­

critical operations. Hence, this paper will discuss how we

designed an event-based monitoring infrastructure, which

delivers exactly this sort of expressive monitoring data.

This data can then be used in scaling policies, but is also

relevant as-is. For instance, the monitoring data can also

simply be displayed to a human operator in form of a

dashboard.

IV. Event-Based Monitoring of Cloud Appli­

cations

In the following, we discuss an approach to extend an

existing cloud middleware (CloudScale) with event-based

monitoring facilities. However, we argue that the presented

approach is general, in the sense that the same architecture

can also be implemented in other middleware, or even

in cloud applications built from scratch (i.e. , without any

explicit middleware support).

Application

Application
Process

CloudScale
Middleware

r- ---------------------------- ,
: Resource Pool 2 : , , , , , ,

������' i l��"'1�1�0�t3 i , ,

Key

Cloud Host (Virtual Resource)

• Cloud Object

I � I Complex Event Processing

, ,
!.. ____________________________ J

Resource Pool

Local Communication

Communication via Event Bus �

Figure 3: Monitoring Overview

A. Overview

Overall, our monitoring approach is based on the no­

tions of event-based monitoring and CEP. To this end, the

idea is that various relevant components in the system emit

events, which indicate their current status (e.g., that a new

cloud object has been deployed, or that a cloud object

has started to execute a given method). We refer to these

components as event emitters. Important event emitters

include cloud objects, cloud hosts or the cloud middleware

itself, but, in principle, any Java code executed in the cloud

can act as an event emitter by writing into the respective

event stream. The events produced by those event emitters

are then processed into higher-level knowledge using CEP

techniques (a process that we refer to as event correlation

,-----------� : Event : �m __ ,,_m_J
:--P-r;d;fin-ed--�L: _______ J:L-_____________ j"-----------�
l----�rmT l_��s���_�v_e��j

,m_Jm __
I Resource Pool :
t ____ �ve�� ____ :

Figure 4: Monitoring Event Hierarchy

in this paper). Finally, monitoring metrics are defined on

top of these higher-level complex events. For performance

reasons, events are correlated in multiple steps.

Figure 3 sketches the architecture of our proposed

monitoring system. Following the CloudScale notion, an

application is split into a client application which delegates

processing-intense tasks to various virtualized cloud hosts.

Logically, these cloud hosts are grouped into resource

pools. Each cloud host is executing an arbitrary number of

cloud objects. Each component in the architecture can act

as event emitter. Locally, events are transported via simple

API calls. However, for remote communication (e.g., to

send an event from a cloud host back to the application),

we use an event bus, e.g., a Java Messaging Service (JMS)

implementation or a cloud message queuing service, such

as Amazon's Simple Queue Service (SQS). The produced

events are correlated on three levels. (1) Firstly, events

emitted on a host are correlated locally. This includes

events emitted by cloud objects and this cloud host. This

step is referred to as host correlation. (2) The next

correlation step is on resource pool level (resource pool
correlation), which mainly correlates events generated

by host correlation, enriched by additional new events,

e.g., events emitted on resource pool level. (3) Finally,

the last and most important correlation step is in the

application process itself, where all remaining events are

used to produce actual metric values, which are then

stored persistently into a metrics database. We refer to

this final correlation step as metric correlation. All these

correlation points are technically implemented by different

CEP engines. However, in some cases, it may make sense

to use one physical engine as implementation of e.g., a host

correlation point and a resource pool correlation point at

the same time. This is particularly true if different queries

are operating on the same event streams, which allows

query co-locating [2]. Values in the metrics database can

be used in scaling policies, to govern the elasticity behavior

of the application (or simply displayed in a dashboard for a

human operator). Both, host and host pool correlation, are

optional (i.e. , in a given application, it is not required to

actually use these levels - an application can also just pass

on all received events to the next level). Contrary, metric

correlation is mandatory, as this step actually produces

usable monitoring values from the event stream.

B. Monitoring Event Hierarchy

As indicated in Section IV-A, the basic building block

of our monitoring approach are the events generated by

event emitters. Hence, Figure 4 depicts the event type

hierarchy of all currently available abstract and concrete

event types. On the most fundamental level, events can

be either predefined or custom. In the current version,

our approach considers a set of 15 of the most important

runtime events, including lifecycle events for hosts and

resource pools, as well as a number of events considering

the state of cloud objects. These events are triggered, for

instance, when cloud objects start to execute, finish, or

fail. This set of predefined events is comparable to the

available monitoring events in related systems [3], [12].

All predefined events have an event payload consisting

of event-specific additional information. For instance, the

Execution Started Event carries the unique iden­

tifier of the executing cloud object, the name of the method,

the parameters of the method, and a generated unique

execution identifier as additional parameter. In Figure 4,

these additional details are omitted for clarity.

Via the placeholder of custom events, application de­

velopers can integrate any application-specific events. This

allows developers to extend the monitoring event hierarchy

10

public class MyEventEmitter {
@EventSink
MonitoringEventSink eventSink;

pri vate void triggerEvent () {

}
CustomEvent myEvent = new TweetProcessedEvent (...);
eventSi nk. emitEvent (myEvent);

Figure 5: Triggering Custom Events

in any way they see fit. For instance, in the sentiment

analysis case, a developer may emit a custom Tweet

Processed Event whenever the application has suc­

cessfully imported a tweet from Twitter, with the unmod­

ified as well as the stemmed tweet text as payload.

Practically, our framework allows for custom events to

be triggered in two alternative ways. Firstly, and more

commonly, the CloudScale framework allows to inject

an event sink into cloud objects using the well-known

Dependency Injection pattern. The listing in Fig­

ure 5 exemplifies the procedure. All events need to subclass

the abstract Java class CustomEvent. Events published

over injected event sinks are automatically available for

correlation on all levels. However, this approach is not

available to applications not executing within a CloudScale

environment. However, such applications can still trigger

custom events by writing events directly into the event

bus, e.g., by looking up the correct JMS event queue

and writing to it. Such events are available for metric

correlation only.

C. Defining Correlation and Metrics

Emitting the basic events described in Section IV-B is,

of course, only half the story. These events still need to

be aggregated, processed and, potentially, enriched with

external data to generate useful monitoring metrics. To this

end, application developers define so-called correlations
and metrics. Correlations are named CEP statements,

which are executed in defined correlation points (see

Figure 6). Potential correlation points are indicated by the

"Complex Event Processing" symbols in Figure 3, e.g., for

a specific host, or for a specific resource pool. Correlations

essentially filter and aggregate low-level events, so that not

every single event emitted anywhere in the system needs to

be sent to and evaluated directly in the application process.

As a convention, each event of a type not used in any

correlation is forwarded without modification. That means

that, if no correlations are defined, all events are simply

passed on to the next correlation level.

In essence, metrics are extended correlation definitions.

Metrics are always executed in the same correlation point

Correlation
-Name
• CEP Statement
- Correlation Point

Metric
-Name
• CEP Statement
• Postprocessing Script
• Type
• Range

Monitoring Value
-Metric Name
• Value
-Timestamp

Figure 6: Definition of Correlations and Metrics

(that is, in the final correlation step in the application).

Furthermore, the result of the correlation of metric def­

initions is not forwarded, but used directly as input to

metric calculation. Hence, metrics contain, as additional

definitions, a script which is to be applied to the final

complex events, as well as the type and range of the result.

Postprocessing scripts can be trivial (e.g., simply extract­

ing some event properties) or rather complex, querying

external data sources (e.g., a pricing service delivering the

current per-instance costs of the cloud infrastructure) and

enriching the collected data. The purpose of these scripts

is to convert the final complex events to actual monitoring
values. Monitoring values refer to a metric, and consist of

the actual value (e.g., an integer) and a timestamp (see also

Figure 6). This data is then saved to the metrics database

for further usage.

D. Scheduling Based on Monitoring Values

In the context of our work, the main use for monitoring

values is to enable expressive scheduling policies, which

make sure that the application only holds the virtual

resources that are strictly required. Here, we briefly ex­

emplify scheduling policies operating on this monitoring

data, to give the reader an idea about possible usage of

application-level monitoring in cloud environments.

Scheduling policies take the form of, usually relatively

simple, event-condition-action (ECA) rules. The triggering

event is generally the reception of a new monitoring

value of a given type. The condition usually uses the

monitoring value, often to check if it is in a specific target

range. Finally, the action is mostly to either increase or

decrease the number of hosts in a given resource pool. An

illustrative (and simplified) scaling policy is given in the

listing in Figure 7.

rule ' Add-Data-Processing-Node'

i f time-per-data > 2ms
then addHost(' dataProcPool',

, dataProcHost')

Figure 7: Example ECA-Based Scheduling Policy

Evidently, practical problems, such as detecting con­

flicting rules or preventing oscillation (i.e. , continuously

triggering up- and down-scaling in short order) need to be

considered, however, these aspects are out of scope for this

paper.

E. Case Study Examples

To further illustrate how correlations and metrics can

practically be defined, we now present two example met­

rics based on the sentiment analysis scenario. In these

examples, we use the Esper2 CEP engine for event cor­

relation.

Firstly, let us look at a potential implementation

of the metric "Time-Per-Data" (as hourly average), as

listed in Table I. We define this metric as the av­

erage time between matching Execution Started

Event and Execution Finished Events fur ilie

method DataProcessor. processDataltem (...)

in any given hour. These events are two predefined

events, as discussed in Section IV-B. The listing in Fig­

ure 8 firstly shows a correlation statement (in Esper

Processing Language, EPL, notation), which generates a

ProcessingTimeEvent for each processed data item

(lines 1-9). The correlation is executed in the application,

i.e. , the metric correlation point is used. Afterwards, the

second statement (lines 11-l3) defines the actual metric

based on this stream of complex events produced by the

previous correlation (as the average over a time window of

one hour). In this simple example, the postprocessing script

of the metric will simply extract the value "TimePerData".

The type of this metric is decimal, and the range is [0; 00] .

10

II carre/alion stalemenl (metric carr
insert into ProcessingTimeEvent
select (f. timestamp - s.timestamp) as processingTime ,

f. execlltionld as execlltionld
from ExeclltionStartedEvent. win: length (10000) s,

ExecutionFinishedEvent . win: length (10000) f
where s. class Name = ' DataProcessor' and

s. method = • processDataltem' and
s. execlltionld = f. execlltionld

11 II metric definition
12 select avg(processingTime) as TimePerData

13 from ProcessingTi meEvent. win: ti me_batch (I hour)

Figure 8: Definition of Time-per-Data Metric

Secondly, we want to implement the "Data-Per-Second"

metric. Let us assume that there are two types of data

items, Twitter tweets and Facebook status updates. Both

are processed by different resource pools. Whenever a data

item is successfully processed, the application developer

emits custom Tweet or Status Processed Events,

respectively. We follow again a two-step approach. How­

ever, this time, we execute a correlation on resource pool

level, to aggregate the tweets and status updates for each

2http://esper.codehaus.org/

resource pool (see first statement in Figure 9). The metric

definition (second statement in the figure, lines 10-l3) can

then simply sum up these preliminary results from the two

resource pools. The script which defines the metric utilizes

the Esper pattern matching facility. The type of the metric

is integer, and the range is [0; 00] .

II correlation statement (resource pool carr.)
insert into TweetsPerSecondEvent
select count(t) as counter

from TweetProcessedEvent. win: time_batch (I sec) t

II assume StatusesPerSecondEvent is defined
II analogously for status updates

II metric definition
10 select (t .counter + s.counter) as DataPerSecond

11 from pattern [every (
12 s=StatllsesPerSecondEvent and t=TweetsPerSecondEvent

13)]

Figure 9: Definition of Data-per-Second Metric

V. Evaluation

In this section, we discuss a preliminary numerical

evaluation of our ideas. We have executed our experiments

in a private cloud setting, consisting of a cloud controller

and five compute nodes, each running on a dedicated Dell

blade server with two Intel Xeon E5620 CPUs (2.4 GHz

Quad Cores) and 16 GByte RAM. This private cloud

has been set up using the open source Infrastructure­

as-a-Service middleware Openstack3. The evaluation is

conducted using a total of 14 compute instances with the

following configurations: one instance hosts an Apache

ActiveMQ4 messaging service (4 VCPU, 8GB RAM), one

instance hosts the application process gathering monitoring

data (4 VCPU, 8GB RAM), and twelve worker instances

emit events (2 VCPU, 4GB RAM).

To demonstrate the feasibility of our approach, the

experiment setup resembles a single resource pool where

all events are directly consumed by the application process.

This represents an edge case with regards to network and

CPU overhead on the application process, as there are

no aggregation or preprocessing steps performed by host

and/or resource pool nodes. Hence, the results presented

in Figure 10 do not resemble the overall capacity limits of

our approach, but only the limits for this particular resource

pool. The presented figures show CPU and network over­

head of our approach at the application process instance

for different loads, represented by the number of events

emitted per second.

3http://openstack.org/
4http://activemq.apache.org/

18 CPU overhead (%) --+--
16
14
12
10
8
6
4
2

0 2000 4000 6000 8000 10000 12000 14000 16000
Events per second

(a) CPU Overhead

6e+06

5e+06

4e+06

3e+06

2e+06

1e+06

Network overhead (Bytes) --+--

o 2000 4000 6000 8000 10000 12000 14000 16000
Events per second

(b) Network Overhead
Figure 10: Experiment CPU and Network Overhead

The events emitted by worker nodes are about 500 bytes

in size, and the complex event processing and rule engine

modules in the application process are designed to handle

roughly 15000 events per second.

As seen in Figure lOa, the processing overhead in our

experiment remains reasonably low even at high event

rates, reaching around 16% at 10000 processed events per

second. The CPU load does not rise significantly for higher

event rates as the network connection to the message queue

becomes saturated, and the application reaches its designed

processing limit, causing an event backlog in the message

queue (not shown).

The network overhead of our monitoring framework is

shown in Figure lOb. With rising event rates, we see a

steady increase of network traffic up to the capacity limit

after 14000 events per second. Contrary to CPU load,

network load rises until events rates as high as 14000

events per second are reached, due to the data prefetching

strategy of the used messaging infrastructure.

Our initial evaluation shows that the proposed moni­

toring framework is feasible even for high rates of events

of considerable size. As mentioned above, the presented

results show the behavior of a single resource pool, hence

the application can linearly scale using the hierarchical

approach discussed in Section IV. Every correlation step

described in Section IV-A represents an instance of the dis­

cussed experiment, allowing for high event rates within a

production system while maintaining reasonable overhead.

V I. Related Research

The emergence of cloud computing poses new chal­

lenges to software development, application deployment,

and system monitoring. A plethora of research approaches

have been published in the previous years. In this section

we provide a brief overview of previous work in the related

areas of cloud-based application management and CEP­

based monitoring.

Event-based monitoring is a paradigm that dates back

to the pre-Cloud era. One of the first seminal works in

this area is the GEM language [9], an event monitoring

language for distributed systems. GEM allows for the

specification of primitive and composite event types, and

defines trigger rules to enable or disable certain tasks in

the system. Analysis of event messages is often applied

in safety-critical applications for detection of malicious

behavior or intrusion attempts, for instance in the EMER­

ALD [16] environment. Event-based measuring of (mostly

low-level) Quality of Service (QoS) metrics has been

intensively studied in the context of Grid computing [18].

More recently, event processing techniques have been

applied to monitoring [13], [l7] and prediction [5], [25]

of QoS and Service Level Agreements (SLAs) in ser­

vice based applications and business processes. Service­

oriented computing and cloud computing are said to be in

a reciprocal relationship [23], hence, the achievements in

automated (SLA) monitoring for (Web) services (e.g., [4])

can partly be applied to cloud computing as well. However,

as cloud computing provides a more diverse landscape of

services on different conceptual layers, novel monitoring

and management techniques need to be devised. Research

on application management in cloud environments was so

far mostly focused on scalability and deployment of differ­

ent application architectures (e.g., [14]). The combination

of application development and performance monitoring

in the Cloud, as discussed in this paper, has received less

attention.

Knowledge derived from event monitoring can be uti­

lized to support scheduling decisions, as discussed in this

paper. In [22] a cost-optimal scheduling and resource al­

location algorithm, based on binary integer programming,

is presented. Another important aspect to consider is to

determine which parts of an application should be out-

sourced to the cloud. In [21], a cost-based model is utilized

to balance the trade-off between cost, time and resource

requirements. Besides cost-efficiency, scheduling decisions

are often based on fairness criteria to allot resources to

multiple applications executing in parallel [19]. In our

recent work, we have also discussed SLA-aware client side

scheduling strategies for infrastructure clouds [7].

V II. Conclusions

We have discussed an event-based approach for mon­

itoring cloud applications. We have introduced a multi­

step, CEP-based event correlation approach, which we

argue is scalable even for cloud applications using a large

number of virtual resources. We introduced a hierarchy of

predefined events, which can be used as basis of metric

definitions. Additionally, application developers are free

to trigger custom events. Finally, we have shown how

the previously published CloudScale framework uses the

produced monitoring data to dynamically acquire and

release cloud hosts. We presented an initial numerical

evaluation, which gives an impression of the performance

overhead introduced by our monitoring approach. Our

future research with regards to these contributions is two­

fold. One the one hand, a larger-scale evaluation of our

approach is still required. On the other hand we plan

to research the applicability of our approach outside of

CloudScale. We argue that our monitoring approach is

more general, but still need to substantiate this by applying

the approach to other frameworks.

Acknowledgement

The research leading to these results has received

funding from the European Conununity's Seventh Frame­

work Programme [FP7 /2007 -2013] under grant agreement

257483 and from the Austrian Science Fund (FWF) under

project reference P23313-N23.

References

[I] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwin­
ski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, "A
View of Cloud Computing," Communications of the ACM, vol. 53,
no. 4, pp. 50-58, 2010.

[2] W Hummer, P. Leitner, B. Satzger, and S. Dustdar, "Dynamic
migration of processing elements for optimized query execution in
event-based systems," in Proceedings of the 2011th Confederated

International Coriference on On The Move to Meaningful Internet
Systems, ser. OTM'I1, 2011, pp. 451-468.

[3] D. Karastoyanova, R. Khalaf, R. Schroth, M. Paluszek, and F. Ley­
mann, "Bpel event model," Report 2006/10, University of Stuttgart,
Tech. Rep., 2006.

[4] A. Keller and H. Ludwig, "The wsla framework: Specifying and
monitoring service level agreements for web services," lournal of

Network and Systems Management, vol. 11, pp. 57-81, 2003.

[5] P. Leitner, W. Hummer, and S. Dustdar, "Cost-Based Optimization
of Service Compositions," IEEE Transactions on Services Comput­

ing (TSC), 2012, to appear.
[6] P. Leitner, W. Hummer, B. Satzger, C. Inzinger, and S. Dustdar,

"CloudScale - a Novel Middleware for Building Transparently Scal­
ing Cloud Applications," in ACM Symposium on Applied Computing
(SAC), 2012.

[7] --, "Cost-Efficient and Application SLA-Aware Client Side Re­
quest Scheduling in an lnfrastructure-as-a-Service Cloud," in 5th

IEEE International Conference on Cloud Computing, 2012.
[8] D. Luckham, The Power of Events: An Introduction to Complex

Event Processing in Distributed Enterprise Systems. Addison-
Wesley Professional, May 2002.

[9] M. Mansouri-Samani and M. Sloman, "GEM: a generalized event
monitoring language for distributed systems," Distributed Systems
Engineering, vol. 4, no. 2, 1997.

[l0] T. Mastelic, V. C. Emeakaroha, M. Maurer, and I. Brandic,
"M4c1oud - generic application level monitoring for resource-shared
cloud environments," in CLOSER, 2012, pp. 522-532.

[11] X. Meng, C. lsci, J. Kephart, L. Zhang, E. Bouillet, and D. Pen­
darakis, "Efficient resource provisioning in compute clouds via
vm multiplexing," in 7th International Conference on Autonomic
Computing. ACM, 2010, pp. 11-20.

[12] A. Michlmayr, F. Rosenberg, P. Leitner, and S. Dustdar, "Advanced
Event Processing and Notifications in Service Runtime Environ­
ments," in 2nd International Coriference on Distributed Event-Based
Systems (DEBS'08), 2008.

[l3] --, "Comprehensive QoS monitoring of Web services and event­
based SLA violation detection," in 4th International Workshop on

Middleware for Service Oriented Computing, 2009, pp. 1-6.
[l4] R. Mietzner, T. Unger, and F. Leymann, "Cafe: A generic con fig­

urable customizable composite cloud application framework," in On

the Move to Meaningful Internet Systems (OTM), 2009.
[l5] B. Pang and L. Lee, "Opinion mining and sentiment analysis,"

Found. Trends Inf. Retr., vol. 2, no. 1-2, pp. 1-135, Jan. 2008.
[l6] P. A. Porras and P. G. Neumann, "EMERALD: Event Monitoring

Enabling Responses to Anomalous Live Disturbances," National
lriformation Systems Security Coriference, pp. 353-365, 1997.

[17] F. Raimondi, J. Skene, and W Emmerich, "Efficient online mon­
itoring of web-service slas," in 16th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2008.

[l8] R. S. Serafeim Zanikolas, "A taxonomy of grid monitoring sys­
tems," F uture Generation Computer Systems, vol. 21, 2005.

[l9] H. Sun, Y. Cao, and W-J. Hsu, "Fair and efficient online adaptive
scheduling for multiple sets of parallel applications," in 17th Int.

Coriference on Parallel and Distributed Systems (ICPADS), 2011.
[20] S. Tai, P. Leitner, and S. Dustdar, "Design by Units - Abstractions

for Human and Compute Resources for Elastic Systems," IEEE

Internet Computing, 2012.
[21] H.-L. Truong and S. Dustdar, "Composable cost estimation and

monitoring for computational applications in cloud computing en­
vironments," Procedia Computer Science, vol. 1, no. 1, 2010.

[22] R. Van den Bossche, K. Vanmechelen, and 1. Broeckhove, "Cost­
Optimal Scheduling in Hybrid laaS Clouds for Deadline Con­
strained Workloads," in 3rd IEEE International Coriference on
Cloud Computing (CLOUD), 2010, pp. 228 -235.

[23] Y. Wei and M. Blake, "Service-oriented computing and cloud com­
puting: Challenges and opportunities;' IEEE Internet Computing,
vol. 14, no. 6, pp. 72 -75, 2010.

[24] M. Xu, L. Cui, H. Wang, and Y. Bi, "A multiple qos constrained
scheduling strategy of multiple worktlows for cloud computing," in
Parallel and Distributed Processing with Applications, 2009 IEEE
International Symposium on, 2009, pp. 629 -634.

[25] L. Zeng, C. Lingenfelder, H. Lei, and H. Chang, "Event-Driven
Quality of Service Prediction," in Proceedings of the 6th Inter­
national Coriference on Service-Oriented Computing (ICSOC'08),
2008.

