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Abstract 

Monitoring of applications deployed to Infrastructure­

as-a-Service clouds is still an open problem. In this paper, 

we discuss an approach based on the complex event 

processing paradigm, which allows application developers 

to specify and monitor high-level application performance 

metrics. We use the case of a Web 2.0 sentiment anal­

ysis application to illustrate the limitations we currently 

experience with regard to cloud monitoring, and show 

how our approach allows for more expressive definitions 

of monitored metrics. Furthermore, we indicate how the 

higher-level metrics produced by our approach can be 

used to increase application elasticity in an existing cloud 

middleware. 

I. Introduction 

Current industrial software engineering practice is see­

ing substantial interest in the novel concept of cloud 

computing [1] as a virtualization layer, which enables 

applications to dynamically scale up and down as required 

by current workload. This model is often referred to 

as elastic computing [20]. Elastic computing unlocks a 

plethora of advantages for application providers, including 

cost savings and greener IT because of reduced energy 

consumption. All of these advantages come down to 

preventing over-provisioning of IT resources by closely 

monitoring demand and acquiring only those resources 

strictly required for the application to perform on the 

targeted quality level. 

Hence, it is evident that powerful monitoring facilities 

are at the heart of elastic computing in the cloud. Trivially, 

monitoring is always important for complex, distributed, 

enterprise-scale applications, simply to enable business 

analysts and engineers to reason about the effectiveness 

and economics of the application. However, in elastic 

cloud computing, monitoring becomes even more relevant, 

as it forms the basis, on which all other advantages of 

the model are built upon - without means to correctly 

assess the current resource demands of an application, all 

the dynamicity of the cloud is of little use. In a way, 

monitoring delivers the knowledge that is required to make 

scaling decisions with confidence. 

Unfortunately, monitoring of applications running in the 

cloud is currently under-researched, as compared to related 

areas, e.g., cloud provisioning [11], scheduling [24] or 

monitoring of the cloud infrastructure itself [10]. Industrial 

solutions focus on low-level metrics, such as CPU uti­

lization, memory consumption or network bandwidth. We 

argue that these metrics, while undoubtedly relevant, do 

not fully capture the actual performance of the application. 

Instead, applications should be monitored with regard to 

how well they perform the tasks they were designed for. To 

give an example, for a Customer Relations Management 

application provided via the Software-as-a-Service (SaaS) 

model, a reasonable performance metric is how long it 

takes for a customer to generate the reports he is interested 

in, or how many customers can access the application in 

parallel. Another fundamental advantage of such higher­

level metrics is that they can be used as the basis of 

expressive service level agreements (SLAs). It is clear 

that these higher-level, application-specific performance 

measures are somehow connected to the primitives, such 

as CPU load, but these connections are not easy to derive 

or express. 

In this paper, we introduce a framework for collecting 

such application-level performance metrics. We disucss 

our framework based on the earlier presented Cloud Scale 

toolkit for building cloud applications [6], and propose a 

monitoring infrastructure that uses the complex event pro­

cessing (CEP) paradigm [8]. We discuss how metrics are 



defined based on event streams, which types of events can 

be used, and how these events are correlated. Furthermore, 

we illustrate how such rich monitoring information can 

based used to schedule up- and down-scaling of virtualized 

resources within CloudScale. 

The remainder of this paper is structured as follows. 

We start off with an illustrative scenario in Section II, 

which will help further motivate our work. Section III 

contains some essential background information about the 

CloudScale framework, which forms the frame of the 

following contributions. Section IV introduces the event­

based monitoring framework, which is the main scientific 

contribution of this paper. We provide an initial numerical 

evaluation of our monitoring infrastructure in Section V, 

and, in Section VI, compare our results with related 

research. Finally, we conclude the paper with a summary 

and an outlook on future work in Section VII. 

II. Illustrative Scenario 

To illustrate the ideas of this paper, we use the case of 

a company providing Web 2.0 sentiment analysis [15] via 

a SaaS model. In essence, the company allows customers 

to register with their service, from which point onwards 

the company will monitor various social networks for 

positive as well as negative remarks about the customer and 

its products. Registered customers can query for detailed 

reports, which are generated on demand and include near 

real-time data from fast-moving social networks, such as 

Twitter. 
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Figure 1: Sentiment Analysis Scenario Overview 

To minimize infrastructure costs, and in order to seam­

lessly scale up and down depending on current load, the 

sentiment analysis application is hosted entirely using the 

Amazon Web servicesl (AWS) public cloud. An architec­

tural overview of the application is given in Figure 1. The 

application is essentially split in two parts. On the one 

hand, a customer-facing interface abstracts from a dynamic 

number of cloud hosts handling customer requests (e.g., 

queries and registration requests). These hosts implement 

the sentiment analysis business logics, and operate on 

a cluster of database instances implemented using Ama­

zon's Relational Database Service (RDS). This database 

is mainly filled by the second part of the application, a 

data-facing interface, which retrieves real-time data from 

various social networks. This data is pre-processed by data 

processing cloud hosts. Pre-processing includes tasks such 

as stemming or stop-word removal. 

Metric Name Description Interface 
Data-per-second Avg. number of new data items Data lntf. 

processed per second 
Time-per-data Avg. time (in ms) necessary to Data lntf. 

process a single new data item 
Time-to- Avg. time required to get the SaaS lntf. 
sentiment sentiment on a given keyword 
Time-to-report Avg. time required to generate SaaS lntf. 

a report 
Time-to-register Avg. time required to register SaaS lntf. 

a new customer 
Deployment- Total costs of the used Ama- All 
costs-per-month zon resources per month 

Table I: Example Application-Level Metrics for the Senti­

ment Analysis Application 

In the context of this application, we can think of 

various meaningful application-level monitoring metrics. 

Some examples are given in Table I. Clearly, these metrics 

are not necessarily on the same level of abstraction, and 

some of the metrics depend on each other, e.g., there is 

a clear relationship between data-per-second and time-per­

data. However, all of these metrics have relevance in the 

business domain of the application, and, together, they 

deliver a more accurate of view of the current performance 

of the application than just looking at, for instance, the av­

erage CPU load of the cloud hosts running the application. 

These metrics allow us to define policies for the scaling 

behavior of the application, e.g., by defining that the 

request processor resource pool needs to be increased if the 

metrics concerning the SaaS interface are too high. The last 

metric in Table I differs from the others, in the sense that 

this metric does not really consider the performance of the 

application, but the costs of delivering this performance. 

Such metrics are often interesting, because real applica­

tions usually cannot be scaled up indefinitely, as there 

is a cap on how much the provider of the application is 

realistically able and willing to pay for her infrastructure. 

I http://aws.amazon.com/ 



III. Background 

While the concepts discussed in this paper are gen­

eral (i.e. , can also be used for other cloud frameworks 

and applications), our discussion is mostly based on the 

CloudScale middleware for transparently scaling Java ap­

plications [6]. The overall idea of CloudScale is to use 

the concept of aspect-oriented programming (AOP) to 

dynamically modify the bytecode of executed applications, 

and transparently move designated parts of the application 

(so-called cloud objects) to different virtual resources in 

the cloud (so-called cloud hosts). These runtime changes 

are invisible for the application developer. The general 

procedure, which follows the Broker pattern, is sketched 

in Figure 2. 

5: co = 100kupCO(p) 

Figure 2: CloudScale Interaction (Adapted from [6]) 

One of the main tasks (and benefits) of CloudScale is 

that the framework takes over the management of virtual 

cloud resources (e.g., virtual machines to run the code 

on) entirely, as well as the mapping of incoming requests 

to the (typically replicated) processing instances [7]. To 

this end, CloudScale requires sophisticated means to track 

the performance of the application, to decide if more or 

less resources should be acquired from the cloud. These 

decisions are governed by scaling policies, user-defined 

and application-specific rules, which decide, based on 

monitoring data, whether the current resources assigned to 

a specific type of cloud object are adequate. Please refer 

to the original publication for more details [6]. 

This initial version of CloudScale enabled scaling poli­

cies only on very limited, system-level, performance met­

rics, such as the current CPU load on cloud resources. This 

makes writing meaningful scaling policies very compli­

cated for application developers, as it is not clear without 

extensive experimentation what CPU loads are actually op­

timal for different cloud objects in an application. Instead, 

application developers would actually like to write scaling 

policies based on meaningful higher-level metrics, such as 

the responsiveness of their application for certain time­

critical operations. Hence, this paper will discuss how we 

designed an event-based monitoring infrastructure, which 

delivers exactly this sort of expressive monitoring data. 

This data can then be used in scaling policies, but is also 

relevant as-is. For instance, the monitoring data can also 

simply be displayed to a human operator in form of a 

dashboard. 

IV. Event-Based Monitoring of Cloud Appli­

cations 

In the following, we discuss an approach to extend an 

existing cloud middleware (CloudScale) with event-based 

monitoring facilities. However, we argue that the presented 

approach is general, in the sense that the same architecture 

can also be implemented in other middleware, or even 

in cloud applications built from scratch (i.e. , without any 

explicit middleware support). 
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Figure 3: Monitoring Overview 

A. Overview 

Overall, our monitoring approach is based on the no­

tions of event-based monitoring and CEP. To this end, the 

idea is that various relevant components in the system emit 

events, which indicate their current status (e.g., that a new 

cloud object has been deployed, or that a cloud object 

has started to execute a given method). We refer to these 

components as event emitters. Important event emitters 

include cloud objects, cloud hosts or the cloud middleware 

itself, but, in principle, any Java code executed in the cloud 

can act as an event emitter by writing into the respective 

event stream. The events produced by those event emitters 

are then processed into higher-level knowledge using CEP 

techniques (a process that we refer to as event correlation 
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Figure 4: Monitoring Event Hierarchy 

in this paper). Finally, monitoring metrics are defined on 

top of these higher-level complex events. For performance 

reasons, events are correlated in multiple steps. 

Figure 3 sketches the architecture of our proposed 

monitoring system. Following the CloudScale notion, an 

application is split into a client application which delegates 

processing-intense tasks to various virtualized cloud hosts. 

Logically, these cloud hosts are grouped into resource 

pools. Each cloud host is executing an arbitrary number of 

cloud objects. Each component in the architecture can act 

as event emitter. Locally, events are transported via simple 

API calls. However, for remote communication (e.g., to 

send an event from a cloud host back to the application), 

we use an event bus, e.g., a Java Messaging Service (JMS) 

implementation or a cloud message queuing service, such 

as Amazon's Simple Queue Service (SQS). The produced 

events are correlated on three levels. (1) Firstly, events 

emitted on a host are correlated locally. This includes 

events emitted by cloud objects and this cloud host. This 

step is referred to as host correlation. (2) The next 

correlation step is on resource pool level (resource pool 
correlation), which mainly correlates events generated 

by host correlation, enriched by additional new events, 

e.g., events emitted on resource pool level. (3) Finally, 

the last and most important correlation step is in the 

application process itself, where all remaining events are 

used to produce actual metric values, which are then 

stored persistently into a metrics database. We refer to 

this final correlation step as metric correlation. All these 

correlation points are technically implemented by different 

CEP engines. However, in some cases, it may make sense 

to use one physical engine as implementation of e.g., a host 

correlation point and a resource pool correlation point at 

the same time. This is particularly true if different queries 

are operating on the same event streams, which allows 

query co-locating [2]. Values in the metrics database can 

be used in scaling policies, to govern the elasticity behavior 

of the application (or simply displayed in a dashboard for a 

human operator). Both, host and host pool correlation, are 

optional (i.e. , in a given application, it is not required to 

actually use these levels - an application can also just pass 

on all received events to the next level). Contrary, metric 

correlation is mandatory, as this step actually produces 

usable monitoring values from the event stream. 

B. Monitoring Event Hierarchy 

As indicated in Section IV-A, the basic building block 

of our monitoring approach are the events generated by 

event emitters. Hence, Figure 4 depicts the event type 

hierarchy of all currently available abstract and concrete 

event types. On the most fundamental level, events can 

be either predefined or custom. In the current version, 

our approach considers a set of 15 of the most important 

runtime events, including lifecycle events for hosts and 

resource pools, as well as a number of events considering 

the state of cloud objects. These events are triggered, for 

instance, when cloud objects start to execute, finish, or 

fail. This set of predefined events is comparable to the 

available monitoring events in related systems [3], [12]. 

All predefined events have an event payload consisting 

of event-specific additional information. For instance, the 

Execution Started Event carries the unique iden­

tifier of the executing cloud object, the name of the method, 

the parameters of the method, and a generated unique 

execution identifier as additional parameter. In Figure 4, 

these additional details are omitted for clarity. 

Via the placeholder of custom events, application de­

velopers can integrate any application-specific events. This 

allows developers to extend the monitoring event hierarchy 



10 

public class MyEventEmitter { 
@EventSink 
MonitoringEventSink eventSink; 

pri vate void triggerEvent () { 

} 
CustomEvent myEvent = new TweetProcessedEvent ( ... ); 
eventSi nk. emitEvent (myEvent); 

Figure 5: Triggering Custom Events 

in any way they see fit. For instance, in the sentiment 

analysis case, a developer may emit a custom Tweet 

Processed Event whenever the application has suc­

cessfully imported a tweet from Twitter, with the unmod­

ified as well as the stemmed tweet text as payload. 

Practically, our framework allows for custom events to 

be triggered in two alternative ways. Firstly, and more 

commonly, the CloudScale framework allows to inject 

an event sink into cloud objects using the well-known 

Dependency Injection pattern. The listing in Fig­

ure 5 exemplifies the procedure. All events need to subclass 

the abstract Java class CustomEvent. Events published 

over injected event sinks are automatically available for 

correlation on all levels. However, this approach is not 

available to applications not executing within a CloudScale 

environment. However, such applications can still trigger 

custom events by writing events directly into the event 

bus, e.g., by looking up the correct JMS event queue 

and writing to it. Such events are available for metric 

correlation only. 

C. Defining Correlation and Metrics 

Emitting the basic events described in Section IV-B is, 

of course, only half the story. These events still need to 

be aggregated, processed and, potentially, enriched with 

external data to generate useful monitoring metrics. To this 

end, application developers define so-called correlations 
and metrics. Correlations are named CEP statements, 

which are executed in defined correlation points (see 

Figure 6). Potential correlation points are indicated by the 

"Complex Event Processing" symbols in Figure 3, e.g., for 

a specific host, or for a specific resource pool. Correlations 

essentially filter and aggregate low-level events, so that not 

every single event emitted anywhere in the system needs to 

be sent to and evaluated directly in the application process. 

As a convention, each event of a type not used in any 

correlation is forwarded without modification. That means 

that, if no correlations are defined, all events are simply 

passed on to the next correlation level. 

In essence, metrics are extended correlation definitions. 

Metrics are always executed in the same correlation point 

Correlation 
-Name 
• CEP Statement 
- Correlation Point 

Metric 
-Name 
• CEP Statement 
• Postprocessing Script 
• Type 
• Range 

Monitoring Value 
-Metric Name 
• Value 
-Timestamp 

Figure 6: Definition of Correlations and Metrics 

(that is, in the final correlation step in the application). 

Furthermore, the result of the correlation of metric def­

initions is not forwarded, but used directly as input to 

metric calculation. Hence, metrics contain, as additional 

definitions, a script which is to be applied to the final 

complex events, as well as the type and range of the result. 

Postprocessing scripts can be trivial (e.g., simply extract­

ing some event properties) or rather complex, querying 

external data sources (e.g., a pricing service delivering the 

current per-instance costs of the cloud infrastructure) and 

enriching the collected data. The purpose of these scripts 

is to convert the final complex events to actual monitoring 
values. Monitoring values refer to a metric, and consist of 

the actual value (e.g., an integer) and a timestamp (see also 

Figure 6). This data is then saved to the metrics database 

for further usage. 

D. Scheduling Based on Monitoring Values 

In the context of our work, the main use for monitoring 

values is to enable expressive scheduling policies, which 

make sure that the application only holds the virtual 

resources that are strictly required. Here, we briefly ex­

emplify scheduling policies operating on this monitoring 

data, to give the reader an idea about possible usage of 

application-level monitoring in cloud environments. 

Scheduling policies take the form of, usually relatively 

simple, event-condition-action (ECA) rules. The triggering 

event is generally the reception of a new monitoring 

value of a given type. The condition usually uses the 

monitoring value, often to check if it is in a specific target 

range. Finally, the action is mostly to either increase or 

decrease the number of hosts in a given resource pool. An 

illustrative (and simplified) scaling policy is given in the 

listing in Figure 7. 

rule ' Add-Data-Processing-Node' 

i f  time-per-data > 2ms 
then addHost(' dataProcPool', 

, dataProcHost') 

Figure 7: Example ECA-Based Scheduling Policy 

Evidently, practical problems, such as detecting con­

flicting rules or preventing oscillation (i.e. , continuously 

triggering up- and down-scaling in short order) need to be 



considered, however, these aspects are out of scope for this 

paper. 

E. Case Study Examples 

To further illustrate how correlations and metrics can 

practically be defined, we now present two example met­

rics based on the sentiment analysis scenario. In these 

examples, we use the Esper2 CEP engine for event cor­

relation. 

Firstly, let us look at a potential implementation 

of the metric "Time-Per-Data" (as hourly average), as 

listed in Table I. We define this metric as the av­

erage time between matching Execution Started 

Event and Execution Finished Events fur ilie 

method DataProcessor. processDataltem ( ... ) 

in any given hour. These events are two predefined 

events, as discussed in Section IV-B. The listing in Fig­

ure 8 firstly shows a correlation statement (in Esper 

Processing Language, EPL, notation), which generates a 

ProcessingTimeEvent for each processed data item 

(lines 1-9). The correlation is executed in the application, 

i.e. , the metric correlation point is used. Afterwards, the 

second statement (lines 11-l3) defines the actual metric 

based on this stream of complex events produced by the 

previous correlation (as the average over a time window of 

one hour). In this simple example, the postprocessing script 

of the metric will simply extract the value "TimePerData". 

The type of this metric is decimal, and the range is [0; 00 ] . 

10 

II carre/alion stalemenl (metric carr 
insert into ProcessingTimeEvent 
select (f. timestamp - s.timestamp) as processingTime , 

f. execlltionld as execlltionld 
from ExeclltionStartedEvent. win: length (10000) s, 

ExecutionFinishedEvent . win: length (10000) f 
where s. class Name = ' DataProcessor' and 

s. method = • processDataltem' and 
s. execlltionld = f. execlltionld 

11 II metric definition 
12 select avg(processingTime) as TimePerData 

13 from ProcessingTi meEvent. win: ti me_batch (I hour) 

Figure 8: Definition of Time-per-Data Metric 

Secondly, we want to implement the "Data-Per-Second" 

metric. Let us assume that there are two types of data 

items, Twitter tweets and Facebook status updates. Both 

are processed by different resource pools. Whenever a data 

item is successfully processed, the application developer 

emits custom Tweet or Status Processed Events, 

respectively. We follow again a two-step approach. How­

ever, this time, we execute a correlation on resource pool 

level, to aggregate the tweets and status updates for each 

2http://esper.codehaus.org/ 

resource pool (see first statement in Figure 9). The metric 

definition (second statement in the figure, lines 10-l3) can 

then simply sum up these preliminary results from the two 

resource pools. The script which defines the metric utilizes 

the Esper pattern matching facility. The type of the metric 

is integer, and the range is [0; 00 ] . 

II correlation statement (resource pool carr.) 
insert into TweetsPerSecondEvent 
select count(t) as counter 

from TweetProcessedEvent. win: time_batch (I sec) t 

II assume StatusesPerSecondEvent is defined 
II analogously for status updates 

II metric definition 
10 select (t .counter + s.counter) as DataPerSecond 

11 from pattern [every ( 
12 s=StatllsesPerSecondEvent and t=TweetsPerSecondEvent 

13 )] 

Figure 9: Definition of Data-per-Second Metric 

V. Evaluation 

In this section, we discuss a preliminary numerical 

evaluation of our ideas. We have executed our experiments 

in a private cloud setting, consisting of a cloud controller 

and five compute nodes, each running on a dedicated Dell 

blade server with two Intel Xeon E5620 CPUs (2.4 GHz 

Quad Cores) and 16 GByte RAM. This private cloud 

has been set up using the open source Infrastructure­

as-a-Service middleware Openstack3. The evaluation is 

conducted using a total of 14 compute instances with the 

following configurations: one instance hosts an Apache 

ActiveMQ4 messaging service (4 VCPU, 8GB RAM), one 

instance hosts the application process gathering monitoring 

data (4 VCPU, 8GB RAM), and twelve worker instances 

emit events (2 VCPU, 4GB RAM). 

To demonstrate the feasibility of our approach, the 

experiment setup resembles a single resource pool where 

all events are directly consumed by the application process. 

This represents an edge case with regards to network and 

CPU overhead on the application process, as there are 

no aggregation or preprocessing steps performed by host 

and/or resource pool nodes. Hence, the results presented 

in Figure 10 do not resemble the overall capacity limits of 

our approach, but only the limits for this particular resource 

pool. The presented figures show CPU and network over­

head of our approach at the application process instance 

for different loads, represented by the number of events 

emitted per second. 

3http://openstack.org/ 
4http://activemq.apache.org/ 
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Figure 10: Experiment CPU and Network Overhead 

The events emitted by worker nodes are about 500 bytes 

in size, and the complex event processing and rule engine 

modules in the application process are designed to handle 

roughly 15000 events per second. 

As seen in Figure lOa, the processing overhead in our 

experiment remains reasonably low even at high event 

rates, reaching around 16% at 10000 processed events per 

second. The CPU load does not rise significantly for higher 

event rates as the network connection to the message queue 

becomes saturated, and the application reaches its designed 

processing limit, causing an event backlog in the message 

queue (not shown). 

The network overhead of our monitoring framework is 

shown in Figure lOb. With rising event rates, we see a 

steady increase of network traffic up to the capacity limit 

after 14000 events per second. Contrary to CPU load, 

network load rises until events rates as high as 14000 

events per second are reached, due to the data prefetching 

strategy of the used messaging infrastructure. 

Our initial evaluation shows that the proposed moni­

toring framework is feasible even for high rates of events 

of considerable size. As mentioned above, the presented 

results show the behavior of a single resource pool, hence 

the application can linearly scale using the hierarchical 

approach discussed in Section IV. Every correlation step 

described in Section IV-A represents an instance of the dis­

cussed experiment, allowing for high event rates within a 

production system while maintaining reasonable overhead. 

V I. Related Research 

The emergence of cloud computing poses new chal­

lenges to software development, application deployment, 

and system monitoring. A plethora of research approaches 

have been published in the previous years. In this section 

we provide a brief overview of previous work in the related 

areas of cloud-based application management and CEP­

based monitoring. 

Event-based monitoring is a paradigm that dates back 

to the pre-Cloud era. One of the first seminal works in 

this area is the GEM language [9], an event monitoring 

language for distributed systems. GEM allows for the 

specification of primitive and composite event types, and 

defines trigger rules to enable or disable certain tasks in 

the system. Analysis of event messages is often applied 

in safety-critical applications for detection of malicious 

behavior or intrusion attempts, for instance in the EMER­

ALD [16] environment. Event-based measuring of (mostly 

low-level) Quality of Service (QoS) metrics has been 

intensively studied in the context of Grid computing [18]. 

More recently, event processing techniques have been 

applied to monitoring [13], [l7] and prediction [5], [25] 

of QoS and Service Level Agreements (SLAs) in ser­

vice based applications and business processes. Service­

oriented computing and cloud computing are said to be in 

a reciprocal relationship [23], hence, the achievements in 

automated (SLA) monitoring for (Web) services (e.g., [4]) 

can partly be applied to cloud computing as well. However, 

as cloud computing provides a more diverse landscape of 

services on different conceptual layers, novel monitoring 

and management techniques need to be devised. Research 

on application management in cloud environments was so 

far mostly focused on scalability and deployment of differ­

ent application architectures (e.g., [14]). The combination 

of application development and performance monitoring 

in the Cloud, as discussed in this paper, has received less 

attention. 

Knowledge derived from event monitoring can be uti­

lized to support scheduling decisions, as discussed in this 

paper. In [22] a cost-optimal scheduling and resource al­

location algorithm, based on binary integer programming, 

is presented. Another important aspect to consider is to 

determine which parts of an application should be out-



sourced to the cloud. In [21], a cost-based model is utilized 

to balance the trade-off between cost, time and resource 

requirements. Besides cost-efficiency, scheduling decisions 

are often based on fairness criteria to allot resources to 

multiple applications executing in parallel [19]. In our 

recent work, we have also discussed SLA-aware client side 

scheduling strategies for infrastructure clouds [7]. 

V II. Conclusions 

We have discussed an event-based approach for mon­

itoring cloud applications. We have introduced a multi­

step, CEP-based event correlation approach, which we 

argue is scalable even for cloud applications using a large 

number of virtual resources. We introduced a hierarchy of 

predefined events, which can be used as basis of metric 

definitions. Additionally, application developers are free 

to trigger custom events. Finally, we have shown how 

the previously published CloudScale framework uses the 

produced monitoring data to dynamically acquire and 

release cloud hosts. We presented an initial numerical 

evaluation, which gives an impression of the performance 

overhead introduced by our monitoring approach. Our 

future research with regards to these contributions is two­

fold. One the one hand, a larger-scale evaluation of our 

approach is still required. On the other hand we plan 

to research the applicability of our approach outside of 

CloudScale. We argue that our monitoring approach is 

more general, but still need to substantiate this by applying 

the approach to other frameworks. 
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